| // Copyright ©2015 The gonum Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package lapack64 provides a set of convenient wrapper functions for LAPACK |
| // calls, as specified in the netlib standard (www.netlib.org). |
| // |
| // The native Go routines are used by default, and the Use function can be used |
| // to set an alternative implementation. |
| // |
| // If the type of matrix (General, Symmetric, etc.) is known and fixed, it is |
| // used in the wrapper signature. In many cases, however, the type of the matrix |
| // changes during the call to the routine, for example the matrix is symmetric on |
| // entry and is triangular on exit. In these cases the correct types should be checked |
| // in the documentation. |
| // |
| // The full set of Lapack functions is very large, and it is not clear that a |
| // full implementation is desirable, let alone feasible. Please open up an issue |
| // if there is a specific function you need and/or are willing to implement. |
| package lapack64 // import "gonum.org/v1/gonum/lapack/lapack64" |
| |
| import ( |
| "gonum.org/v1/gonum/blas" |
| "gonum.org/v1/gonum/blas/blas64" |
| "gonum.org/v1/gonum/lapack" |
| "gonum.org/v1/gonum/lapack/gonum" |
| ) |
| |
| var lapack64 lapack.Float64 = gonum.Implementation{} |
| |
| // Use sets the LAPACK float64 implementation to be used by subsequent BLAS calls. |
| // The default implementation is native.Implementation. |
| func Use(l lapack.Float64) { |
| lapack64 = l |
| } |
| |
| // Potrf computes the Cholesky factorization of a. |
| // The factorization has the form |
| // A = U^T * U if a.Uplo == blas.Upper, or |
| // A = L * L^T if a.Uplo == blas.Lower, |
| // where U is an upper triangular matrix and L is lower triangular. |
| // The triangular matrix is returned in t, and the underlying data between |
| // a and t is shared. The returned bool indicates whether a is positive |
| // definite and the factorization could be finished. |
| func Potrf(a blas64.Symmetric) (t blas64.Triangular, ok bool) { |
| ok = lapack64.Dpotrf(a.Uplo, a.N, a.Data, a.Stride) |
| t.Uplo = a.Uplo |
| t.N = a.N |
| t.Data = a.Data |
| t.Stride = a.Stride |
| t.Diag = blas.NonUnit |
| return |
| } |
| |
| // Gecon estimates the reciprocal of the condition number of the n×n matrix A |
| // given the LU decomposition of the matrix. The condition number computed may |
| // be based on the 1-norm or the ∞-norm. |
| // |
| // a contains the result of the LU decomposition of A as computed by Getrf. |
| // |
| // anorm is the corresponding 1-norm or ∞-norm of the original matrix A. |
| // |
| // work is a temporary data slice of length at least 4*n and Gecon will panic otherwise. |
| // |
| // iwork is a temporary data slice of length at least n and Gecon will panic otherwise. |
| func Gecon(norm lapack.MatrixNorm, a blas64.General, anorm float64, work []float64, iwork []int) float64 { |
| return lapack64.Dgecon(norm, a.Cols, a.Data, a.Stride, anorm, work, iwork) |
| } |
| |
| // Gels finds a minimum-norm solution based on the matrices A and B using the |
| // QR or LQ factorization. Gels returns false if the matrix |
| // A is singular, and true if this solution was successfully found. |
| // |
| // The minimization problem solved depends on the input parameters. |
| // |
| // 1. If m >= n and trans == blas.NoTrans, Gels finds X such that || A*X - B||_2 |
| // is minimized. |
| // 2. If m < n and trans == blas.NoTrans, Gels finds the minimum norm solution of |
| // A * X = B. |
| // 3. If m >= n and trans == blas.Trans, Gels finds the minimum norm solution of |
| // A^T * X = B. |
| // 4. If m < n and trans == blas.Trans, Gels finds X such that || A*X - B||_2 |
| // is minimized. |
| // Note that the least-squares solutions (cases 1 and 3) perform the minimization |
| // per column of B. This is not the same as finding the minimum-norm matrix. |
| // |
| // The matrix A is a general matrix of size m×n and is modified during this call. |
