| // Copyright ©2016 The Gonum Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package stat_test |
| |
| import ( |
| "testing" |
| |
| "gonum.org/v1/gonum/floats" |
| "gonum.org/v1/gonum/mat" |
| "gonum.org/v1/gonum/stat" |
| ) |
| |
| func TestCanonicalCorrelations(t *testing.T) { |
| tests: |
| for i, test := range []struct { |
| xdata mat.Matrix |
| ydata mat.Matrix |
| weights []float64 |
| wantCorrs []float64 |
| wantpVecs *mat.Dense |
| wantqVecs *mat.Dense |
| wantphiVs *mat.Dense |
| wantpsiVs *mat.Dense |
| epsilon float64 |
| }{ |
| // Test results verified using R. |
| { // Truncated iris data, Sepal vs Petal measurements. |
| xdata: mat.NewDense(10, 2, []float64{ |
| 5.1, 3.5, |
| 4.9, 3.0, |
| 4.7, 3.2, |
| 4.6, 3.1, |
| 5.0, 3.6, |
| 5.4, 3.9, |
| 4.6, 3.4, |
| 5.0, 3.4, |
| 4.4, 2.9, |
| 4.9, 3.1, |
| }), |
| ydata: mat.NewDense(10, 2, []float64{ |
| 1.4, 0.2, |
| 1.4, 0.2, |
| 1.3, 0.2, |
| 1.5, 0.2, |
| 1.4, 0.2, |
| 1.7, 0.4, |
| 1.4, 0.3, |
| 1.5, 0.2, |
| 1.4, 0.2, |
| 1.5, 0.1, |
| }), |
| wantCorrs: []float64{0.7250624174504773, 0.5547679185730191}, |
| wantpVecs: mat.NewDense(2, 2, []float64{ |
| 0.0765914610875867, 0.9970625597666721, |
| 0.9970625597666721, -0.0765914610875868, |
| }), |
| wantqVecs: mat.NewDense(2, 2, []float64{ |
| 0.3075184850910837, 0.9515421069649439, |
| 0.9515421069649439, -0.3075184850910837, |
| }), |
| wantphiVs: mat.NewDense(2, 2, []float64{ |
| -1.9794877596804641, 5.2016325219025124, |
| 4.5211829944066553, -2.7263663170835697, |
| }), |
| wantpsiVs: mat.NewDense(2, 2, []float64{ |
| -0.0613084818030103, 10.8514169865438941, |
| 12.7209032660734298, -7.6793888180353775, |
| }), |
| epsilon: 1e-12, |
| }, |
| // Test results compared to those results presented in examples by |
| // Koch, Inge. Analysis of multivariate and high-dimensional data. |
| // Vol. 32. Cambridge University Press, 2013. ISBN: 9780521887939 |
| { // ASA Car Exposition Data of Ramos and Donoho (1983) |
| // Displacement, Horsepower, Weight |
| xdata: carData.Slice(0, 392, 0, 3), |
| // Acceleration, MPG |
| ydata: carData.Slice(0, 392, 3, 5), |
| wantCorrs: []float64{0.8782187384352336, 0.6328187219216761}, |
| wantpVecs: mat.NewDense(3, 2, []float64{ |
| 0.3218296374829181, 0.3947540257657075, |
| 0.4162807660635797, 0.7573719053303306, |
| 0.8503740401982725, -0.5201509936144236, |
| }), |
| wantqVecs: mat.NewDense(2, 2, []float64{ |
| -0.5161984172278830, -0.8564690269072364, |
| -0.8564690269072364, 0.5161984172278830, |
| }), |
| wantphiVs: mat.NewDense(3, 2, []float64{ |
| 0.0025033152994308, 0.0047795464118615, |
| 0.0201923608080173, 0.0409150208725958, |
| -0.0000247374128745, -0.0026766435161875, |
| }), |
| wantpsiVs: mat.NewDense(2, 2, []float64{ |
| -0.1666196759760772, -0.3637393866139658, |
| -0.0915512109649727, 0.1077863777929168, |
| }), |
| epsilon: 1e-12, |
| }, |
| // Test results compared to those results presented in examples by |
| // Koch, Inge. Analysis of multivariate and high-dimensional data. |
| // Vol. 32. Cambridge University Press, 2013. ISBN: 9780521887939 |
| { // Boston Housing Data of Harrison and Rubinfeld (1978) |
| // Per capita crime rate by town, |
| // Proportion of non-retail business acres per town, |
| // Nitric oxide concentration (parts per 10 million), |
| // Weighted distances to Boston employment centres, |
| // Index of accessibility to radial highways, |
| // Pupil-teacher ratio by town, Proportion of blacks by town |
| xdata: bostonData.Slice(0, 506, 0, 7), |
| // Average number of rooms per dwelling, |
| // Proportion of owner-occupied units built prior to 1940, |
| // Full-value property-tax rate per $10000, |
| // Median value of owner-occupied homes in $1000s |
