blob: 831dc4a27d5f3eae6d0280244842d9419479cda0 [file] [log] [blame] [edit]
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package community
import (
"fmt"
"sort"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/set"
)
// Q returns the modularity Q score of the graph g subdivided into the
// given communities at the given resolution. If communities is nil, the
// unclustered modularity score is returned. The resolution parameter
// is γ as defined in Reichardt and Bornholdt doi:10.1103/PhysRevE.74.016110.
// Q will panic if g has any edge with negative edge weight.
//
// If g is undirected, Q is calculated according to
// Q = 1/2m \sum_{ij} [ A_{ij} - (\gamma k_i k_j)/2m ] \delta(c_i,c_j),
// If g is directed, it is calculated according to
// Q = 1/m \sum_{ij} [ A_{ij} - (\gamma k_i^in k_j^out)/m ] \delta(c_i,c_j).
//
// graph.Undirect may be used as a shim to allow calculation of Q for
// directed graphs with the undirected modularity function.
func Q(g graph.Graph, communities [][]graph.Node, resolution float64) float64 {
switch g := g.(type) {
case graph.Undirected:
return qUndirected(g, communities, resolution)
case graph.Directed:
return qDirected(g, communities, resolution)
default:
panic(fmt.Sprintf("community: invalid graph type: %T", g))
}
}
// ReducedGraph is a modularised graph.
type ReducedGraph interface {
graph.Graph
// Communities returns the community memberships
// of the nodes in the graph used to generate
// the reduced graph.
Communities() [][]graph.Node
// Structure returns the community structure of
// the current level of the module clustering.
// Each slice in the returned value recursively
// describes the membership of a community at
// the current level by indexing via the node
// ID into the structure of the non-nil
// ReducedGraph returned by Expanded, or when the
// ReducedGraph is nil, by containing nodes
// from the original input graph.
//
// The returned value should not be mutated.
Structure() [][]graph.Node
// Expanded returns the next lower level of the
// module clustering or nil if at the lowest level.
//
// The returned ReducedGraph will be the same
// concrete type as the receiver.
Expanded() ReducedGraph
}
// Modularize returns the hierarchical modularization of g at the given resolution
// using the Louvain algorithm. If src is nil, rand.Intn is used as the random
// generator. Modularize will panic if g has any edge with negative edge weight.
//
// If g is undirected it is modularised to minimise
// Q = 1/2m \sum_{ij} [ A_{ij} - (\gamma k_i k_j)/2m ] \delta(c_i,c_j),
// If g is directed it is modularised to minimise
// Q = 1/m \sum_{ij} [ A_{ij} - (\gamma k_i^in k_j^out)/m ] \delta(c_i,c_j).
//
// The concrete type of the ReducedGraph will be a pointer to either a
// ReducedUndirected or a ReducedDirected depending on the type of g.
//
// graph.Undirect may be used as a shim to allow modularization of
// directed graphs with the undirected modularity function.
func Modularize(g graph.Graph, resolution float64, src rand.Source) ReducedGraph {
switch g := g.(type) {
case graph.Undirected:
return louvainUndirected(g, resolution, src)
case graph.Directed:
return louvainDirected(g, resolution, src)
default:
panic(fmt.Sprintf("community: invalid graph type: %T", g))
}
}
// Multiplex is a multiplex graph.
type Multiplex interface {
// Nodes returns the nodes
// for the multiplex graph.
// All layers must refer to the same
// set of nodes.
Nodes() graph.Nodes
// Depth returns the number of layers
// in the multiplex graph.
Depth() int
}
// QMultiplex returns the modularity Q score of the multiplex graph layers
// subdivided into the given communities at the given resolutions and weights. Q is
// returned as the vector of weighted Q scores for each layer of the multiplex graph.
// If communities is nil, the unclustered modularity score is returned.
// If weights is nil layers are equally weighted, otherwise the length of
// weights must equal the number of layers. If resolutions is nil, a resolution
// of 1.0 is used for all layers, otherwise either a single element slice may be used
// to specify a global resolution, or the length of resolutions must equal the number
// of layers. The resolution parameter is γ as defined in Reichardt and Bornholdt
// doi:10.1103/PhysRevE.74.016110.
// QMultiplex will panic if the graph has any layer weight-scaled edge with
// negative edge weight.
