blob: 9ceca8207b60193249b9c36f52ceaccf536e2baf [file] [log] [blame]
/*
* Copyright 2021 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FLATBUFFERS_FLATBUFFER_BUILDER_H_
#define FLATBUFFERS_FLATBUFFER_BUILDER_H_
#include <algorithm>
#include <cstdint>
#include <functional>
#include <initializer_list>
#include <type_traits>
#include "flatbuffers/allocator.h"
#include "flatbuffers/array.h"
#include "flatbuffers/base.h"
#include "flatbuffers/buffer.h"
#include "flatbuffers/buffer_ref.h"
#include "flatbuffers/default_allocator.h"
#include "flatbuffers/detached_buffer.h"
#include "flatbuffers/stl_emulation.h"
#include "flatbuffers/string.h"
#include "flatbuffers/struct.h"
#include "flatbuffers/table.h"
#include "flatbuffers/vector.h"
#include "flatbuffers/vector_downward.h"
#include "flatbuffers/verifier.h"
namespace flatbuffers {
// Converts a Field ID to a virtual table offset.
inline voffset_t FieldIndexToOffset(voffset_t field_id) {
// Should correspond to what EndTable() below builds up.
const voffset_t fixed_fields =
2 * sizeof(voffset_t); // Vtable size and Object Size.
size_t offset = fixed_fields + field_id * sizeof(voffset_t);
FLATBUFFERS_ASSERT(offset < std::numeric_limits<voffset_t>::max());
return static_cast<voffset_t>(offset);
}
template<typename T, typename Alloc = std::allocator<T>>
const T *data(const std::vector<T, Alloc> &v) {
// Eventually the returned pointer gets passed down to memcpy, so
// we need it to be non-null to avoid undefined behavior.
static uint8_t t;
return v.empty() ? reinterpret_cast<const T *>(&t) : &v.front();
}
template<typename T, typename Alloc = std::allocator<T>>
T *data(std::vector<T, Alloc> &v) {
// Eventually the returned pointer gets passed down to memcpy, so
// we need it to be non-null to avoid undefined behavior.
static uint8_t t;
return v.empty() ? reinterpret_cast<T *>(&t) : &v.front();
}
/// @addtogroup flatbuffers_cpp_api
/// @{
/// @class FlatBufferBuilder
/// @brief Helper class to hold data needed in creation of a FlatBuffer.
/// To serialize data, you typically call one of the `Create*()` functions in
/// the generated code, which in turn call a sequence of `StartTable`/
/// `PushElement`/`AddElement`/`EndTable`, or the builtin `CreateString`/
/// `CreateVector` functions. Do this is depth-first order to build up a tree to
/// the root. `Finish()` wraps up the buffer ready for transport.
template<bool Is64Aware = false> class FlatBufferBuilderImpl {
public:
// This switches the size type of the builder, based on if its 64-bit aware
// (uoffset64_t) or not (uoffset_t).
typedef
typename std::conditional<Is64Aware, uoffset64_t, uoffset_t>::type SizeT;
/// @brief Default constructor for FlatBufferBuilder.
/// @param[in] initial_size The initial size of the buffer, in bytes. Defaults
/// to `1024`.
/// @param[in] allocator An `Allocator` to use. If null will use
/// `DefaultAllocator`.
/// @param[in] own_allocator Whether the builder/vector should own the
/// allocator. Defaults to / `false`.
/// @param[in] buffer_minalign Force the buffer to be aligned to the given
/// minimum alignment upon reallocation. Only needed if you intend to store
/// types with custom alignment AND you wish to read the buffer in-place
/// directly after creation.
explicit FlatBufferBuilderImpl(
size_t initial_size = 1024, Allocator *allocator = nullptr,
bool own_allocator = false,
size_t buffer_minalign = AlignOf<largest_scalar_t>())
: buf_(initial_size, allocator, own_allocator, buffer_minalign,
static_cast<SizeT>(Is64Aware ? FLATBUFFERS_MAX_64_BUFFER_SIZE
: FLATBUFFERS_MAX_BUFFER_SIZE)),
num_field_loc(0),
max_voffset_(0),
length_of_64_bit_region_(0),
nested(false),
finished(false),
minalign_(1),
force_defaults_(false),
dedup_vtables_(true),
string_pool(nullptr) {
EndianCheck();
}
/// @brief Move constructor for FlatBufferBuilder.
FlatBufferBuilderImpl(FlatBufferBuilderImpl &&other) noexcept
: buf_(1024, nullptr, false, AlignOf<largest_scalar_t>(),
static_cast<SizeT>(Is64Aware ? FLATBUFFERS_MAX_64_BUFFER_SIZE
: FLATBUFFERS_MAX_BUFFER_SIZE)),
num_field_loc(0),
max_voffset_(0),
length_of_64_bit_region_(0),
nested(false),
finished(false),
minalign_(1),
force_defaults_(false),
dedup_vtables_(true),
string_pool(nullptr) {
EndianCheck();
// Default construct and swap idiom.
// Lack of delegating constructors in vs2010 makes it more verbose than
// needed.
Swap(other);
}
/// @brief Move assignment operator for FlatBufferBuilder.
FlatBufferBuilderImpl &operator=(FlatBufferBuilderImpl &&other) noexcept {
// Move construct a temporary and swap idiom
FlatBufferBuilderImpl temp(std::move(other));
Swap(temp);
return *this;
}
void Swap(FlatBufferBuilderImpl &other) {
using std::swap;
buf_.swap(other.buf_);
swap(num_field_loc, other.num_field_loc);
swap(max_voffset_, other.max_voffset_);
swap(length_of_64_bit_region_, other.length_of_64_bit_region_);
swap(nested, other.nested);
swap(finished, other.finished);
swap(minalign_, other.minalign_);
swap(force_defaults_, other.force_defaults_);
swap(dedup_vtables_, other.dedup_vtables_);
swap(string_pool, other.string_pool);
}
~FlatBufferBuilderImpl() {
if (string_pool) delete string_pool;
}
void Reset() {
Clear(); // clear builder state
buf_.reset(); // deallocate buffer
}
/// @brief Reset all the state in this FlatBufferBuilder so it can be reused
/// to construct another buffer.
void Clear() {
ClearOffsets();
buf_.clear();
nested = false;
finished = false;
minalign_ = 1;
length_of_64_bit_region_ = 0;
if (string_pool) string_pool->clear();
}
/// @brief The current size of the serialized buffer, counting from the end.
/// @return Returns an `SizeT` with the current size of the buffer.
SizeT GetSize() const { return buf_.size(); }
/// @brief The current size of the serialized buffer relative to the end of
/// the 32-bit region.
/// @return Returns an `uoffset_t` with the current size of the buffer.
template<bool is_64 = Is64Aware>
// Only enable this method for the 64-bit builder, as only that builder is
// concerned with the 32/64-bit boundary, and should be the one to bare any
// run time costs.
typename std::enable_if<is_64, uoffset_t>::type GetSizeRelative32BitRegion()
const {
//[32-bit region][64-bit region]
// [XXXXXXXXXXXXXXXXXXX] GetSize()
// [YYYYYYYYYYYYY] length_of_64_bit_region_
// [ZZZZ] return size
return static_cast<uoffset_t>(GetSize() - length_of_64_bit_region_);
}
template<bool is_64 = Is64Aware>
// Only enable this method for the 32-bit builder.
typename std::enable_if<!is_64, uoffset_t>::type GetSizeRelative32BitRegion()
const {
return static_cast<uoffset_t>(GetSize());
}
/// @brief Get the serialized buffer (after you call `Finish()`).
