blob: 93f6c6cc30299d2d15dbb78105d39fc824389413 [file] [log] [blame]
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testblas
import (
"fmt"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas"
)
type Zgbmver interface {
Zgbmv(trans blas.Transpose, m, n, kL, kU int, alpha complex128, ab []complex128, ldab int, x []complex128, incX int, beta complex128, y []complex128, incY int)
Zgemver
}
func ZgbmvTest(t *testing.T, impl Zgbmver) {
rnd := rand.New(rand.NewSource(1))
for _, trans := range []blas.Transpose{blas.NoTrans, blas.Trans, blas.ConjTrans} {
// Generate all possible size combinations.
for _, mn := range allPairs([]int{1, 2, 3, 5}, []int{1, 2, 3, 5}) {
m := mn[0]
n := mn[1]
// Generate all possible numbers of lower and upper
// diagonals. Use slices to reduce indentation.
kLs := make([]int, max(1, m))
for i := range kLs {
kLs[i] = i
}
kUs := make([]int, max(1, n))
for i := range kUs {
kUs[i] = i
}
for _, ks := range allPairs(kLs, kUs) {
kL := ks[0]
kU := ks[1]
for _, ab := range []struct {
alpha complex128
beta complex128
}{
// All potentially relevant values of
// alpha and beta.
{0, 0},
{0, 1},
{0, complex(rnd.NormFloat64(), rnd.NormFloat64())},
{complex(rnd.NormFloat64(), rnd.NormFloat64()), 0},
{complex(rnd.NormFloat64(), rnd.NormFloat64()), 1},
{complex(rnd.NormFloat64(), rnd.NormFloat64()), complex(rnd.NormFloat64(), rnd.NormFloat64())},
} {
for _, ldab := range []int{kL + kU + 1, kL + kU + 20} {
for _, inc := range allPairs([]int{-3, -2, -1, 1, 2, 3}, []int{-3, -2, -1, 1, 2, 3}) {
incX := inc[0]
incY := inc[1]
testZgbmv(t, impl, rnd, trans, m, n, kL, kU, ab.alpha, ab.beta, ldab, incX, incY)
}
}
}
}
}
}
}
// testZgbmv tests Zgbmv by comparing its output to that of Zgemv.
func testZgbmv(t *testing.T, impl Zgbmver, rnd *rand.Rand, trans blas.Transpose, m, n, kL, kU int, alpha, beta complex128, ldab, incX, incY int) {
const tol = 1e-13
// Allocate a dense-storage band matrix filled with NaNs that will be
// used as the reference matrix for Zgemv.
lda := max(1, n)
a := makeZGeneral(nil, m, n, lda)
// Fill the matrix with zeros.
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
a[i*lda+j] = 0
}
}
// Fill the band with random data.
for i := 0; i < m; i++ {
for j := max(0, i-kL); j < min(n, i+kU+1); j++ {
re := rnd.NormFloat64()
im := rnd.NormFloat64()
a[i*lda+j] = complex(re, im)
}
}
// Create the actual band matrix.
ab := zPackBand(kL, kU, ldab, m, n, a, lda)
abCopy := make([]complex128, len(ab))
copy(abCopy, ab)
// Compute correct lengths of vectors x and y.
var lenX, lenY int
switch trans {
case blas.NoTrans:
lenX = n
lenY = m
case blas.Trans, blas.ConjTrans:
lenX = m
lenY = n
}
// Generate a random complex vector x.
xtest := make([]complex128, lenX)
for i := range xtest {
re := rnd.NormFloat64()
im := rnd.NormFloat64()
xtest[i] = complex(re, im)
}
x := makeZVector(xtest, incX)
xCopy := make([]complex128, len(x))
copy(xCopy, x)
// Generate a random complex vector y.
ytest := make([]complex128, lenY)
for i := range ytest {
re := rnd.NormFloat64()
im := rnd.NormFloat64()
ytest[i] = complex(re, im)
}
y := makeZVector(ytest, incY)
want := make([]complex128, len(y))
copy(want, y)
// Compute the reference result of alpha*op(A)*x + beta*y, storing it
// into want.
impl.Zgemv(trans, m, n, alpha, a, lda, x, incX, beta, want, incY)
// Compute alpha*op(A)*x + beta*y, storing the result in-place into y.
impl.Zgbmv(trans, m, n, kL, kU, alpha, ab, ldab, x, incX, beta, y, incY)
name := fmt.Sprintf("trans=%v,m=%v,n=%v,kL=%v,kU=%v,lda=%v,incX=%v,incY=%v", trans, m, n, kL, kU, lda, incX, incY)
if !zsame(ab, abCopy) {
t.Errorf("%v: unexpected modification of ab", name)
}
if !zsame(x, xCopy) {
t.Errorf("%v: unexpected modification of x", name)
}
if !zSameAtNonstrided(y, want, incY) {
t.Errorf("%v: unexpected modification of y", name)
}
if !zEqualApproxAtStrided(y, want, incY, tol) {
t.Errorf("%v: unexpected result\ngot %v\nwant %v\n", name, y, want)
}
}