blob: a517c90c3772d52618366d7f2b5247acadcf4fa2 [file] [log] [blame]
// Copyright ©2020 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package window_test
import (
"fmt"
"math"
"math/cmplx"
"gonum.org/v1/gonum/dsp/fourier"
"gonum.org/v1/gonum/dsp/window"
)
func Example() {
// The input sequence is a 2.5 period of the Sin function.
src := make([]float64, 20)
k := 5 * math.Pi / float64(len(src)-1)
for i := range src {
src[i] = math.Sin(k * float64(i))
}
// Initialize an FFT and perform the analysis.
fft := fourier.NewFFT(len(src))
coeff := fft.Coefficients(nil, src)
// The result shows that width of the main lobe with center
// between frequencies 0.1 and 0.15 is small, but that the
// height of the side lobes is large.
fmt.Println("Rectangular window (or no window):")
for i, c := range coeff {
fmt.Printf("freq=%.4f\tcycles/period, magnitude=%.4f,\tphase=%.4f\n",
fft.Freq(i), cmplx.Abs(c), cmplx.Phase(c))
}
// Initialize an FFT and perform the analysis on a sequence
// transformed by the Hamming window function.
fft = fourier.NewFFT(len(src))
coeff = fft.Coefficients(nil, window.Hamming(src))
// The result shows that width of the main lobe is wider,
// but height of the side lobes is lower.
fmt.Println("Hamming window:")
// The magnitude of all bins has been decreased by β.
// Generally in an analysis amplification may be omitted, but to
// make a comparable data, the result should be amplified by -β
// of the window function — +5.37 dB for the Hamming window.
// -β = 20 log_10(amplifier).
amplifier := math.Pow(10, 5.37/20.0)
for i, c := range coeff {
fmt.Printf("freq=%.4f\tcycles/period, magnitude=%.4f,\tphase=%.4f\n",
fft.Freq(i), amplifier*cmplx.Abs(c), cmplx.Phase(c))
}
// Output:
//
// Rectangular window (or no window):
// freq=0.0000 cycles/period, magnitude=2.2798, phase=0.0000
// freq=0.0500 cycles/period, magnitude=2.6542, phase=0.1571
// freq=0.1000 cycles/period, magnitude=5.3115, phase=0.3142
// freq=0.1500 cycles/period, magnitude=7.3247, phase=-2.6704
// freq=0.2000 cycles/period, magnitude=1.6163, phase=-2.5133
// freq=0.2500 cycles/period, magnitude=0.7681, phase=-2.3562
// freq=0.3000 cycles/period, magnitude=0.4385, phase=-2.1991
// freq=0.3500 cycles/period, magnitude=0.2640, phase=-2.0420
// freq=0.4000 cycles/period, magnitude=0.1530, phase=-1.8850
// freq=0.4500 cycles/period, magnitude=0.0707, phase=-1.7279
// freq=0.5000 cycles/period, magnitude=0.0000, phase=0.0000
// Hamming window:
// freq=0.0000 cycles/period, magnitude=0.0542, phase=3.1416
// freq=0.0500 cycles/period, magnitude=0.8458, phase=-2.9845
// freq=0.1000 cycles/period, magnitude=7.1519, phase=0.3142
// freq=0.1500 cycles/period, magnitude=8.5907, phase=-2.6704
// freq=0.2000 cycles/period, magnitude=2.0804, phase=0.6283
// freq=0.2500 cycles/period, magnitude=0.0816, phase=0.7854
// freq=0.3000 cycles/period, magnitude=0.0156, phase=-2.1991
// freq=0.3500 cycles/period, magnitude=0.0224, phase=-2.0420
// freq=0.4000 cycles/period, magnitude=0.0163, phase=-1.8850
// freq=0.4500 cycles/period, magnitude=0.0083, phase=-1.7279
// freq=0.5000 cycles/period, magnitude=0.0000, phase=0.0000
}
func ExampleHamming() {
src := []float64{1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
// Window functions change data in place. So, if input data
// needs to stay unchanged, it must be copied.
srcCpy := append([]float64(nil), src...)