| // The input matrix B is of size max(m,n)×nrhs, and serves two purposes. On entry, |
| // the elements of b specify the input matrix B. B has size m×nrhs if |
| // trans == blas.NoTrans, and n×nrhs if trans == blas.Trans. On exit, the |
| // leading submatrix of b contains the solution vectors X. If trans == blas.NoTrans, |
| // this submatrix is of size n×nrhs, and of size m×nrhs otherwise. |
| // |
| // Work is temporary storage, and lwork specifies the usable memory length. |
| // At minimum, lwork >= max(m,n) + max(m,n,nrhs), and this function will panic |
| // otherwise. A longer work will enable blocked algorithms to be called. |
| // In the special case that lwork == -1, work[0] will be set to the optimal working |
| // length. |
| func Gels(trans blas.Transpose, a blas64.General, b blas64.General, work []float64, lwork int) bool { |
| return lapack64.Dgels(trans, a.Rows, a.Cols, b.Cols, a.Data, a.Stride, b.Data, b.Stride, work, lwork) |
| } |
| |
| // Geqrf computes the QR factorization of the m×n matrix A using a blocked |
| // algorithm. A is modified to contain the information to construct Q and R. |
| // The upper triangle of a contains the matrix R. The lower triangular elements |
| // (not including the diagonal) contain the elementary reflectors. tau is modified |
| // to contain the reflector scales. tau must have length at least min(m,n), and |
| // this function will panic otherwise. |
| // |
| // The ith elementary reflector can be explicitly constructed by first extracting |
| // the |
| // v[j] = 0 j < i |
| // v[j] = 1 j == i |
| // v[j] = a[j*lda+i] j > i |
| // and computing H_i = I - tau[i] * v * v^T. |
| // |
| // The orthonormal matrix Q can be constucted from a product of these elementary |
| // reflectors, Q = H_0 * H_1 * ... * H_{k-1}, where k = min(m,n). |
| // |
| // Work is temporary storage, and lwork specifies the usable memory length. |
| // At minimum, lwork >= m and this function will panic otherwise. |
| // Geqrf is a blocked QR factorization, but the block size is limited |
| // by the temporary space available. If lwork == -1, instead of performing Geqrf, |
| // the optimal work length will be stored into work[0]. |
| func Geqrf(a blas64.General, tau, work []float64, lwork int) { |
| lapack64.Dgeqrf(a.Rows, a.Cols, a.Data, a.Stride, tau, work, lwork) |
| } |
| |
| // Gelqf computes the LQ factorization of the m×n matrix A using a blocked |
| // algorithm. A is modified to contain the information to construct L and Q. The |
| // lower triangle of a contains the matrix L. The elements above the diagonal |
| // and the slice tau represent the matrix Q. tau is modified to contain the |
| // reflector scales. tau must have length at least min(m,n), and this function |
| // will panic otherwise. |
| // |
| // See Geqrf for a description of the elementary reflectors and orthonormal |
| // matrix Q. Q is constructed as a product of these elementary reflectors, |
| // Q = H_{k-1} * ... * H_1 * H_0. |
| // |
| // Work is temporary storage, and lwork specifies the usable memory length. |
| // At minimum, lwork >= m and this function will panic otherwise. |
| // Gelqf is a blocked LQ factorization, but the block size is limited |
| // by the temporary space available. If lwork == -1, instead of performing Gelqf, |
| // the optimal work length will be stored into work[0]. |
| func Gelqf(a blas64.General, tau, work []float64, lwork int) { |
| lapack64.Dgelqf(a.Rows, a.Cols, a.Data, a.Stride, tau, work, lwork) |
| } |
| |
| // Gesvd computes the singular value decomposition of the input matrix A. |
| // |
| // The singular value decomposition is |
| // A = U * Sigma * V^T |
| // where Sigma is an m×n diagonal matrix containing the singular values of A, |
| // U is an m×m orthogonal matrix and V is an n×n orthogonal matrix. The first |
| // min(m,n) columns of U and V are the left and right singular vectors of A |
| // respectively. |
| // |
