blob: 0a19c196b91811b3aba705360d85a134bfd9ff4f [file] [log] [blame]
// Copyright ©2019 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package r2
import "math"
// Vec is a 2D vector.
type Vec struct {
X, Y float64
}
// Add returns the vector sum of p and q.
func (p Vec) Add(q Vec) Vec {
p.X += q.X
p.Y += q.Y
return p
}
// Sub returns the vector sum of p and -q.
func (p Vec) Sub(q Vec) Vec {
p.X -= q.X
p.Y -= q.Y
return p
}
// Scale returns the vector p scaled by f.
func (p Vec) Scale(f float64) Vec {
p.X *= f
p.Y *= f
return p
}
// Dot returns the dot product p·q.
func (p Vec) Dot(q Vec) float64 {
return p.X*q.X + p.Y*q.Y
}
// Cross returns the cross product p×q.
func (p Vec) Cross(q Vec) float64 {
return p.X*q.Y - p.Y*q.X
}
// Rotate returns a new vector, rotated by alpha around the provided point, q.
func (p Vec) Rotate(alpha float64, q Vec) Vec {
return NewRotation(alpha, q).Rotate(p)
}
// Norm returns the Euclidean norm of p
// |p| = sqrt(p_x^2 + p_y^2).
func Norm(p Vec) float64 {
return math.Hypot(p.X, p.Y)
}
// Norm returns the Euclidean squared norm of p
// |p|^2 = p_x^2 + p_y^2.
func Norm2(p Vec) float64 {
return p.X*p.X + p.Y*p.Y
}
// Unit returns the unit vector colinear to p.
// Unit returns {NaN,NaN} for the zero vector.
func Unit(p Vec) Vec {
if p.X == 0 && p.Y == 0 {
return Vec{X: math.NaN(), Y: math.NaN()}
}
return p.Scale(1 / Norm(p))
}
// Cos returns the cosine of the opening angle between p and q.
func Cos(p, q Vec) float64 {
return p.Dot(q) / (Norm(p) * Norm(q))
}
// Box is a 2D bounding box.
type Box struct {
Min, Max Vec
}
// Rotation describes a rotation in 2D.
type Rotation struct {
sin, cos float64
p Vec
}
// NewRotation creates a rotation by alpha, around p.
func NewRotation(alpha float64, p Vec) Rotation {
if alpha == 0 {
return Rotation{sin: 0, cos: 1, p: p}
}
sin, cos := math.Sincos(alpha)
return Rotation{sin: sin, cos: cos, p: p}
}
// Rotate returns the rotated vector according to the definition of rot.
func (r Rotation) Rotate(p Vec) Vec {
if r.isIdentity() {
return p
}
o := p.Sub(r.p)
return Vec{
X: (o.X*r.cos - o.Y*r.sin),
Y: (o.X*r.sin + o.Y*r.cos),
}.Add(r.p)
}
func (r Rotation) isIdentity() bool {
return r.sin == 0 && r.cos == 1
}