/// @return Returns an `uint8_t` pointer to the FlatBuffer data inside the
/// buffer.
uint8_t *GetBufferPointer() const {
Finished();
return buf_.data();
}
/// @brief Get the serialized buffer (after you call `Finish()`) as a span.
/// @return Returns a constructed flatbuffers::span that is a view over the
/// FlatBuffer data inside the buffer.
flatbuffers::span<uint8_t> GetBufferSpan() const {
Finished();
return flatbuffers::span<uint8_t>(buf_.data(), buf_.size());
}
/// @brief Get a pointer to an unfinished buffer.
/// @return Returns a `uint8_t` pointer to the unfinished buffer.
uint8_t *GetCurrentBufferPointer() const { return buf_.data(); }
/// @brief Get the released DetachedBuffer.
/// @return A `DetachedBuffer` that owns the buffer and its allocator.
DetachedBuffer Release() {
Finished();
DetachedBuffer buffer = buf_.release();
Clear();
return buffer;
}
/// @brief Get the released pointer to the serialized buffer.
/// @param size The size of the memory block containing
/// the serialized `FlatBuffer`.
/// @param offset The offset from the released pointer where the finished
/// `FlatBuffer` starts.
/// @return A raw pointer to the start of the memory block containing
/// the serialized `FlatBuffer`.
/// @remark If the allocator is owned, it gets deleted when the destructor is
/// called.
uint8_t *ReleaseRaw(size_t &size, size_t &offset) {
Finished();
uint8_t *raw = buf_.release_raw(size, offset);
Clear();
return raw;
}
/// @brief get the minimum alignment this buffer needs to be accessed
/// properly. This is only known once all elements have been written (after
/// you call Finish()). You can use this information if you need to embed
/// a FlatBuffer in some other buffer, such that you can later read it
/// without first having to copy it into its own buffer.
size_t GetBufferMinAlignment() const {
Finished();
return minalign_;
}
/// @cond FLATBUFFERS_INTERNAL
void Finished() const {
// If you get this assert, you're attempting to get access a buffer
// which hasn't been finished yet. Be sure to call
// FlatBufferBuilder::Finish with your root table.
// If you really need to access an unfinished buffer, call
// GetCurrentBufferPointer instead.
FLATBUFFERS_ASSERT(finished);
}
/// @endcond
/// @brief In order to save space, fields that are set to their default value
/// don't get serialized into the buffer.
/// @param[in] fd When set to `true`, always serializes default values that
/// are set. Optional fields which are not set explicitly, will still not be
/// serialized.
void ForceDefaults(bool fd) { force_defaults_ = fd; }
/// @brief By default vtables are deduped in order to save space.
/// @param[in] dedup When set to `true`, dedup vtables.
void DedupVtables(bool dedup) { dedup_vtables_ = dedup; }
/// @cond FLATBUFFERS_INTERNAL
void Pad(size_t num_bytes) { buf_.fill(num_bytes); }
void TrackMinAlign(size_t elem_size) {
if (elem_size > minalign_) minalign_ = elem_size;
}
void Align(size_t elem_size) {
TrackMinAlign(elem_size);
buf_.fill(PaddingBytes(buf_.size(), elem_size));
}
void PushFlatBuffer(const uint8_t *bytes, size_t size) {
PushBytes(bytes, size);
finished = true;
}
void PushBytes(const uint8_t *bytes, size_t size) { buf_.push(bytes, size); }
void PopBytes(size_t amount) { buf_.pop(amount); }
template<typename T> void AssertScalarT() {
// The code assumes power of 2 sizes and endian-swap-ability.
static_assert(flatbuffers::is_scalar<T>::value, "T must be a scalar type");
}
// Write a single aligned scalar to the buffer
template<typename T, typename ReturnT = uoffset_t>
ReturnT PushElement(T element) {
AssertScalarT<T>();
Align(sizeof(T));
buf_.push_small(EndianScalar(element));
return CalculateOffset<ReturnT>();
}
template<typename T, template<typename> class OffsetT = Offset>
uoffset_t PushElement(OffsetT<T> off) {
// Special case for offsets: see ReferTo below.
return PushElement(ReferTo(off.o));
}
// When writing fields, we track where they are, so we can create correct
// vtables later.
void TrackField(voffset_t field, uoffset_t off) {
FieldLoc fl = { off, field };
buf_.scratch_push_small(fl);
num_field_loc++;
if (field > max_voffset_) { max_voffset_ = field; }
}
// Like PushElement, but additionally tracks the field this represents.
template<typename T> void AddElement(voffset_t field, T e, T def) {
// We don't serialize values equal to the default.
if (IsTheSameAs(e, def) && !force_defaults_) return;
TrackField(field, PushElement(e));
}
template<typename T> void AddElement(voffset_t field, T e) {
TrackField(field, PushElement(e));
}
template<typename T> void AddOffset(voffset_t field, Offset<T> off) {
if (off.IsNull()) return; // Don't store.
AddElement(field, ReferTo(off.o), static_cast<uoffset_t>(0));
}
template<typename T> void AddOffset(voffset_t field, Offset64<T> off) {
if (off.IsNull()) return; // Don't store.
AddElement(field, ReferTo(off.o), static_cast<uoffset64_t>(0));
}
template<typename T> void AddStruct(voffset_t field, const T *structptr) {
if (!structptr) return; // Default, don't store.
Align(AlignOf<T>());
buf_.push_small(*structptr);
TrackField(field, CalculateOffset<uoffset_t>());
}
void AddStructOffset(voffset_t field, uoffset_t off) {
TrackField(field, off);
}
// Offsets initially are relative to the end of the buffer (downwards).
// This function converts them to be relative to the current location
// in the buffer (when stored here), pointing upwards.
uoffset_t ReferTo(uoffset_t off) {
// Align to ensure GetSizeRelative32BitRegion() below is correct.
Align(sizeof(uoffset_t));
// 32-bit offsets are relative to the tail of the 32-bit region of the
// buffer. For most cases (without 64-bit entities) this is equivalent to
// size of the whole buffer (e.g. GetSize())
return ReferTo(off, GetSizeRelative32BitRegion());
}
uoffset64_t ReferTo(uoffset64_t off) {
// Align to ensure GetSize() below is correct.
Align(sizeof(uoffset64_t));
// 64-bit offsets are relative to tail of the whole buffer
return ReferTo(off, GetSize());
}
template<typename T, typename T2> T ReferTo(const T off, const T2 size) {
FLATBUFFERS_ASSERT(off && off <= size);
return size - off + static_cast<T>(sizeof(T));
}
template<typename T> T ReferTo(const T off, const T size) {
FLATBUFFERS_ASSERT(off && off <= size);
return size - off + static_cast<T>(sizeof(T));
}
void NotNested() {
// If you hit this, you're trying to construct a Table/Vector/String
// during the construction of its parent table (between the MyTableBuilder
// and table.Finish().
