| /* |
| * Copyright 2021 Google Inc. All rights reserved. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef FLATBUFFERS_ARRAY_H_ |
| #define FLATBUFFERS_ARRAY_H_ |
| |
| #include <cstdint> |
| #include <memory> |
| |
| #include "flatbuffers/base.h" |
| #include "flatbuffers/stl_emulation.h" |
| #include "flatbuffers/vector.h" |
| |
| namespace flatbuffers { |
| |
| // This is used as a helper type for accessing arrays. |
| template<typename T, uint16_t length> class Array { |
| // Array<T> can carry only POD data types (scalars or structs). |
| typedef typename flatbuffers::bool_constant<flatbuffers::is_scalar<T>::value> |
| scalar_tag; |
| typedef |
| typename flatbuffers::conditional<scalar_tag::value, T, const T *>::type |
| IndirectHelperType; |
| |
| public: |
| typedef uint16_t size_type; |
| typedef typename IndirectHelper<IndirectHelperType>::return_type return_type; |
| typedef VectorConstIterator<T, return_type, uoffset_t> const_iterator; |
| typedef VectorReverseIterator<const_iterator> const_reverse_iterator; |
| |
| // If T is a LE-scalar or a struct (!scalar_tag::value). |
| static FLATBUFFERS_CONSTEXPR bool is_span_observable = |
| (scalar_tag::value && (FLATBUFFERS_LITTLEENDIAN || sizeof(T) == 1)) || |
| !scalar_tag::value; |
| |
| FLATBUFFERS_CONSTEXPR uint16_t size() const { return length; } |
| |
| return_type Get(uoffset_t i) const { |
| FLATBUFFERS_ASSERT(i < size()); |
| return IndirectHelper<IndirectHelperType>::Read(Data(), i); |
| } |
| |
| return_type operator[](uoffset_t i) const { return Get(i); } |
| |
| // If this is a Vector of enums, T will be its storage type, not the enum |
| // type. This function makes it convenient to retrieve value with enum |
| // type E. |
| template<typename E> E GetEnum(uoffset_t i) const { |
| return static_cast<E>(Get(i)); |
| } |
| |
| const_iterator begin() const { return const_iterator(Data(), 0); } |
| const_iterator end() const { return const_iterator(Data(), size()); } |
| |
| const_reverse_iterator rbegin() const { |
| return const_reverse_iterator(end()); |
| } |
| const_reverse_iterator rend() const { |
| return const_reverse_iterator(begin()); |
| } |
| |
| const_iterator cbegin() const { return begin(); } |
| const_iterator cend() const { return end(); } |
| |
| const_reverse_iterator crbegin() const { return rbegin(); } |
| const_reverse_iterator crend() const { return rend(); } |
| |
| // Get a mutable pointer to elements inside this array. |
| // This method used to mutate arrays of structs followed by a @p Mutate |
| // operation. For primitive types use @p Mutate directly. |
| // @warning Assignments and reads to/from the dereferenced pointer are not |
| // automatically converted to the correct endianness. |
| typename flatbuffers::conditional<scalar_tag::value, void, T *>::type |
| GetMutablePointer(uoffset_t i) const { |
| FLATBUFFERS_ASSERT(i < size()); |
| return const_cast<T *>(&data()[i]); |
| } |
| |
| // Change elements if you have a non-const pointer to this object. |
| void Mutate(uoffset_t i, const T &val) { MutateImpl(scalar_tag(), i, val); } |
| |
| // The raw data in little endian format. Use with care. |
| const uint8_t *Data() const { return data_; } |
| |
| uint8_t *Data() { return data_; } |
| |
| // Similarly, but typed, much like std::vector::data |
| const T *data() const { return reinterpret_cast<const T *>(Data()); } |
| T *data() { return reinterpret_cast<T *>(Data()); } |
| |
| // Copy data from a span with endian conversion. |
| // If this Array and the span overlap, the behavior is undefined. |
| void CopyFromSpan(flatbuffers::span<const T, length> src) { |
| const auto p1 = reinterpret_cast<const uint8_t *>(src.data()); |
| const auto p2 = Data(); |
| FLATBUFFERS_ASSERT(!(p1 >= p2 && p1 < (p2 + length)) && |
| !(p2 >= p1 && p2 < (p1 + length))); |
| (void)p1; |
| (void)p2; |
| CopyFromSpanImpl(flatbuffers::bool_constant<is_span_observable>(), src); |
| } |
| |
| protected: |
| void MutateImpl(flatbuffers::true_type, uoffset_t i, const T &val) { |
| FLATBUFFERS_ASSERT(i < size()); |
| WriteScalar(data() + i, val); |
| } |
| |
| void MutateImpl(flatbuffers::false_type, uoffset_t i, const T &val) { |
| *(GetMutablePointer(i)) = val; |
| } |
| |
| void CopyFromSpanImpl(flatbuffers::true_type, |
| flatbuffers::span<const T, length> src) { |
| // Use std::memcpy() instead of std::copy() to avoid performance degradation |
| // due to aliasing if T is char or unsigned char. |
| // The size is known at compile time, so memcpy would be inlined. |
| std::memcpy(data(), src.data(), length * sizeof(T)); |