| // jobU and jobVT are options for computing the singular vectors. The behavior |
| // is as follows |
| // jobU == lapack.SVDAll All m columns of U are returned in u |
| // jobU == lapack.SVDInPlace The first min(m,n) columns are returned in u |
| // jobU == lapack.SVDOverwrite The first min(m,n) columns of U are written into a |
| // jobU == lapack.SVDNone The columns of U are not computed. |
| // The behavior is the same for jobVT and the rows of V^T. At most one of jobU |
| // and jobVT can equal lapack.SVDOverwrite, and Gesvd will panic otherwise. |
| // |
| // On entry, a contains the data for the m×n matrix A. During the call to Gesvd |
| // the data is overwritten. On exit, A contains the appropriate singular vectors |
| // if either job is lapack.SVDOverwrite. |
| // |
| // s is a slice of length at least min(m,n) and on exit contains the singular |
| // values in decreasing order. |
| // |
| // u contains the left singular vectors on exit, stored columnwise. If |
| // jobU == lapack.SVDAll, u is of size m×m. If jobU == lapack.SVDInPlace u is |
| // of size m×min(m,n). If jobU == lapack.SVDOverwrite or lapack.SVDNone, u is |
| // not used. |
| // |
| // vt contains the left singular vectors on exit, stored rowwise. If |
| // jobV == lapack.SVDAll, vt is of size n×m. If jobVT == lapack.SVDInPlace vt is |
| // of size min(m,n)×n. If jobVT == lapack.SVDOverwrite or lapack.SVDNone, vt is |
| // not used. |
| // |
| // work is a slice for storing temporary memory, and lwork is the usable size of |
| // the slice. lwork must be at least max(5*min(m,n), 3*min(m,n)+max(m,n)). |
| // If lwork == -1, instead of performing Gesvd, the optimal work length will be |
| // stored into work[0]. Gesvd will panic if the working memory has insufficient |
| // storage. |
| // |
| // Gesvd returns whether the decomposition successfully completed. |
| func Gesvd(jobU, jobVT lapack.SVDJob, a, u, vt blas64.General, s, work []float64, lwork int) (ok bool) { |
| return lapack64.Dgesvd(jobU, jobVT, a.Rows, a.Cols, a.Data, a.Stride, s, u.Data, u.Stride, vt.Data, vt.Stride, work, lwork) |
| } |
| |
| // Getrf computes the LU decomposition of the m×n matrix A. |
| // The LU decomposition is a factorization of A into |
| // A = P * L * U |
| // where P is a permutation matrix, L is a unit lower triangular matrix, and |
| // U is a (usually) non-unit upper triangular matrix. On exit, L and U are stored |
| // in place into a. |
| // |
| // ipiv is a permutation vector. It indicates that row i of the matrix was |
| // changed with ipiv[i]. ipiv must have length at least min(m,n), and will panic |
| // otherwise. ipiv is zero-indexed. |
| // |
| // Getrf is the blocked version of the algorithm. |
| // |
| // Getrf returns whether the matrix A is singular. The LU decomposition will |
| // be computed regardless of the singularity of A, but division by zero |
| // will occur if the false is returned and the result is used to solve a |
| // system of equations. |
| func Getrf(a blas64.General, ipiv []int) bool { |
| return lapack64.Dgetrf(a.Rows, a.Cols, a.Data, a.Stride, ipiv) |
| } |
| |
| // Getri computes the inverse of the matrix A using the LU factorization computed |
| // by Getrf. On entry, a contains the PLU decomposition of A as computed by |
| // Getrf and on exit contains the reciprocal of the original matrix. |
| // |
| // Getri will not perform the inversion if the matrix is singular, and returns |
| // a boolean indicating whether the inversion was successful. |
| // |
| // Work is temporary storage, and lwork specifies the usable memory length. |
| // At minimum, lwork >= n and this function will panic otherwise. |
| // Getri is a blocked inversion, but the block size is limited |
| // by the temporary space available. If lwork == -1, instead of performing Getri, |
| // the optimal work length will be stored into work[0]. |
| func Getri(a blas64.General, ipiv []int, work []float64, lwork int) (ok bool) { |