// Move the creation of these sub-objects to above the MyTableBuilder to
// not get this assert.
// Ignoring this assert may appear to work in simple cases, but the reason
// it is here is that storing objects in-line may cause vtable offsets
// to not fit anymore. It also leads to vtable duplication.
FLATBUFFERS_ASSERT(!nested);
// If you hit this, fields were added outside the scope of a table.
FLATBUFFERS_ASSERT(!num_field_loc);
}
// From generated code (or from the parser), we call StartTable/EndTable
// with a sequence of AddElement calls in between.
uoffset_t StartTable() {
NotNested();
nested = true;
return GetSizeRelative32BitRegion();
}
// This finishes one serialized object by generating the vtable if it's a
// table, comparing it against existing vtables, and writing the
// resulting vtable offset.
uoffset_t EndTable(uoffset_t start) {
// If you get this assert, a corresponding StartTable wasn't called.
FLATBUFFERS_ASSERT(nested);
// Write the vtable offset, which is the start of any Table.
// We fill its value later.
// This is relative to the end of the 32-bit region.
const uoffset_t vtable_offset_loc =
static_cast<uoffset_t>(PushElement<soffset_t>(0));
// Write a vtable, which consists entirely of voffset_t elements.
// It starts with the number of offsets, followed by a type id, followed
// by the offsets themselves. In reverse:
// Include space for the last offset and ensure empty tables have a
// minimum size.
max_voffset_ =
(std::max)(static_cast<voffset_t>(max_voffset_ + sizeof(voffset_t)),
FieldIndexToOffset(0));
buf_.fill_big(max_voffset_);
const uoffset_t table_object_size = vtable_offset_loc - start;
// Vtable use 16bit offsets.
FLATBUFFERS_ASSERT(table_object_size < 0x10000);
WriteScalar<voffset_t>(buf_.data() + sizeof(voffset_t),
static_cast<voffset_t>(table_object_size));
WriteScalar<voffset_t>(buf_.data(), max_voffset_);
// Write the offsets into the table
for (auto it = buf_.scratch_end() - num_field_loc * sizeof(FieldLoc);
it < buf_.scratch_end(); it += sizeof(FieldLoc)) {
auto field_location = reinterpret_cast<FieldLoc *>(it);
const voffset_t pos =
static_cast<voffset_t>(vtable_offset_loc - field_location->off);
// If this asserts, it means you've set a field twice.
FLATBUFFERS_ASSERT(
!ReadScalar<voffset_t>(buf_.data() + field_location->id));
WriteScalar<voffset_t>(buf_.data() + field_location->id, pos);
}
ClearOffsets();
auto vt1 = reinterpret_cast<voffset_t *>(buf_.data());
auto vt1_size = ReadScalar<voffset_t>(vt1);
auto vt_use = GetSizeRelative32BitRegion();
// See if we already have generated a vtable with this exact same
// layout before. If so, make it point to the old one, remove this one.
if (dedup_vtables_) {
for (auto it = buf_.scratch_data(); it < buf_.scratch_end();
it += sizeof(uoffset_t)) {
auto vt_offset_ptr = reinterpret_cast<uoffset_t *>(it);
auto vt2 = reinterpret_cast<voffset_t *>(buf_.data_at(*vt_offset_ptr));
auto vt2_size = ReadScalar<voffset_t>(vt2);
if (vt1_size != vt2_size || 0 != memcmp(vt2, vt1, vt1_size)) continue;
vt_use = *vt_offset_ptr;
buf_.pop(GetSizeRelative32BitRegion() - vtable_offset_loc);
break;
}
}
// If this is a new vtable, remember it.
if (vt_use == GetSizeRelative32BitRegion()) {
buf_.scratch_push_small(vt_use);
}
// Fill the vtable offset we created above.
// The offset points from the beginning of the object to where the vtable is
// stored.
// Offsets default direction is downward in memory for future format
// flexibility (storing all vtables at the start of the file).
WriteScalar(buf_.data_at(vtable_offset_loc + length_of_64_bit_region_),
static_cast<soffset_t>(vt_use) -
static_cast<soffset_t>(vtable_offset_loc));
nested = false;
return vtable_offset_loc;
}
FLATBUFFERS_ATTRIBUTE([[deprecated("call the version above instead")]])
uoffset_t EndTable(uoffset_t start, voffset_t /*numfields*/) {
return EndTable(start);
}
// This checks a required field has been set in a given table that has
// just been constructed.
template<typename T> void Required(Offset<T> table, voffset_t field) {
auto table_ptr = reinterpret_cast<const Table *>(buf_.data_at(table.o));
bool ok = table_ptr->GetOptionalFieldOffset(field) != 0;
// If this fails, the caller will show what field needs to be set.
FLATBUFFERS_ASSERT(ok);
(void)ok;
}
uoffset_t StartStruct(size_t alignment) {
Align(alignment);
return GetSizeRelative32BitRegion();
}
uoffset_t EndStruct() { return GetSizeRelative32BitRegion(); }
void ClearOffsets() {
buf_.scratch_pop(num_field_loc * sizeof(FieldLoc));
num_field_loc = 0;
max_voffset_ = 0;
}
// Aligns such that when "len" bytes are written, an object can be written
// after it (forward in the buffer) with "alignment" without padding.
void PreAlign(size_t len, size_t alignment) {
if (len == 0) return;
TrackMinAlign(alignment);
buf_.fill(PaddingBytes(GetSize() + len, alignment));
}
// Aligns such than when "len" bytes are written, an object of type `AlignT`
// can be written after it (forward in the buffer) without padding.
template<typename AlignT> void PreAlign(size_t len) {
AssertScalarT<AlignT>();
PreAlign(len, AlignOf<AlignT>());
}
/// @endcond
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const char pointer to the data to be stored as a string.
/// @param[in] len The number of bytes that should be stored from `str`.
/// @return Returns the offset in the buffer where the string starts.
template<template<typename> class OffsetT = Offset>
OffsetT<String> CreateString(const char *str, size_t len) {
CreateStringImpl(str, len);
return OffsetT<String>(
CalculateOffset<typename OffsetT<String>::offset_type>());
}
/// @brief Store a string in the buffer, which is null-terminated.
/// @param[in] str A const char pointer to a C-string to add to the buffer.
/// @return Returns the offset in the buffer where the string starts.
template<template<typename> class OffsetT = Offset>
OffsetT<String> CreateString(const char *str) {
return CreateString<OffsetT>(str, strlen(str));
}
/// @brief Store a string in the buffer, which is null-terminated.
/// @param[in] str A char pointer to a C-string to add to the buffer.
/// @return Returns the offset in the buffer where the string starts.
template<template<typename> class OffsetT = Offset>
OffsetT<String> CreateString(char *str) {
return CreateString<OffsetT>(str, strlen(str));
}
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const reference to a std::string to store in the buffer.