//
// If g is undirected, Q is calculated according to
// Q_{layer} = w_{layer} \sum_{ij} [ A_{layer}*_{ij} - (\gamma_{layer} k_i k_j)/2m_{layer} ] \delta(c_i,c_j),
// If g is directed, it is calculated according to
// Q_{layer} = w_{layer} \sum_{ij} [ A_{layer}*_{ij} - (\gamma_{layer} k_i^in k_j^out)/m_{layer} ] \delta(c_i,c_j).
//
// Note that Q values for multiplex graphs are not scaled by the total layer edge weight.
//
// graph.Undirect may be used as a shim to allow calculation of Q for
// directed graphs.
func QMultiplex(g Multiplex, communities [][]graph.Node, weights, resolutions []float64) []float64 {
if weights != nil && len(weights) != g.Depth() {
panic("community: weights vector length mismatch")
}
if resolutions != nil && len(resolutions) != 1 && len(resolutions) != g.Depth() {
panic("community: resolutions vector length mismatch")
}
switch g := g.(type) {
case UndirectedMultiplex:
return qUndirectedMultiplex(g, communities, weights, resolutions)
case DirectedMultiplex:
return qDirectedMultiplex(g, communities, weights, resolutions)
default:
panic(fmt.Sprintf("community: invalid graph type: %T", g))
}
}
// ReducedMultiplex is a modularised multiplex graph.
type ReducedMultiplex interface {
Multiplex
// Communities returns the community memberships
// of the nodes in the graph used to generate
// the reduced graph.
Communities() [][]graph.Node
// Structure returns the community structure of
// the current level of the module clustering.
// Each slice in the returned value recursively
// describes the membership of a community at
// the current level by indexing via the node
// ID into the structure of the non-nil
// ReducedGraph returned by Expanded, or when the
// ReducedGraph is nil, by containing nodes
// from the original input graph.
//
// The returned value should not be mutated.
Structure() [][]graph.Node
// Expanded returns the next lower level of the
// module clustering or nil if at the lowest level.
//
// The returned ReducedGraph will be the same
// concrete type as the receiver.
Expanded() ReducedMultiplex
}
// ModularizeMultiplex returns the hierarchical modularization of g at the given resolution
// using the Louvain algorithm. If all is true and g have negatively weighted layers, all
// communities will be searched during the modularization. If src is nil, rand.Intn is
// used as the random generator. ModularizeMultiplex will panic if g has any edge with
// edge weight that does not sign-match the layer weight.
//
// If g is undirected it is modularised to minimise
// Q = \sum w_{layer} \sum_{ij} [ A_{layer}*_{ij} - (\gamma_{layer} k_i k_j)/2m ] \delta(c_i,c_j).
// If g is directed it is modularised to minimise
// Q = \sum w_{layer} \sum_{ij} [ A_{layer}*_{ij} - (\gamma_{layer} k_i^in k_j^out)/m_{layer} ] \delta(c_i,c_j).
//
// The concrete type of the ReducedMultiplex will be a pointer to a
// ReducedUndirectedMultiplex.
//
// graph.Undirect may be used as a shim to allow modularization of
// directed graphs with the undirected modularity function.
func ModularizeMultiplex(g Multiplex, weights, resolutions []float64, all bool, src rand.Source) ReducedMultiplex {
if weights != nil && len(weights) != g.Depth() {
panic("community: weights vector length mismatch")
}
if resolutions != nil && len(resolutions) != 1 && len(resolutions) != g.Depth() {
panic("community: resolutions vector length mismatch")
}
switch g := g.(type) {
case UndirectedMultiplex:
return louvainUndirectedMultiplex(g, weights, resolutions, all, src)
case DirectedMultiplex:
return louvainDirectedMultiplex(g, weights, resolutions, all, src)
default:
panic(fmt.Sprintf("community: invalid graph type: %T", g))
}
}
// undirectedEdges is the edge structure of a reduced undirected graph.
type undirectedEdges struct {
// edges and weights is the set
// of edges between nodes.
// weights is keyed such that
// the first element of the key
// is less than the second.
edges [][]int
weights map[[2]int]float64
}
// directedEdges is the edge structure of a reduced directed graph.
type directedEdges struct {
// edgesFrom, edgesTo and weights
// is the set of edges between nodes.
edgesFrom [][]int
edgesTo [][]int
weights map[[2]int]float64
}
// isValidID returns whether id is a valid ID for a community,
// multiplexCommunity or node. These are all graph.Node types
// stored in []T with a mapping between their index and their ID
// so IDs must be positive and fit within the int type.
func isValidID(id int64) bool {
return id == int64(int(id)) && id >= 0
}
// community is a reduced graph node describing its membership.