| return lapack64.Dgetri(a.Cols, a.Data, a.Stride, ipiv, work, lwork) |
| } |
| |
| // Getrs solves a system of equations using an LU factorization. |
| // The system of equations solved is |
| // A * X = B if trans == blas.Trans |
| // A^T * X = B if trans == blas.NoTrans |
| // A is a general n×n matrix with stride lda. B is a general matrix of size n×nrhs. |
| // |
| // On entry b contains the elements of the matrix B. On exit, b contains the |
| // elements of X, the solution to the system of equations. |
| // |
| // a and ipiv contain the LU factorization of A and the permutation indices as |
| // computed by Getrf. ipiv is zero-indexed. |
| func Getrs(trans blas.Transpose, a blas64.General, b blas64.General, ipiv []int) { |
| lapack64.Dgetrs(trans, a.Cols, b.Cols, a.Data, a.Stride, ipiv, b.Data, b.Stride) |
| } |
| |
| // Ggsvd3 computes the generalized singular value decomposition (GSVD) |
| // of an m×n matrix A and p×n matrix B: |
| // U^T*A*Q = D1*[ 0 R ] |
| // |
| // V^T*B*Q = D2*[ 0 R ] |
| // where U, V and Q are orthogonal matrices. |
| // |
| // Ggsvd3 returns k and l, the dimensions of the sub-blocks. k+l |
| // is the effective numerical rank of the (m+p)×n matrix [ A^T B^T ]^T. |
| // R is a (k+l)×(k+l) nonsingular upper triangular matrix, D1 and |
| // D2 are m×(k+l) and p×(k+l) diagonal matrices and of the following |
| // structures, respectively: |
| // |
| // If m-k-l >= 0, |
| // |
| // k l |
| // D1 = k [ I 0 ] |
| // l [ 0 C ] |
| // m-k-l [ 0 0 ] |
| // |
| // k l |
| // D2 = l [ 0 S ] |
| // p-l [ 0 0 ] |
| // |
| // n-k-l k l |
| // [ 0 R ] = k [ 0 R11 R12 ] k |
| // l [ 0 0 R22 ] l |
| // |
| // where |
| // |
| // C = diag( alpha_k, ... , alpha_{k+l} ), |
| // S = diag( beta_k, ... , beta_{k+l} ), |
| // C^2 + S^2 = I. |
| // |
| // R is stored in |
| // A[0:k+l, n-k-l:n] |
| // on exit. |
| // |
| // If m-k-l < 0, |
| // |
| // k m-k k+l-m |
| // D1 = k [ I 0 0 ] |
| // m-k [ 0 C 0 ] |
| // |
| // k m-k k+l-m |
| // D2 = m-k [ 0 S 0 ] |
| // k+l-m [ 0 0 I ] |
| // p-l [ 0 0 0 ] |
| // |
| // n-k-l k m-k k+l-m |
| // [ 0 R ] = k [ 0 R11 R12 R13 ] |
| // m-k [ 0 0 R22 R23 ] |
| // k+l-m [ 0 0 0 R33 ] |
| // |
| // where |
| // C = diag( alpha_k, ... , alpha_m ), |
| // S = diag( beta_k, ... , beta_m ), |
| // C^2 + S^2 = I. |
| // |
| // R = [ R11 R12 R13 ] is stored in A[1:m, n-k-l+1:n] |
| // [ 0 R22 R23 ] |
| // and R33 is stored in |
| // B[m-k:l, n+m-k-l:n] on exit. |
| // |
| // Ggsvd3 computes C, S, R, and optionally the orthogonal transformation |
| // matrices U, V and Q. |
| // |
| // jobU, jobV and jobQ are options for computing the orthogonal matrices. The behavior |
| // is as follows |
| // jobU == lapack.GSVDU Compute orthogonal matrix U |
| // jobU == lapack.GSVDNone Do not compute orthogonal matrix. |
| // The behavior is the same for jobV and jobQ with the exception that instead of |
| // lapack.GSVDU these accept lapack.GSVDV and lapack.GSVDQ respectively. |
| // The matrices U, V and Q must be m×m, p×p and n×n respectively unless the |
| // relevant job parameter is lapack.GSVDNone. |
| // |
| // alpha and beta must have length n or Ggsvd3 will panic. On exit, alpha and |
| // beta contain the generalized singular value pairs of A and B |
| // alpha[0:k] = 1, |
| // beta[0:k] = 0, |
| // if m-k-l >= 0, |
| // alpha[k:k+l] = diag(C), |
| // beta[k:k+l] = diag(S), |
| // if m-k-l < 0, |
| // alpha[k:m]= C, alpha[m:k+l]= 0 |
| // beta[k:m] = S, beta[m:k+l] = 1. |
| // if k+l < n, |
| // alpha[k+l:n] = 0 and |
| // beta[k+l:n] = 0. |
| // |
| // On exit, iwork contains the permutation required to sort alpha descending. |
| // |
| // iwork must have length n, work must have length at least max(1, lwork), and |
| // lwork must be -1 or greater than n, otherwise Ggsvd3 will panic. If |
| // lwork is -1, work[0] holds the optimal lwork on return, but Ggsvd3 does |
| // not perform the GSVD. |
| func Ggsvd3(jobU, jobV, jobQ lapack.GSVDJob, a, b blas64.General, alpha, beta []float64, u, v, q blas64.General, work []float64, lwork int, iwork []int) (k, l int, ok bool) { |