/// @return Returns the offset in the buffer where the string starts.
template<template<typename> class OffsetT = Offset>
OffsetT<String> CreateString(const std::string &str) {
return CreateString<OffsetT>(str.c_str(), str.length());
}
// clang-format off
#ifdef FLATBUFFERS_HAS_STRING_VIEW
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const string_view to copy in to the buffer.
/// @return Returns the offset in the buffer where the string starts.
template<template <typename> class OffsetT = Offset>
OffsetT<String>CreateString(flatbuffers::string_view str) {
return CreateString<OffsetT>(str.data(), str.size());
}
#endif // FLATBUFFERS_HAS_STRING_VIEW
// clang-format on
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const pointer to a `String` struct to add to the buffer.
/// @return Returns the offset in the buffer where the string starts
template<template<typename> class OffsetT = Offset>
OffsetT<String> CreateString(const String *str) {
return str ? CreateString<OffsetT>(str->c_str(), str->size()) : 0;
}
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const reference to a std::string like type with support
/// of T::data() and T::length() to store in the buffer.
/// @return Returns the offset in the buffer where the string starts.
template<template<typename> class OffsetT = Offset,
// No need to explicitly declare the T type, let the compiler deduce
// it.
int &...ExplicitArgumentBarrier, typename T>
OffsetT<String> CreateString(const T &str) {
return CreateString<OffsetT>(str.data(), str.length());
}
/// @brief Store a string in the buffer, which can contain any binary data.
/// If a string with this exact contents has already been serialized before,
/// instead simply returns the offset of the existing string. This uses a map
/// stored on the heap, but only stores the numerical offsets.
/// @param[in] str A const char pointer to the data to be stored as a string.
/// @param[in] len The number of bytes that should be stored from `str`.
/// @return Returns the offset in the buffer where the string starts.
Offset<String> CreateSharedString(const char *str, size_t len) {
FLATBUFFERS_ASSERT(FLATBUFFERS_GENERAL_HEAP_ALLOC_OK);
if (!string_pool) {
string_pool = new StringOffsetMap(StringOffsetCompare(buf_));
}
const size_t size_before_string = buf_.size();
// Must first serialize the string, since the set is all offsets into
// buffer.
const Offset<String> off = CreateString<Offset>(str, len);
auto it = string_pool->find(off);
// If it exists we reuse existing serialized data!
if (it != string_pool->end()) {
// We can remove the string we serialized.
buf_.pop(buf_.size() - size_before_string);
return *it;
}
// Record this string for future use.
string_pool->insert(off);
return off;
}
#ifdef FLATBUFFERS_HAS_STRING_VIEW
/// @brief Store a string in the buffer, which can contain any binary data.
/// If a string with this exact contents has already been serialized before,
/// instead simply returns the offset of the existing string. This uses a map
/// stored on the heap, but only stores the numerical offsets.
/// @param[in] str A const std::string_view to store in the buffer.
/// @return Returns the offset in the buffer where the string starts
Offset<String> CreateSharedString(const flatbuffers::string_view str) {
return CreateSharedString(str.data(), str.size());
}
#else
/// @brief Store a string in the buffer, which null-terminated.
/// If a string with this exact contents has already been serialized before,
/// instead simply returns the offset of the existing string. This uses a map
/// stored on the heap, but only stores the numerical offsets.
/// @param[in] str A const char pointer to a C-string to add to the buffer.
/// @return Returns the offset in the buffer where the string starts.
Offset<String> CreateSharedString(const char *str) {
return CreateSharedString(str, strlen(str));
}
/// @brief Store a string in the buffer, which can contain any binary data.
/// If a string with this exact contents has already been serialized before,
/// instead simply returns the offset of the existing string. This uses a map
/// stored on the heap, but only stores the numerical offsets.
/// @param[in] str A const reference to a std::string to store in the buffer.
/// @return Returns the offset in the buffer where the string starts.
Offset<String> CreateSharedString(const std::string &str) {
return CreateSharedString(str.c_str(), str.length());
}
#endif
/// @brief Store a string in the buffer, which can contain any binary data.
/// If a string with this exact contents has already been serialized before,
/// instead simply returns the offset of the existing string. This uses a map
/// stored on the heap, but only stores the numerical offsets.
/// @param[in] str A const pointer to a `String` struct to add to the buffer.
/// @return Returns the offset in the buffer where the string starts
Offset<String> CreateSharedString(const String *str) {
return str ? CreateSharedString(str->c_str(), str->size()) : 0;
}
/// @cond FLATBUFFERS_INTERNAL
template<typename LenT = uoffset_t, typename ReturnT = uoffset_t>
ReturnT EndVector(size_t len) {
FLATBUFFERS_ASSERT(nested); // Hit if no corresponding StartVector.
nested = false;
return PushElement<LenT, ReturnT>(static_cast<LenT>(len));
}
template<template<typename> class OffsetT = Offset, typename LenT = uint32_t>
void StartVector(size_t len, size_t elemsize, size_t alignment) {
NotNested();
nested = true;
// Align to the Length type of the vector (either 32-bit or 64-bit), so
// that the length of the buffer can be added without padding.
PreAlign<LenT>(len * elemsize);
PreAlign(len * elemsize, alignment); // Just in case elemsize > uoffset_t.
}
template<typename T, template<typename> class OffsetT = Offset,
typename LenT = uint32_t>
void StartVector(size_t len) {
return StartVector<OffsetT, LenT>(len, sizeof(T), AlignOf<T>());
}
// Call this right before StartVector/CreateVector if you want to force the
// alignment to be something different than what the element size would
// normally dictate.
// This is useful when storing a nested_flatbuffer in a vector of bytes,
// or when storing SIMD floats, etc.
void ForceVectorAlignment(const size_t len, const size_t elemsize,
const size_t alignment) {
if (len == 0) return;
FLATBUFFERS_ASSERT(VerifyAlignmentRequirements(alignment));
PreAlign(len * elemsize, alignment);
}
template<bool is_64 = Is64Aware>
typename std::enable_if<is_64, void>::type ForceVectorAlignment64(
const size_t len, const size_t elemsize, const size_t alignment) {
// If you hit this assertion, you are trying to force alignment on a
// vector with offset64 after serializing a 32-bit offset.
FLATBUFFERS_ASSERT(GetSize() == length_of_64_bit_region_);
// Call through.
ForceVectorAlignment(len, elemsize, alignment);
// Update the 64 bit region.
length_of_64_bit_region_ = GetSize();
}
// Similar to ForceVectorAlignment but for String fields.
void ForceStringAlignment(size_t len, size_t alignment) {
if (len == 0) return;
FLATBUFFERS_ASSERT(VerifyAlignmentRequirements(alignment));
PreAlign((len + 1) * sizeof(char), alignment);
}
/// @endcond
/// @brief Serialize an array into a FlatBuffer `vector`.
/// @tparam T The data type of the array elements.
/// @tparam OffsetT the type of offset to return
/// @tparam VectorT the type of vector to cast to.
/// @param[in] v A pointer to the array of type `T` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @return Returns a typed `TOffset` into the serialized data indicating
/// where the vector is stored.
template<typename T, template<typename...> class OffsetT = Offset,
template<typename...> class VectorT = Vector>
OffsetT<VectorT<T>> CreateVector(const T *v, size_t len) {
// The type of the length field in the vector.
typedef typename VectorT<T>::size_type LenT;
typedef typename OffsetT<VectorT<T>>::offset_type offset_type;
// If this assert hits, you're specifying a template argument that is
// causing the wrong overload to be selected, remove it.
