| // Copyright ©2016 The Gonum Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package stat_test |
| |
| import ( |
| "fmt" |
| "math" |
| |
| "gonum.org/v1/gonum/floats" |
| "gonum.org/v1/gonum/integrate" |
| "gonum.org/v1/gonum/stat" |
| ) |
| |
| func ExampleROC_weighted() { |
| y := []float64{0, 3, 5, 6, 7.5, 8} |
| classes := []bool{false, true, false, true, true, true} |
| weights := []float64{4, 1, 6, 3, 2, 2} |
| |
| tpr, fpr, _ := stat.ROC(nil, y, classes, weights) |
| fmt.Printf("true positive rate: %v\n", tpr) |
| fmt.Printf("false positive rate: %v\n", fpr) |
| |
| // Output: |
| // true positive rate: [0 0.25 0.5 0.875 0.875 1 1] |
| // false positive rate: [0 0 0 0 0.6 0.6 1] |
| } |
| |
| func ExampleROC_unweighted() { |
| y := []float64{0, 3, 5, 6, 7.5, 8} |
| classes := []bool{false, true, false, true, true, true} |
| |
| tpr, fpr, _ := stat.ROC(nil, y, classes, nil) |
| fmt.Printf("true positive rate: %v\n", tpr) |
| fmt.Printf("false positive rate: %v\n", fpr) |
| |
| // Output: |
| // true positive rate: [0 0.25 0.5 0.75 0.75 1 1] |
| // false positive rate: [0 0 0 0 0.5 0.5 1] |
| } |
| |
| func ExampleROC_threshold() { |
| y := []float64{0.1, 0.4, 0.35, 0.8} |
| classes := []bool{false, false, true, true} |
| stat.SortWeightedLabeled(y, classes, nil) |
| |
| tpr, fpr, thresh := stat.ROC(nil, y, classes, nil) |
| fmt.Printf("true positive rate: %v\n", tpr) |
| fmt.Printf("false positive rate: %v\n", fpr) |
| fmt.Printf("cutoff thresholds: %v\n", thresh) |
| |
| // Output: |
| // true positive rate: [0 0.5 0.5 1 1] |
| // false positive rate: [0 0 0.5 0.5 1] |
| // cutoff thresholds: [+Inf 0.8 0.4 0.35 0.1] |
| } |
| |
| func ExampleROC_unsorted() { |
| y := []float64{8, 7.5, 6, 5, 3, 0} |
| classes := []bool{true, true, true, false, true, false} |
| weights := []float64{2, 2, 3, 6, 1, 4} |
| |
| stat.SortWeightedLabeled(y, classes, weights) |
| |
| tpr, fpr, _ := stat.ROC(nil, y, classes, weights) |
| fmt.Printf("true positive rate: %v\n", tpr) |
| fmt.Printf("false positive rate: %v\n", fpr) |
| |
| // Output: |
| // true positive rate: [0 0.25 0.5 0.875 0.875 1 1] |
| // false positive rate: [0 0 0 0 0.6 0.6 1] |
| } |
| |
| func ExampleROC_knownCutoffs() { |
| y := []float64{8, 7.5, 6, 5, 3, 0} |
| classes := []bool{true, true, true, false, true, false} |
| weights := []float64{2, 2, 3, 6, 1, 4} |
| cutoffs := []float64{-1, 3, 4} |
| |
| stat.SortWeightedLabeled(y, classes, weights) |
| |
| tpr, fpr, _ := stat.ROC(cutoffs, y, classes, weights) |
| fmt.Printf("true positive rate: %v\n", tpr) |
| fmt.Printf("false positive rate: %v\n", fpr) |
| |
| // Output: |
| // true positive rate: [0.875 1 1] |
| // false positive rate: [0.6 0.6 1] |
| } |
| |
| func ExampleROC_equallySpacedCutoffs() { |
| y := []float64{8, 7.5, 6, 5, 3, 0} |
| classes := []bool{true, true, true, false, true, true} |
| weights := []float64{2, 2, 3, 6, 1, 4} |
| n := 9 |
| |
| stat.SortWeightedLabeled(y, classes, weights) |
| cutoffs := make([]float64, n) |
| floats.Span(cutoffs, math.Nextafter(y[0], y[0]-1), y[len(y)-1]) |
| |
| tpr, fpr, _ := stat.ROC(cutoffs, y, classes, weights) |
| fmt.Printf("true positive rate: %.3v\n", tpr) |
| fmt.Printf("false positive rate: %.3v\n", fpr) |
| |
| // Output: |
| // true positive rate: [0.167 0.333 0.583 0.583 0.583 0.667 0.667 0.667 1] |
| // false positive rate: [0 0 0 1 1 1 1 1 1] |
| } |
| |
| func ExampleROC_aUC() { |
| y := []float64{0.1, 0.35, 0.4, 0.8} |
| classes := []bool{true, false, true, false} |
| |
| tpr, fpr, _ := stat.ROC(nil, y, classes, nil) |
| |
| // Compute Area Under Curve. |
| auc := integrate.Trapezoidal(fpr, tpr) |
| fmt.Printf("true positive rate: %v\n", tpr) |
| fmt.Printf("false positive rate: %v\n", fpr) |
| fmt.Printf("auc: %v\n", auc) |
| |
| // Output: |
| // true positive rate: [0 0 0.5 0.5 1] |
| // false positive rate: [0 0.5 0.5 1 1] |
| // auc: 0.25 |
| } |