| } |
| |
| // Copy data from flatbuffers::span with endian conversion. |
| void CopyFromSpanImpl(flatbuffers::false_type, |
| flatbuffers::span<const T, length> src) { |
| for (size_type k = 0; k < length; k++) { Mutate(k, src[k]); } |
| } |
| |
| // This class is only used to access pre-existing data. Don't ever |
| // try to construct these manually. |
| // 'constexpr' allows us to use 'size()' at compile time. |
| // @note Must not use 'FLATBUFFERS_CONSTEXPR' here, as const is not allowed on |
| // a constructor. |
| #if defined(__cpp_constexpr) |
| constexpr Array(); |
| #else |
| Array(); |
| #endif |
| |
| uint8_t data_[length * sizeof(T)]; |
| |
| private: |
| // This class is a pointer. Copying will therefore create an invalid object. |
| // Private and unimplemented copy constructor. |
| Array(const Array &); |
| Array &operator=(const Array &); |
| }; |
| |
| // Specialization for Array[struct] with access using Offset<void> pointer. |
| // This specialization used by idl_gen_text.cpp. |
| template<typename T, uint16_t length, template<typename> class OffsetT> |
| class Array<OffsetT<T>, length> { |
| static_assert(flatbuffers::is_same<T, void>::value, "unexpected type T"); |
| |
| public: |
| typedef const void *return_type; |
| typedef uint16_t size_type; |
| |
| const uint8_t *Data() const { return data_; } |
| |
| // Make idl_gen_text.cpp::PrintContainer happy. |
| return_type operator[](uoffset_t) const { |
| FLATBUFFERS_ASSERT(false); |
| return nullptr; |
| } |
| |
| private: |
| // This class is only used to access pre-existing data. |
| Array(); |
| Array(const Array &); |
| Array &operator=(const Array &); |
| |
| uint8_t data_[1]; |
| }; |
| |
| template<class U, uint16_t N> |
| FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<U, N> make_span(Array<U, N> &arr) |
| FLATBUFFERS_NOEXCEPT { |
| static_assert( |
| Array<U, N>::is_span_observable, |
| "wrong type U, only plain struct, LE-scalar, or byte types are allowed"); |
| return span<U, N>(arr.data(), N); |
| } |
| |
| template<class U, uint16_t N> |
| FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<const U, N> make_span( |
| const Array<U, N> &arr) FLATBUFFERS_NOEXCEPT { |
| static_assert( |
| Array<U, N>::is_span_observable, |
| "wrong type U, only plain struct, LE-scalar, or byte types are allowed"); |
| return span<const U, N>(arr.data(), N); |
| } |
| |
| template<class U, uint16_t N> |
| FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<uint8_t, sizeof(U) * N> |
| make_bytes_span(Array<U, N> &arr) FLATBUFFERS_NOEXCEPT { |
| static_assert(Array<U, N>::is_span_observable, |
| "internal error, Array<T> might hold only scalars or structs"); |
| return span<uint8_t, sizeof(U) * N>(arr.Data(), sizeof(U) * N); |
| } |
| |
| template<class U, uint16_t N> |
| FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<const uint8_t, sizeof(U) * N> |
| make_bytes_span(const Array<U, N> &arr) FLATBUFFERS_NOEXCEPT { |
| static_assert(Array<U, N>::is_span_observable, |
| "internal error, Array<T> might hold only scalars or structs"); |
| return span<const uint8_t, sizeof(U) * N>(arr.Data(), sizeof(U) * N); |
| } |
| |
| // Cast a raw T[length] to a raw flatbuffers::Array<T, length> |
| // without endian conversion. Use with care. |
| // TODO: move these Cast-methods to `internal` namespace. |
| template<typename T, uint16_t length> |
| Array<T, length> &CastToArray(T (&arr)[length]) { |
| return *reinterpret_cast<Array<T, length> *>(arr); |
| } |
| |
| template<typename T, uint16_t length> |
| const Array<T, length> &CastToArray(const T (&arr)[length]) { |
| return *reinterpret_cast<const Array<T, length> *>(arr); |
| } |
| |
| template<typename E, typename T, uint16_t length> |
| Array<E, length> &CastToArrayOfEnum(T (&arr)[length]) { |
| static_assert(sizeof(E) == sizeof(T), "invalid enum type E"); |
| return *reinterpret_cast<Array<E, length> *>(arr); |
| } |
| |
| template<typename E, typename T, uint16_t length> |
| const Array<E, length> &CastToArrayOfEnum(const T (&arr)[length]) { |
| static_assert(sizeof(E) == sizeof(T), "invalid enum type E"); |
| return *reinterpret_cast<const Array<E, length> *>(arr); |
| } |
| |
| template<typename T, uint16_t length> |
| bool operator==(const Array<T, length> &lhs, |
| const Array<T, length> &rhs) noexcept { |
| return std::addressof(lhs) == std::addressof(rhs) || |
| (lhs.size() == rhs.size() && |
| std::memcmp(lhs.Data(), rhs.Data(), rhs.size() * sizeof(T)) == 0); |
| } |
| |
| } // namespace flatbuffers |
| |
| #endif // FLATBUFFERS_ARRAY_H_ |