AssertScalarT<T>();
StartVector<T, OffsetT, LenT>(len);
if (len > 0) {
// clang-format off
#if FLATBUFFERS_LITTLEENDIAN
PushBytes(reinterpret_cast<const uint8_t *>(v), len * sizeof(T));
#else
if (sizeof(T) == 1) {
PushBytes(reinterpret_cast<const uint8_t *>(v), len);
} else {
for (auto i = len; i > 0; ) {
PushElement(v[--i]);
}
}
#endif
// clang-format on
}
return OffsetT<VectorT<T>>(EndVector<LenT, offset_type>(len));
}
/// @brief Serialize an array like object into a FlatBuffer `vector`.
/// @tparam T The data type of the array elements.
/// @tparam C The type of the array.
/// @param[in] array A reference to an array like object of type `T` to
/// serialize into the buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, class C> Offset<Vector<T>> CreateVector(const C &array) {
return CreateVector(array.data(), array.size());
}
/// @brief Serialize an initializer list into a FlatBuffer `vector`.
/// @tparam T The data type of the initializer list elements.
/// @param[in] v The value of the initializer list.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T>
Offset<Vector<T>> CreateVector(std::initializer_list<T> v) {
return CreateVector(v.begin(), v.size());
}
template<typename T>
Offset<Vector<Offset<T>>> CreateVector(const Offset<T> *v, size_t len) {
StartVector<Offset<T>>(len);
for (auto i = len; i > 0;) { PushElement(v[--i]); }
return Offset<Vector<Offset<T>>>(EndVector(len));
}
/// @brief Serialize a `std::vector` into a FlatBuffer `vector`.
/// @tparam T The data type of the `std::vector` elements.
/// @param v A const reference to the `std::vector` to serialize into the
/// buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename Alloc = std::allocator<T>>
Offset<Vector<T>> CreateVector(const std::vector<T, Alloc> &v) {
return CreateVector(data(v), v.size());
}
template<template<typename...> class VectorT = Vector64,
int &...ExplicitArgumentBarrier, typename T>
Offset64<VectorT<T>> CreateVector64(const std::vector<T> &v) {
return CreateVector<T, Offset64, VectorT>(data(v), v.size());
}
// vector<bool> may be implemented using a bit-set, so we can't access it as
// an array. Instead, read elements manually.
// Background: https://isocpp.org/blog/2012/11/on-vectorbool
Offset<Vector<uint8_t>> CreateVector(const std::vector<bool> &v) {
StartVector<uint8_t>(v.size());
for (auto i = v.size(); i > 0;) {
PushElement(static_cast<uint8_t>(v[--i]));
}
return Offset<Vector<uint8_t>>(EndVector(v.size()));
}
/// @brief Serialize values returned by a function into a FlatBuffer `vector`.
/// This is a convenience function that takes care of iteration for you.
/// @tparam T The data type of the `std::vector` elements.
/// @param f A function that takes the current iteration 0..vector_size-1 and
/// returns any type that you can construct a FlatBuffers vector out of.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T>
Offset<Vector<T>> CreateVector(size_t vector_size,
const std::function<T(size_t i)> &f) {
FLATBUFFERS_ASSERT(FLATBUFFERS_GENERAL_HEAP_ALLOC_OK);
std::vector<T> elems(vector_size);
for (size_t i = 0; i < vector_size; i++) elems[i] = f(i);
return CreateVector(elems);
}
/// @brief Serialize values returned by a function into a FlatBuffer `vector`.
/// This is a convenience function that takes care of iteration for you. This
/// uses a vector stored on the heap to store the intermediate results of the
/// iteration.
/// @tparam T The data type of the `std::vector` elements.
/// @param f A function that takes the current iteration 0..vector_size-1,
/// and the state parameter returning any type that you can construct a
/// FlatBuffers vector out of.
/// @param state State passed to f.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename F, typename S>
Offset<Vector<T>> CreateVector(size_t vector_size, F f, S *state) {
FLATBUFFERS_ASSERT(FLATBUFFERS_GENERAL_HEAP_ALLOC_OK);
std::vector<T> elems(vector_size);
for (size_t i = 0; i < vector_size; i++) elems[i] = f(i, state);
return CreateVector(elems);
}
/// @brief Serialize a `std::vector<StringType>` into a FlatBuffer `vector`.
/// whereas StringType is any type that is accepted by the CreateString()
/// overloads.
/// This is a convenience function for a common case.
/// @param v A const reference to the `std::vector` to serialize into the
/// buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename StringType = std::string,
typename Alloc = std::allocator<StringType>>
Offset<Vector<Offset<String>>> CreateVectorOfStrings(
const std::vector<StringType, Alloc> &v) {
return CreateVectorOfStrings(v.cbegin(), v.cend());
}
/// @brief Serialize a collection of Strings into a FlatBuffer `vector`.
/// This is a convenience function for a common case.
/// @param begin The beginning iterator of the collection
/// @param end The ending iterator of the collection
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<class It>
Offset<Vector<Offset<String>>> CreateVectorOfStrings(It begin, It end) {
auto distance = std::distance(begin, end);
FLATBUFFERS_ASSERT(distance >= 0);
auto size = static_cast<size_t>(distance);
auto scratch_buffer_usage = size * sizeof(Offset<String>);
// If there is not enough space to store the offsets, there definitely won't
// be enough space to store all the strings. So ensuring space for the
// scratch region is OK, for if it fails, it would have failed later.
buf_.ensure_space(scratch_buffer_usage);
for (auto it = begin; it != end; ++it) {
buf_.scratch_push_small(CreateString(*it));
}
StartVector<Offset<String>>(size);
for (size_t i = 1; i <= size; i++) {
// Note we re-evaluate the buf location each iteration to account for any
// underlying buffer resizing that may occur.
PushElement(*reinterpret_cast<Offset<String> *>(
buf_.scratch_end() - i * sizeof(Offset<String>)));
}
buf_.scratch_pop(scratch_buffer_usage);
return Offset<Vector<Offset<String>>>(EndVector(size));
}
/// @brief Serialize an array of structs into a FlatBuffer `vector`.
/// @tparam T The data type of the struct array elements.
/// @param[in] v A pointer to the array of type `T` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, template<typename...> class OffsetT = Offset,
template<typename...> class VectorT = Vector>
OffsetT<VectorT<const T *>> CreateVectorOfStructs(const T *v, size_t len) {
// The type of the length field in the vector.
typedef typename VectorT<T>::size_type LenT;
typedef typename OffsetT<VectorT<const T *>>::offset_type offset_type;
StartVector<OffsetT, LenT>(len, sizeof(T), AlignOf<T>());
if (len > 0) {
PushBytes(reinterpret_cast<const uint8_t *>(v), sizeof(T) * len);
}
return OffsetT<VectorT<const T *>>(EndVector<LenT, offset_type>(len));
}
/// @brief Serialize an array of structs into a FlatBuffer `vector`.