| ydata: bostonData.Slice(0, 506, 7, 11), |
| wantCorrs: []float64{0.9451239443886021, 0.6786622733370654, 0.5714338361583764, 0.2009739704710440}, |
| wantpVecs: mat.NewDense(7, 4, []float64{ |
| -0.2574391924541903, 0.0158477516621194, 0.2122169934631024, -0.0945733803894706, |
| -0.4836594430018478, 0.3837101908138468, 0.1474448317415911, 0.6597324886718275, |
| -0.0800776365873296, 0.3493556742809252, 0.3287336458109373, -0.2862040444334655, |
| 0.1277586360386374, -0.7337427663667596, 0.4851134819037011, 0.2247964865970192, |
| -0.6969432006136684, -0.4341748776002893, -0.3602872887636357, 0.0290661608626292, |
| -0.0990903250057199, 0.0503411215453873, 0.6384330631742202, 0.1022367136218303, |
| 0.4260459963765036, 0.0323334351308141, -0.2289527516030810, 0.6419232947608805, |
| }), |
| wantqVecs: mat.NewDense(4, 4, []float64{ |
| 0.0181660502363264, -0.1583489460479038, -0.0066723577642883, -0.9871935400650649, |
| -0.2347699045986119, 0.9483314614936594, -0.1462420505631345, -0.1554470767919033, |
| -0.9700704038477141, -0.2406071741000039, -0.0251838984227037, 0.0209134074358349, |
| 0.0593000682318482, -0.1330460003097728, -0.9889057151969489, 0.0291161494720761, |
| }), |
| wantphiVs: mat.NewDense(7, 4, []float64{ |
| -0.0027462234108197, 0.0093444513500898, 0.0489643932714296, -0.0154967189805819, |
| -0.0428564455279537, -0.0241708702119420, 0.0360723472093996, 0.1838983230588095, |
| -1.2248435648802380, 5.6030921364723980, 5.8094144583797025, -4.7926812190419676, |
| -0.0043684825094649, -0.3424101164977618, 0.4469961215717917, 0.1150161814353696, |
| -0.0741534069521954, -0.1193135794923700, -0.1115518305471460, 0.0021638758323088, |
| -0.0233270323101624, 0.1046330818178399, 0.3853045975077387, -0.0160927870102877, |
| 0.0001293051387859, 0.0004540746921446, -0.0030296315865440, 0.0081895477974654, |
| }), |
| wantpsiVs: mat.NewDense(4, 4, []float64{ |
| 0.0301593362017375, -0.3002219289647127, 0.0878217377593682, -1.9583226531517062, |
| -0.0065483104073892, 0.0392212086716247, -0.0117570776209991, -0.0061113064481860, |
| -0.0052075523350125, -0.0045770200452960, -0.0022762313289592, 0.0008441873006821, |
| 0.0020111735096327, 0.0037352799829930, -0.1292578071621794, 0.1037709056329765, |
| }), |
| epsilon: 1e-12, |
| }, |
| } { |
| var cc stat.CC |
| var corrs []float64 |
| var pVecs, qVecs mat.Dense |
| var phiVs, psiVs mat.Dense |
| for j := 0; j < 2; j++ { |
| err := cc.CanonicalCorrelations(test.xdata, test.ydata, test.weights) |
| if err != nil { |
| t.Errorf("%d use %d: unexpected error: %v", i, j, err) |
| continue tests |
| } |
| |
| corrs = cc.CorrsTo(corrs) |
| cc.LeftTo(&pVecs, true) |
| cc.RightTo(&qVecs, true) |
| cc.LeftTo(&phiVs, false) |
| cc.RightTo(&psiVs, false) |
| |
| if !floats.EqualApprox(corrs, test.wantCorrs, test.epsilon) { |
| t.Errorf("%d use %d: unexpected variance result got:%v, want:%v", |
| i, j, corrs, test.wantCorrs) |
| } |
| if !mat.EqualApprox(&pVecs, test.wantpVecs, test.epsilon) { |
| t.Errorf("%d use %d: unexpected CCA result got:\n%v\nwant:\n%v", |
| i, j, mat.Formatted(&pVecs), mat.Formatted(test.wantpVecs)) |
| } |
| if !mat.EqualApprox(&qVecs, test.wantqVecs, test.epsilon) { |
| t.Errorf("%d use %d: unexpected CCA result got:\n%v\nwant:\n%v", |
| i, j, mat.Formatted(&qVecs), mat.Formatted(test.wantqVecs)) |
| } |
| if !mat.EqualApprox(&phiVs, test.wantphiVs, test.epsilon) { |
| t.Errorf("%d use %d: unexpected CCA result got:\n%v\nwant:\n%v", |
| i, j, mat.Formatted(&phiVs), mat.Formatted(test.wantphiVs)) |
| } |
| if !mat.EqualApprox(&psiVs, test.wantpsiVs, test.epsilon) { |
| t.Errorf("%d use %d: unexpected CCA result got:\n%v\nwant:\n%v", |
| i, j, mat.Formatted(&psiVs), mat.Formatted(test.wantpsiVs)) |
| } |
| } |
| } |
| } |