type community struct {
// community graphs are internal, in-memory
// with dense IDs, so id is always an int.
id int
nodes []graph.Node
weight float64
}
func (n community) ID() int64 { return int64(n.id) }
// edge is a reduced graph edge.
type edge struct {
from, to community
weight float64
}
func (e edge) From() graph.Node { return e.from }
func (e edge) To() graph.Node { return e.to }
func (e edge) ReversedEdge() graph.Edge { e.from, e.to = e.to, e.from; return e }
func (e edge) Weight() float64 { return e.weight }
// multiplexCommunity is a reduced multiplex graph node describing its membership.
type multiplexCommunity struct {
// community graphs are internal, in-memory
// with dense IDs, so id is always an int.
id int
nodes []graph.Node
weights []float64
}
func (n multiplexCommunity) ID() int64 { return int64(n.id) }
// multiplexEdge is a reduced graph edge for a multiplex graph.
type multiplexEdge struct {
from, to multiplexCommunity
weight float64
}
func (e multiplexEdge) From() graph.Node { return e.from }
func (e multiplexEdge) To() graph.Node { return e.to }
func (e multiplexEdge) ReversedEdge() graph.Edge { e.from, e.to = e.to, e.from; return e }
func (e multiplexEdge) Weight() float64 { return e.weight }
// commIdx is an index of a node in a community held by a localMover.
type commIdx struct {
community int
node int
}
// node is defined to avoid an import of .../graph/simple. node is
// used in in-memory, dense ID graphs and so is always an int.
type node int
func (n node) ID() int64 { return int64(n) }
// minTaker is a set iterator.
type minTaker interface {
TakeMin(p *int) bool
}
// dense is a dense integer set iterator.
type dense struct {
pos int
n int
}
// TakeMin mimics intsets.Sparse TakeMin for dense sets. If the dense
// iterator position is less than the iterator size, TakeMin sets *p
// to the iterator position and increments the position and returns
// true.
// Otherwise, it returns false and *p is undefined.
func (d *dense) TakeMin(p *int) bool {
if d.pos >= d.n {
return false
}
*p = d.pos
d.pos++
return true
}
// slice is a sparse integer set iterator.
type slice struct {
pos int
elems []int
}
// newSlice returns a new slice of elements from s, sorted ascending.
func newSlice(s set.Ints) *slice {
elems := make([]int, 0, len(s))
for i := range s {
elems = append(elems, i)
}
sort.Ints(elems)
return &slice{elems: elems}
}
// TakeMin mimics intsets.Sparse TakeMin for a sorted set. If the set
// iterator position is less than the iterator size, TakeMin sets *p
// to the iterator position's element and increments the position
// and returns true.
// Otherwise, it returns false and *p is undefined.
func (s *slice) TakeMin(p *int) bool {
if s.pos >= len(s.elems) {
return false
}
*p = s.elems[s.pos]
s.pos++
return true
}
const (
negativeWeight = "community: unexpected negative edge weight"
positiveWeight = "community: unexpected positive edge weight"
// deltaQtol is the tolerance for progression of the local moving heuristic's improvement of Q.
deltaQtol = 1e-15
)
// positiveWeightFuncFor returns a constructed weight function for the
// positively weighted g. Unweighted graphs have unit weight for existing
// edges.
func positiveWeightFuncFor(g graph.Graph) func(xid, yid int64) float64 {
if wg, ok := g.(graph.Weighted); ok {
return func(xid, yid int64) float64 {
w, ok := wg.Weight(xid, yid)
if !ok {
return 0
}
if w < 0 {
panic(negativeWeight)
}
return w
}
}
return func(xid, yid int64) float64 {
e := g.Edge(xid, yid)
if e == nil {
return 0
}
return 1
}
}
// negativeWeightFuncFor returns a constructed weight function for the
// negatively weighted g. Unweighted graphs have unit weight for existing
// edges.
func negativeWeightFuncFor(g graph.Graph) func(xid, yid int64) float64 {
if wg, ok := g.(graph.Weighted); ok {
return func(xid, yid int64) float64 {
w, ok := wg.Weight(xid, yid)
if !ok {
return 0
}
if w > 0 {
panic(positiveWeight)
}
return -w
}
}
return func(xid, yid int64) float64 {
e := g.Edge(xid, yid)
if e == nil {
return 0
}
return 1
}
}
// depth returns max(1, len(weights)). It is used to ensure
// that multiplex community weights are properly initialised.
func depth(weights []float64) int {
if weights == nil {
return 1
}
return len(weights)
}