| return lapack64.Dggsvd3(jobU, jobV, jobQ, a.Rows, a.Cols, b.Rows, a.Data, a.Stride, b.Data, b.Stride, alpha, beta, u.Data, u.Stride, v.Data, v.Stride, q.Data, q.Stride, work, lwork, iwork) |
| } |
| |
| // Lange computes the matrix norm of the general m×n matrix A. The input norm |
| // specifies the norm computed. |
| // lapack.MaxAbs: the maximum absolute value of an element. |
| // lapack.MaxColumnSum: the maximum column sum of the absolute values of the entries. |
| // lapack.MaxRowSum: the maximum row sum of the absolute values of the entries. |
| // lapack.Frobenius: the square root of the sum of the squares of the entries. |
| // If norm == lapack.MaxColumnSum, work must be of length n, and this function will panic otherwise. |
| // There are no restrictions on work for the other matrix norms. |
| func Lange(norm lapack.MatrixNorm, a blas64.General, work []float64) float64 { |
| return lapack64.Dlange(norm, a.Rows, a.Cols, a.Data, a.Stride, work) |
| } |
| |
| // Lansy computes the specified norm of an n×n symmetric matrix. If |
| // norm == lapack.MaxColumnSum or norm == lapackMaxRowSum work must have length |
| // at least n and this function will panic otherwise. |
| // There are no restrictions on work for the other matrix norms. |
| func Lansy(norm lapack.MatrixNorm, a blas64.Symmetric, work []float64) float64 { |
| return lapack64.Dlansy(norm, a.Uplo, a.N, a.Data, a.Stride, work) |
| } |
| |
| // Lantr computes the specified norm of an m×n trapezoidal matrix A. If |
| // norm == lapack.MaxColumnSum work must have length at least n and this function |
| // will panic otherwise. There are no restrictions on work for the other matrix norms. |
| func Lantr(norm lapack.MatrixNorm, a blas64.Triangular, work []float64) float64 { |
| return lapack64.Dlantr(norm, a.Uplo, a.Diag, a.N, a.N, a.Data, a.Stride, work) |
| } |
| |
| // Lapmt rearranges the columns of the m×n matrix X as specified by the |
| // permutation k_0, k_1, ..., k_{n-1} of the integers 0, ..., n-1. |
| // |
| // If forward is true a forward permutation is performed: |
| // |
| // X[0:m, k[j]] is moved to X[0:m, j] for j = 0, 1, ..., n-1. |
| // |
| // otherwise a backward permutation is performed: |
| // |
| // X[0:m, j] is moved to X[0:m, k[j]] for j = 0, 1, ..., n-1. |
| // |
| // k must have length n, otherwise Lapmt will panic. k is zero-indexed. |
| func Lapmt(forward bool, x blas64.General, k []int) { |
| lapack64.Dlapmt(forward, x.Rows, x.Cols, x.Data, x.Stride, k) |
| } |
| |
| // Ormlq multiplies the matrix C by the othogonal matrix Q defined by |
| // A and tau. A and tau are as returned from Gelqf. |
| // C = Q * C if side == blas.Left and trans == blas.NoTrans |
| // C = Q^T * C if side == blas.Left and trans == blas.Trans |
| // C = C * Q if side == blas.Right and trans == blas.NoTrans |
| // C = C * Q^T if side == blas.Right and trans == blas.Trans |
| // If side == blas.Left, A is a matrix of side k×m, and if side == blas.Right |
| // A is of size k×n. This uses a blocked algorithm. |
| // |
| // Work is temporary storage, and lwork specifies the usable memory length. |
| // At minimum, lwork >= m if side == blas.Left and lwork >= n if side == blas.Right, |
| // and this function will panic otherwise. |
| // Ormlq uses a block algorithm, but the block size is limited |
| // by the temporary space available. If lwork == -1, instead of performing Ormlq, |
| // the optimal work length will be stored into work[0]. |
| // |
| // Tau contains the Householder scales and must have length at least k, and |
| // this function will panic otherwise. |
| func Ormlq(side blas.Side, trans blas.Transpose, a blas64.General, tau []float64, c blas64.General, work []float64, lwork int) { |
| lapack64.Dormlq(side, trans, c.Rows, c.Cols, a.Rows, a.Data, a.Stride, tau, c.Data, c.Stride, work, lwork) |
| } |
| |
| // Ormqr multiplies an m×n matrix C by an orthogonal matrix Q as |