/// @tparam T The data type of the struct array elements.
/// @param[in] filler A function that takes the current iteration
/// 0..vector_size-1 and a pointer to the struct that must be filled.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
/// This is mostly useful when flatbuffers are generated with mutation
/// accessors.
template<typename T>
Offset<Vector<const T *>> CreateVectorOfStructs(
size_t vector_size, const std::function<void(size_t i, T *)> &filler) {
T *structs = StartVectorOfStructs<T>(vector_size);
for (size_t i = 0; i < vector_size; i++) {
filler(i, structs);
structs++;
}
return EndVectorOfStructs<T>(vector_size);
}
/// @brief Serialize an array of structs into a FlatBuffer `vector`.
/// @tparam T The data type of the struct array elements.
/// @param[in] f A function that takes the current iteration 0..vector_size-1,
/// a pointer to the struct that must be filled and the state argument.
/// @param[in] state Arbitrary state to pass to f.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
/// This is mostly useful when flatbuffers are generated with mutation
/// accessors.
template<typename T, typename F, typename S>
Offset<Vector<const T *>> CreateVectorOfStructs(size_t vector_size, F f,
S *state) {
T *structs = StartVectorOfStructs<T>(vector_size);
for (size_t i = 0; i < vector_size; i++) {
f(i, structs, state);
structs++;
}
return EndVectorOfStructs<T>(vector_size);
}
/// @brief Serialize a `std::vector` of structs into a FlatBuffer `vector`.
/// @tparam T The data type of the `std::vector` struct elements.
/// @param[in] v A const reference to the `std::vector` of structs to
/// serialize into the buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, template<typename...> class OffsetT = Offset,
template<typename...> class VectorT = Vector,
typename Alloc = std::allocator<T>>
OffsetT<VectorT<const T *>> CreateVectorOfStructs(
const std::vector<T, Alloc> &v) {
return CreateVectorOfStructs<T, OffsetT, VectorT>(data(v), v.size());
}
template<template<typename...> class VectorT = Vector64, int &..., typename T>
Offset64<VectorT<const T *>> CreateVectorOfStructs64(
const std::vector<T> &v) {
return CreateVectorOfStructs<T, Offset64, VectorT>(data(v), v.size());
}
/// @brief Serialize an array of native structs into a FlatBuffer `vector`.
/// @tparam T The data type of the struct array elements.
/// @tparam S The data type of the native struct array elements.
/// @param[in] v A pointer to the array of type `S` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @param[in] pack_func Pointer to a function to convert the native struct
/// to the FlatBuffer struct.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename S>
Offset<Vector<const T *>> CreateVectorOfNativeStructs(
const S *v, size_t len, T (*const pack_func)(const S &)) {
FLATBUFFERS_ASSERT(pack_func);
auto structs = StartVectorOfStructs<T>(len);
for (size_t i = 0; i < len; i++) { structs[i] = pack_func(v[i]); }
return EndVectorOfStructs<T>(len);
}
/// @brief Serialize an array of native structs into a FlatBuffer `vector`.
/// @tparam T The data type of the struct array elements.
/// @tparam S The data type of the native struct array elements.
/// @param[in] v A pointer to the array of type `S` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename S>
Offset<Vector<const T *>> CreateVectorOfNativeStructs(const S *v,
size_t len) {
extern T Pack(const S &);
return CreateVectorOfNativeStructs(v, len, Pack);
}
/// @brief Serialize a `std::vector` of native structs into a FlatBuffer
/// `vector`.
/// @tparam T The data type of the `std::vector` struct elements.
/// @tparam S The data type of the `std::vector` native struct elements.
/// @param[in] v A const reference to the `std::vector` of structs to
/// serialize into the buffer as a `vector`.
/// @param[in] pack_func Pointer to a function to convert the native struct
/// to the FlatBuffer struct.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename S, typename Alloc = std::allocator<T>>
Offset<Vector<const T *>> CreateVectorOfNativeStructs(
const std::vector<S, Alloc> &v, T (*const pack_func)(const S &)) {
return CreateVectorOfNativeStructs<T, S>(data(v), v.size(), pack_func);
}
/// @brief Serialize a `std::vector` of native structs into a FlatBuffer
/// `vector`.
/// @tparam T The data type of the `std::vector` struct elements.
/// @tparam S The data type of the `std::vector` native struct elements.
/// @param[in] v A const reference to the `std::vector` of structs to
/// serialize into the buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename S, typename Alloc = std::allocator<S>>
Offset<Vector<const T *>> CreateVectorOfNativeStructs(
const std::vector<S, Alloc> &v) {
return CreateVectorOfNativeStructs<T, S>(data(v), v.size());
}
/// @cond FLATBUFFERS_INTERNAL
template<typename T> struct StructKeyComparator {
bool operator()(const T &a, const T &b) const {
return a.KeyCompareLessThan(&b);
}
};
/// @endcond
/// @brief Serialize a `std::vector` of structs into a FlatBuffer `vector`
/// in sorted order.
/// @tparam T The data type of the `std::vector` struct elements.
/// @param[in] v A const reference to the `std::vector` of structs to
/// serialize into the buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename Alloc = std::allocator<T>>
Offset<Vector<const T *>> CreateVectorOfSortedStructs(
std::vector<T, Alloc> *v) {
return CreateVectorOfSortedStructs(data(*v), v->size());
}
/// @brief Serialize a `std::vector` of native structs into a FlatBuffer
/// `vector` in sorted order.
/// @tparam T The data type of the `std::vector` struct elements.
/// @tparam S The data type of the `std::vector` native struct elements.
/// @param[in] v A const reference to the `std::vector` of structs to
/// serialize into the buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename S, typename Alloc = std::allocator<T>>
Offset<Vector<const T *>> CreateVectorOfSortedNativeStructs(
std::vector<S, Alloc> *v) {
return CreateVectorOfSortedNativeStructs<T, S>(data(*v), v->size());
}
/// @brief Serialize an array of structs into a FlatBuffer `vector` in sorted
/// order.
/// @tparam T The data type of the struct array elements.
/// @param[in] v A pointer to the array of type `T` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T>
Offset<Vector<const T *>> CreateVectorOfSortedStructs(T *v, size_t len) {
std::stable_sort(v, v + len, StructKeyComparator<T>());
return CreateVectorOfStructs(v, len);
}
/// @brief Serialize an array of native structs into a FlatBuffer `vector` in
/// sorted order.
/// @tparam T The data type of the struct array elements.
/// @tparam S The data type of the native struct array elements.