// Apply window function to srcCpy.
dst := window.Hamming(srcCpy)
// src is unchanged.
fmt.Printf("src: %f\n", src)
// srcCpy is altered.
fmt.Printf("srcCpy: %f\n", srcCpy)
// dst mirrors the srcCpy slice.
fmt.Printf("dst: %f\n", dst)
// Output:
//
// src: [1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000]
// srcCpy: [0.080000 0.104924 0.176995 0.288404 0.427077 0.577986 0.724780 0.851550 0.944558 0.993726 0.993726 0.944558 0.851550 0.724780 0.577986 0.427077 0.288404 0.176995 0.104924 0.080000]
// dst: [0.080000 0.104924 0.176995 0.288404 0.427077 0.577986 0.724780 0.851550 0.944558 0.993726 0.993726 0.944558 0.851550 0.724780 0.577986 0.427077 0.288404 0.176995 0.104924 0.080000]
}
func ExampleValues() {
src := []float64{1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
// Create a Sine Window lookup table.
sine := window.NewValues(window.Sine, len(src))
// Apply the transformation to the src.
fmt.Printf("dst: %f\n", sine.Transform(src))
// Output:
//
// dst: [0.000000 0.164595 0.324699 0.475947 0.614213 0.735724 0.837166 0.915773 0.969400 0.996584 0.996584 0.969400 0.915773 0.837166 0.735724 0.614213 0.475947 0.324699 0.164595 0.000000]
}
func ExampleValues_TransformTo_gabor() {
src := []float64{1, 2, 1, 0, -1, -1, -2, -2, -1, -1,
0, 1, 1, 2, 1, 0, -1, -2, -1, 0}
// Create a Gaussian Window lookup table for 4 samples.
gaussian := window.NewValues(window.Gaussian{0.5}.Transform, 4)
// Prepare a destination.
dst := make([]float64, 8)
// Apply the transformation to the src, placing it in dst.
for i := 0; i < len(src)-len(gaussian); i++ {
gaussian.TransformTo(dst[0:len(gaussian)], src[i:i+len(gaussian)])
// To perform the Gabor transform, we would calculate
// the FFT on dst for each iteration.
fmt.Printf("FFT(%f)\n", dst)
}
// Output:
//
// FFT([0.135335 1.601475 0.800737 0.000000 0.000000 0.000000 0.000000 0.000000])
// FFT([0.270671 0.800737 0.000000 -0.135335 0.000000 0.000000 0.000000 0.000000])
// FFT([0.135335 0.000000 -0.800737 -0.135335 0.000000 0.000000 0.000000 0.000000])
// FFT([0.000000 -0.800737 -0.800737 -0.270671 0.000000 0.000000 0.000000 0.000000])
// FFT([-0.135335 -0.800737 -1.601475 -0.270671 0.000000 0.000000 0.000000 0.000000])
// FFT([-0.135335 -1.601475 -1.601475 -0.135335 0.000000 0.000000 0.000000 0.000000])
// FFT([-0.270671 -1.601475 -0.800737 -0.135335 0.000000 0.000000 0.000000 0.000000])
// FFT([-0.270671 -0.800737 -0.800737 0.000000 0.000000 0.000000 0.000000 0.000000])
// FFT([-0.135335 -0.800737 0.000000 0.135335 0.000000 0.000000 0.000000 0.000000])
// FFT([-0.135335 0.000000 0.800737 0.135335 0.000000 0.000000 0.000000 0.000000])
// FFT([0.000000 0.800737 0.800737 0.270671 0.000000 0.000000 0.000000 0.000000])
// FFT([0.135335 0.800737 1.601475 0.135335 0.000000 0.000000 0.000000 0.000000])
// FFT([0.135335 1.601475 0.800737 0.000000 0.000000 0.000000 0.000000 0.000000])
// FFT([0.270671 0.800737 0.000000 -0.135335 0.000000 0.000000 0.000000 0.000000])
// FFT([0.135335 0.000000 -0.800737 -0.270671 0.000000 0.000000 0.000000 0.000000])
// FFT([0.000000 -0.800737 -1.601475 -0.135335 0.000000 0.000000 0.000000 0.000000])
}