| // C = Q * C, if side == blas.Left and trans == blas.NoTrans, |
| // C = Q^T * C, if side == blas.Left and trans == blas.Trans, |
| // C = C * Q, if side == blas.Right and trans == blas.NoTrans, |
| // C = C * Q^T, if side == blas.Right and trans == blas.Trans, |
| // where Q is defined as the product of k elementary reflectors |
| // Q = H_0 * H_1 * ... * H_{k-1}. |
| // |
| // If side == blas.Left, A is an m×k matrix and 0 <= k <= m. |
| // If side == blas.Right, A is an n×k matrix and 0 <= k <= n. |
| // The ith column of A contains the vector which defines the elementary |
| // reflector H_i and tau[i] contains its scalar factor. tau must have length k |
| // and Ormqr will panic otherwise. Geqrf returns A and tau in the required |
| // form. |
| // |
| // work must have length at least max(1,lwork), and lwork must be at least n if |
| // side == blas.Left and at least m if side == blas.Right, otherwise Ormqr will |
| // panic. |
| // |
| // work is temporary storage, and lwork specifies the usable memory length. At |
| // minimum, lwork >= m if side == blas.Left and lwork >= n if side == |
| // blas.Right, and this function will panic otherwise. Larger values of lwork |
| // will generally give better performance. On return, work[0] will contain the |
| // optimal value of lwork. |
| // |
| // If lwork is -1, instead of performing Ormqr, the optimal workspace size will |
| // be stored into work[0]. |
| func Ormqr(side blas.Side, trans blas.Transpose, a blas64.General, tau []float64, c blas64.General, work []float64, lwork int) { |
| lapack64.Dormqr(side, trans, c.Rows, c.Cols, a.Cols, a.Data, a.Stride, tau, c.Data, c.Stride, work, lwork) |
| } |
| |
| // Pocon estimates the reciprocal of the condition number of a positive-definite |
| // matrix A given the Cholesky decmposition of A. The condition number computed |
| // is based on the 1-norm and the ∞-norm. |
| // |
| // anorm is the 1-norm and the ∞-norm of the original matrix A. |
| // |
| // work is a temporary data slice of length at least 3*n and Pocon will panic otherwise. |
| // |
| // iwork is a temporary data slice of length at least n and Pocon will panic otherwise. |
| func Pocon(a blas64.Symmetric, anorm float64, work []float64, iwork []int) float64 { |
| return lapack64.Dpocon(a.Uplo, a.N, a.Data, a.Stride, anorm, work, iwork) |
| } |
| |
| // Syev computes all eigenvalues and, optionally, the eigenvectors of a real |
| // symmetric matrix A. |
| // |
| // w contains the eigenvalues in ascending order upon return. w must have length |
| // at least n, and Syev will panic otherwise. |
| // |
| // On entry, a contains the elements of the symmetric matrix A in the triangular |
| // portion specified by uplo. If jobz == lapack.ComputeEV a contains the |
| // orthonormal eigenvectors of A on exit, otherwise on exit the specified |
| // triangular region is overwritten. |
| // |
| // Work is temporary storage, and lwork specifies the usable memory length. At minimum, |
| // lwork >= 3*n-1, and Syev will panic otherwise. The amount of blocking is |
| // limited by the usable length. If lwork == -1, instead of computing Syev the |
| // optimal work length is stored into work[0]. |
| func Syev(jobz lapack.EVJob, a blas64.Symmetric, w, work []float64, lwork int) (ok bool) { |
| return lapack64.Dsyev(jobz, a.Uplo, a.N, a.Data, a.Stride, w, work, lwork) |
| } |
| |
| // Trcon estimates the reciprocal of the condition number of a triangular matrix A. |
| // The condition number computed may be based on the 1-norm or the ∞-norm. |
| // |
| // work is a temporary data slice of length at least 3*n and Trcon will panic otherwise. |
| // |
| // iwork is a temporary data slice of length at least n and Trcon will panic otherwise. |
| func Trcon(norm lapack.MatrixNorm, a blas64.Triangular, work []float64, iwork []int) float64 { |
| return lapack64.Dtrcon(norm, a.Uplo, a.Diag, a.N, a.Data, a.Stride, work, iwork) |
| } |
| |