/// @param[in] v A pointer to the array of type `S` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename S>
Offset<Vector<const T *>> CreateVectorOfSortedNativeStructs(S *v,
size_t len) {
extern T Pack(const S &);
auto structs = StartVectorOfStructs<T>(len);
for (size_t i = 0; i < len; i++) { structs[i] = Pack(v[i]); }
std::stable_sort(structs, structs + len, StructKeyComparator<T>());
return EndVectorOfStructs<T>(len);
}
/// @cond FLATBUFFERS_INTERNAL
template<typename T> struct TableKeyComparator {
explicit TableKeyComparator(vector_downward<SizeT> &buf) : buf_(buf) {}
TableKeyComparator(const TableKeyComparator &other) : buf_(other.buf_) {}
bool operator()(const Offset<T> &a, const Offset<T> &b) const {
auto table_a = reinterpret_cast<T *>(buf_.data_at(a.o));
auto table_b = reinterpret_cast<T *>(buf_.data_at(b.o));
return table_a->KeyCompareLessThan(table_b);
}
vector_downward<SizeT> &buf_;
private:
FLATBUFFERS_DELETE_FUNC(
TableKeyComparator &operator=(const TableKeyComparator &other));
};
/// @endcond
/// @brief Serialize an array of `table` offsets as a `vector` in the buffer
/// in sorted order.
/// @tparam T The data type that the offset refers to.
/// @param[in] v An array of type `Offset<T>` that contains the `table`
/// offsets to store in the buffer in sorted order.
/// @param[in] len The number of elements to store in the `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T>
Offset<Vector<Offset<T>>> CreateVectorOfSortedTables(Offset<T> *v,
size_t len) {
std::stable_sort(v, v + len, TableKeyComparator<T>(buf_));
return CreateVector(v, len);
}
/// @brief Serialize an array of `table` offsets as a `vector` in the buffer
/// in sorted order.
/// @tparam T The data type that the offset refers to.
/// @param[in] v An array of type `Offset<T>` that contains the `table`
/// offsets to store in the buffer in sorted order.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T, typename Alloc = std::allocator<T>>
Offset<Vector<Offset<T>>> CreateVectorOfSortedTables(
std::vector<Offset<T>, Alloc> *v) {
return CreateVectorOfSortedTables(data(*v), v->size());
}
/// @brief Specialized version of `CreateVector` for non-copying use cases.
/// Write the data any time later to the returned buffer pointer `buf`.
/// @param[in] len The number of elements to store in the `vector`.
/// @param[in] elemsize The size of each element in the `vector`.
/// @param[out] buf A pointer to a `uint8_t` pointer that can be
/// written to at a later time to serialize the data into a `vector`
/// in the buffer.
uoffset_t CreateUninitializedVector(size_t len, size_t elemsize,
size_t alignment, uint8_t **buf) {
NotNested();
StartVector(len, elemsize, alignment);
buf_.make_space(len * elemsize);
const uoffset_t vec_start = GetSizeRelative32BitRegion();
auto vec_end = EndVector(len);
*buf = buf_.data_at(vec_start);
return vec_end;
}
FLATBUFFERS_ATTRIBUTE([[deprecated("call the version above instead")]])
uoffset_t CreateUninitializedVector(size_t len, size_t elemsize,
uint8_t **buf) {
return CreateUninitializedVector(len, elemsize, elemsize, buf);
}
/// @brief Specialized version of `CreateVector` for non-copying use cases.
/// Write the data any time later to the returned buffer pointer `buf`.
/// @tparam T The data type of the data that will be stored in the buffer
/// as a `vector`.
/// @param[in] len The number of elements to store in the `vector`.
/// @param[out] buf A pointer to a pointer of type `T` that can be
/// written to at a later time to serialize the data into a `vector`
/// in the buffer.
template<typename T>
Offset<Vector<T>> CreateUninitializedVector(size_t len, T **buf) {
AssertScalarT<T>();
return CreateUninitializedVector(len, sizeof(T), AlignOf<T>(),
reinterpret_cast<uint8_t **>(buf));
}
template<typename T>
Offset<Vector<const T *>> CreateUninitializedVectorOfStructs(size_t len,
T **buf) {
return CreateUninitializedVector(len, sizeof(T), AlignOf<T>(),
reinterpret_cast<uint8_t **>(buf));
}
// @brief Create a vector of scalar type T given as input a vector of scalar
// type U, useful with e.g. pre "enum class" enums, or any existing scalar
// data of the wrong type.
template<typename T, typename U>
Offset<Vector<T>> CreateVectorScalarCast(const U *v, size_t len) {
AssertScalarT<T>();
AssertScalarT<U>();
StartVector<T>(len);
for (auto i = len; i > 0;) { PushElement(static_cast<T>(v[--i])); }
return Offset<Vector<T>>(EndVector(len));
}
/// @brief Write a struct by itself, typically to be part of a union.
template<typename T> Offset<const T *> CreateStruct(const T &structobj) {
NotNested();
Align(AlignOf<T>());
buf_.push_small(structobj);
return Offset<const T *>(
CalculateOffset<typename Offset<const T *>::offset_type>());
}
/// @brief Finish serializing a buffer by writing the root offset.
/// @param[in] file_identifier If a `file_identifier` is given, the buffer
/// will be prefixed with a standard FlatBuffers file header.
template<typename T>
void Finish(Offset<T> root, const char *file_identifier = nullptr) {
Finish(root.o, file_identifier, false);
}
/// @brief Finish a buffer with a 32 bit size field pre-fixed (size of the
/// buffer following the size field). These buffers are NOT compatible
/// with standard buffers created by Finish, i.e. you can't call GetRoot
/// on them, you have to use GetSizePrefixedRoot instead.
/// All >32 bit quantities in this buffer will be aligned when the whole
/// size pre-fixed buffer is aligned.
/// These kinds of buffers are useful for creating a stream of FlatBuffers.
template<typename T>
void FinishSizePrefixed(Offset<T> root,
const char *file_identifier = nullptr) {
Finish(root.o, file_identifier, true);
}
void SwapBufAllocator(FlatBufferBuilderImpl &other) {
buf_.swap_allocator(other.buf_);
}
/// @brief The length of a FlatBuffer file header.
static const size_t kFileIdentifierLength =
::flatbuffers::kFileIdentifierLength;
protected:
// You shouldn't really be copying instances of this class.
FlatBufferBuilderImpl(const FlatBufferBuilderImpl &);
FlatBufferBuilderImpl &operator=(const FlatBufferBuilderImpl &);
void Finish(uoffset_t root, const char *file_identifier, bool size_prefix) {
// A buffer can only be finished once. To reuse a builder use `clear()`.
FLATBUFFERS_ASSERT(!finished);
NotNested();
buf_.clear_scratch();
const size_t prefix_size = size_prefix ? sizeof(SizeT) : 0;
// Make sure we track the alignment of the size prefix.
TrackMinAlign(prefix_size);
const size_t root_offset_size = sizeof(uoffset_t);
const size_t file_id_size = file_identifier ? kFileIdentifierLength : 0;
// This will cause the whole buffer to be aligned.
PreAlign(prefix_size + root_offset_size + file_id_size, minalign_);
if (file_identifier) {
FLATBUFFERS_ASSERT(strlen(file_identifier) == kFileIdentifierLength);
PushBytes(reinterpret_cast<const uint8_t *>(file_identifier),
kFileIdentifierLength);
}
PushElement(ReferTo(root)); // Location of root.
if (size_prefix) { PushElement(GetSize()); }
finished = true;
}
struct FieldLoc {
uoffset_t off;
voffset_t id;
};
vector_downward<SizeT> buf_;
// Accumulating offsets of table members while it is being built.
// We store these in the scratch pad of buf_, after the vtable offsets.
uoffset_t num_field_loc;
// Track how much of the vtable is in use, so we can output the most compact
// possible vtable.
voffset_t max_voffset_;
// This is the length of the 64-bit region of the buffer. The buffer supports
// 64-bit offsets by forcing serialization of those elements in the "tail"
// region of the buffer (i.e. "64-bit region"). To properly keep track of
// offsets that are referenced from the tail of the buffer to not overflow
// their size (e.g. Offset is a uint32_t type), the boundary of the 32-/64-bit
// regions must be tracked.
//
// [ Complete FlatBuffer ]
// [32-bit region][64-bit region]
// ^ ^
// | Tail of the buffer.
// |
// Tail of the 32-bit region of the buffer.
//
// This keeps track of the size of the 64-bit region so that the tail of the
// 32-bit region can be calculated as `GetSize() - length_of_64_bit_region_`.
//
// This will remain 0 if no 64-bit offset types are added to the buffer.
size_t length_of_64_bit_region_;
// Ensure objects are not nested.
bool nested;
// Ensure the buffer is finished before it is being accessed.
bool finished;
size_t minalign_;
bool force_defaults_; // Serialize values equal to their defaults anyway.
bool dedup_vtables_;
struct StringOffsetCompare {
explicit StringOffsetCompare(const vector_downward<SizeT> &buf)
: buf_(&buf) {}
bool operator()(const Offset<String> &a, const Offset<String> &b) const {
auto stra = reinterpret_cast<const String *>(buf_->data_at(a.o));
auto strb = reinterpret_cast<const String *>(buf_->data_at(b.o));
return StringLessThan(stra->data(), stra->size(), strb->data(),
strb->size());
}
const vector_downward<SizeT> *buf_;
};
// For use with CreateSharedString. Instantiated on first use only.
typedef std::set<Offset<String>, StringOffsetCompare> StringOffsetMap;
StringOffsetMap *string_pool;
private:
void CanAddOffset64() {
// If you hit this assertion, you are attempting to add a 64-bit offset to
// a 32-bit only builder. This is because the builder has overloads that
// differ only on the offset size returned: e.g.:
//
// FlatBufferBuilder builder;
// Offset64<String> string_offset = builder.CreateString<Offset64>();
//
// Either use a 64-bit aware builder, or don't try to create an Offset64
// return type.
//
// TODO(derekbailey): we can probably do more enable_if to avoid this
// looking like its possible to the user.
static_assert(Is64Aware, "cannot add 64-bit offset to a 32-bit builder");
// If you hit this assertion, you are attempting to add an 64-bit offset
// item after already serializing a 32-bit item. All 64-bit offsets have to
// added to the tail of the buffer before any 32-bit items can be added.
// Otherwise some items might not be addressable due to the maximum range of
// the 32-bit offset.
FLATBUFFERS_ASSERT(GetSize() == length_of_64_bit_region_);
}
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const char pointer to the data to be stored as a string.
/// @param[in] len The number of bytes that should be stored from `str`.
/// @return Returns the offset in the buffer where the string starts.
void CreateStringImpl(const char *str, size_t len) {
NotNested();
PreAlign<uoffset_t>(len + 1); // Always 0-terminated.
buf_.fill(1);
PushBytes(reinterpret_cast<const uint8_t *>(str), len);
PushElement(static_cast<uoffset_t>(len));
}
// Allocates space for a vector of structures.
// Must be completed with EndVectorOfStructs().
template<typename T, template<typename> class OffsetT = Offset>
T *StartVectorOfStructs(size_t vector_size) {
StartVector<OffsetT>(vector_size, sizeof(T), AlignOf<T>());
return reinterpret_cast<T *>(buf_.make_space(vector_size * sizeof(T)));
}
// End the vector of structures in the flatbuffers.
// Vector should have previously be started with StartVectorOfStructs().
template<typename T, template<typename> class OffsetT = Offset>
OffsetT<Vector<const T *>> EndVectorOfStructs(size_t vector_size) {
return OffsetT<Vector<const T *>>(
EndVector<typename Vector<const T *>::size_type,
typename OffsetT<Vector<const T *>>::offset_type>(
vector_size));
}
template<typename T>
typename std::enable_if<std::is_same<T, uoffset_t>::value, T>::type
CalculateOffset() {
// Default to the end of the 32-bit region. This may or may not be the end
// of the buffer, depending on if any 64-bit offsets have been added.
return GetSizeRelative32BitRegion();
}
// Specializations to handle the 64-bit CalculateOffset, which is relative to
// end of the buffer.
template<typename T>
typename std::enable_if<std::is_same<T, uoffset64_t>::value, T>::type
CalculateOffset() {
// This should never be compiled in when not using a 64-bit builder.
static_assert(Is64Aware, "invalid 64-bit offset in 32-bit builder");
// Store how big the 64-bit region of the buffer is, so we can determine
// where the 32/64 bit boundary is.
length_of_64_bit_region_ = GetSize();
return length_of_64_bit_region_;
}
};
/// @}
// Hack to `FlatBufferBuilder` mean `FlatBufferBuilder<false>` or
// `FlatBufferBuilder<>`, where the template < > syntax is required.
using FlatBufferBuilder = FlatBufferBuilderImpl<false>;
using FlatBufferBuilder64 = FlatBufferBuilderImpl<true>;
// These are external due to GCC not allowing them in the class.
// See: https://stackoverflow.com/q/8061456/868247
template<>
template<>
inline Offset64<String> FlatBufferBuilder64::CreateString(const char *str,
size_t len) {
CanAddOffset64();
CreateStringImpl(str, len);
return Offset64<String>(
CalculateOffset<typename Offset64<String>::offset_type>());
}
// Used to distinguish from real Offsets.
template<typename T = void> struct EmptyOffset {};
// TODO(derekbailey): it would be nice to combine these two methods.
template<>
template<>
inline void FlatBufferBuilder64::StartVector<Offset64, uint32_t>(
size_t len, size_t elemsize, size_t alignment) {
CanAddOffset64();
StartVector<EmptyOffset, uint32_t>(len, elemsize, alignment);
}
template<>
template<>
inline void FlatBufferBuilder64::StartVector<Offset64, uint64_t>(
size_t len, size_t elemsize, size_t alignment) {
CanAddOffset64();
StartVector<EmptyOffset, uint64_t>(len, elemsize, alignment);
}
/// Helpers to get a typed pointer to objects that are currently being built.
/// @warning Creating new objects will lead to reallocations and invalidates
/// the pointer!
template<typename T>
T *GetMutableTemporaryPointer(FlatBufferBuilder &fbb, Offset<T> offset) {
return reinterpret_cast<T *>(fbb.GetCurrentBufferPointer() + fbb.GetSize() -
offset.o);
}
template<typename T>
const T *GetTemporaryPointer(const FlatBufferBuilder &fbb, Offset<T> offset) {
return reinterpret_cast<const T *>(fbb.GetCurrentBufferPointer() +
fbb.GetSize() - offset.o);
}
} // namespace flatbuffers
#endif // FLATBUFFERS_FLATBUFFER_BUILDER_H_