| // Trtri computes the inverse of a triangular matrix, storing the result in place |
| // into a. |
| // |
| // Trtri will not perform the inversion if the matrix is singular, and returns |
| // a boolean indicating whether the inversion was successful. |
| func Trtri(a blas64.Triangular) (ok bool) { |
| return lapack64.Dtrtri(a.Uplo, a.Diag, a.N, a.Data, a.Stride) |
| } |
| |
| // Trtrs solves a triangular system of the form A * X = B or A^T * X = B. Trtrs |
| // returns whether the solve completed successfully. If A is singular, no solve is performed. |
| func Trtrs(trans blas.Transpose, a blas64.Triangular, b blas64.General) (ok bool) { |
| return lapack64.Dtrtrs(a.Uplo, trans, a.Diag, a.N, b.Cols, a.Data, a.Stride, b.Data, b.Stride) |
| } |
| |
| // Geev computes the eigenvalues and, optionally, the left and/or right |
| // eigenvectors for an n×n real nonsymmetric matrix A. |
| // |
| // The right eigenvector v_j of A corresponding to an eigenvalue λ_j |
| // is defined by |
| // A v_j = λ_j v_j, |
| // and the left eigenvector u_j corresponding to an eigenvalue λ_j is defined by |
| // u_j^H A = λ_j u_j^H, |
| // where u_j^H is the conjugate transpose of u_j. |
| // |
| // On return, A will be overwritten and the left and right eigenvectors will be |
| // stored, respectively, in the columns of the n×n matrices VL and VR in the |
| // same order as their eigenvalues. If the j-th eigenvalue is real, then |
| // u_j = VL[:,j], |
| // v_j = VR[:,j], |
| // and if it is not real, then j and j+1 form a complex conjugate pair and the |
| // eigenvectors can be recovered as |
| // u_j = VL[:,j] + i*VL[:,j+1], |
| // u_{j+1} = VL[:,j] - i*VL[:,j+1], |
| // v_j = VR[:,j] + i*VR[:,j+1], |
| // v_{j+1} = VR[:,j] - i*VR[:,j+1], |
| // where i is the imaginary unit. The computed eigenvectors are normalized to |
| // have Euclidean norm equal to 1 and largest component real. |
| // |
| // Left eigenvectors will be computed only if jobvl == lapack.ComputeLeftEV, |
| // otherwise jobvl must be lapack.None. |
| // Right eigenvectors will be computed only if jobvr == lapack.ComputeRightEV, |
| // otherwise jobvr must be lapack.None. |
| // For other values of jobvl and jobvr Geev will panic. |
| // |
| // On return, wr and wi will contain the real and imaginary parts, respectively, |
| // of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear |
| // consecutively with the eigenvalue having the positive imaginary part first. |
| // wr and wi must have length n, and Geev will panic otherwise. |
| // |
| // work must have length at least lwork and lwork must be at least max(1,4*n) if |
| // the left or right eigenvectors are computed, and at least max(1,3*n) if no |
| // eigenvectors are computed. For good performance, lwork must generally be |
| // larger. On return, optimal value of lwork will be stored in work[0]. |
| // |
| // If lwork == -1, instead of performing Geev, the function only calculates the |
| // optimal vaule of lwork and stores it into work[0]. |
| // |
| // On return, first will be the index of the first valid eigenvalue. |
| // If first == 0, all eigenvalues and eigenvectors have been computed. |
| // If first is positive, Geev failed to compute all the eigenvalues, no |
| // eigenvectors have been computed and wr[first:] and wi[first:] contain those |
| // eigenvalues which have converged. |
| func Geev(jobvl lapack.LeftEVJob, jobvr lapack.RightEVJob, a blas64.General, wr, wi []float64, vl, vr blas64.General, work []float64, lwork int) (first int) { |
| n := a.Rows |
| if a.Cols != n { |
| panic("lapack64: matrix not square") |
| } |
| if jobvl == lapack.ComputeLeftEV && (vl.Rows != n || vl.Cols != n) { |
| panic("lapack64: bad size of VL") |
| } |
| if jobvr == lapack.ComputeRightEV && (vr.Rows != n || vr.Cols != n) { |
| panic("lapack64: bad size of VR") |
| } |
| return lapack64.Dgeev(jobvl, jobvr, n, a.Data, a.Stride, wr, wi, vl.Data, vl.Stride, vr.Data, vr.Stride, work, lwork) |
| } |