| // Copyright ©2013 The Gonum Authors. All rights reserved. |
| // Use of this code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package floats |
| |
| import ( |
| "errors" |
| "math" |
| "sort" |
| |
| "gonum.org/v1/gonum/floats/scalar" |
| "gonum.org/v1/gonum/internal/asm/f64" |
| ) |
| |
| const ( |
| zeroLength = "floats: zero length slice" |
| shortSpan = "floats: slice length less than 2" |
| badLength = "floats: slice lengths do not match" |
| badDstLength = "floats: destination slice length does not match input" |
| ) |
| |
| // Add adds, element-wise, the elements of s and dst, and stores the result in dst. |
| // It panics if the argument lengths do not match. |
| func Add(dst, s []float64) { |
| if len(dst) != len(s) { |
| panic(badDstLength) |
| } |
| f64.AxpyUnitaryTo(dst, 1, s, dst) |
| } |
| |
| // AddTo adds, element-wise, the elements of s and t and |
| // stores the result in dst. |
| // It panics if the argument lengths do not match. |
| func AddTo(dst, s, t []float64) []float64 { |
| if len(s) != len(t) { |
| panic(badLength) |
| } |
| if len(dst) != len(s) { |
| panic(badDstLength) |
| } |
| f64.AxpyUnitaryTo(dst, 1, s, t) |
| return dst |
| } |
| |
| // AddConst adds the scalar c to all of the values in dst. |
| func AddConst(c float64, dst []float64) { |
| f64.AddConst(c, dst) |
| } |
| |
| // AddScaled performs dst = dst + alpha * s. |
| // It panics if the slice argument lengths do not match. |
| func AddScaled(dst []float64, alpha float64, s []float64) { |
| if len(dst) != len(s) { |
| panic(badLength) |
| } |
| f64.AxpyUnitaryTo(dst, alpha, s, dst) |
| } |
| |
| // AddScaledTo performs dst = y + alpha * s, where alpha is a scalar, |
| // and dst, y and s are all slices. |
| // It panics if the slice argument lengths do not match. |
| // |
| // At the return of the function, dst[i] = y[i] + alpha * s[i] |
| func AddScaledTo(dst, y []float64, alpha float64, s []float64) []float64 { |
| if len(s) != len(y) { |
| panic(badLength) |
| } |
| if len(dst) != len(y) { |
| panic(badDstLength) |
| } |
| f64.AxpyUnitaryTo(dst, alpha, s, y) |
| return dst |
| } |
| |
| // argsort is a helper that implements sort.Interface, as used by |
| // Argsort. |
| type argsort struct { |
| s []float64 |
| inds []int |
| } |
| |
| func (a argsort) Len() int { |
| return len(a.s) |
| } |
| |
| func (a argsort) Less(i, j int) bool { |
| return a.s[i] < a.s[j] |
| } |
| |
| func (a argsort) Swap(i, j int) { |
| a.s[i], a.s[j] = a.s[j], a.s[i] |
| a.inds[i], a.inds[j] = a.inds[j], a.inds[i] |
| } |
| |
| // Argsort sorts the elements of dst while tracking their original order. |
| // At the conclusion of Argsort, dst will contain the original elements of dst |
| // but sorted in increasing order, and inds will contain the original position |
| // of the elements in the slice such that dst[i] = origDst[inds[i]]. |
| // It panics if the argument lengths do not match. |
| func Argsort(dst []float64, inds []int) { |
| if len(dst) != len(inds) { |
| panic(badDstLength) |
| } |
| for i := range dst { |
| inds[i] = i |
| } |
| |
| a := argsort{s: dst, inds: inds} |
| sort.Sort(a) |
| } |
| |
| // Count applies the function f to every element of s and returns the number |
| // of times the function returned true. |
| func Count(f func(float64) bool, s []float64) int { |
| var n int |
| for _, val := range s { |
| if f(val) { |
| n++ |
| } |
| } |
| return n |
| } |
| |
| // CumProd finds the cumulative product of the first i elements in |
| // s and puts them in place into the ith element of the |
| // destination dst. |
| // It panics if the argument lengths do not match. |
| // |
| // At the return of the function, dst[i] = s[i] * s[i-1] * s[i-2] * ... |
| func CumProd(dst, s []float64) []float64 { |
| if len(dst) != len(s) { |
| panic(badDstLength) |
| } |
| if len(dst) == 0 { |
| return dst |
| } |
| return f64.CumProd(dst, s) |
| } |
| |
| // CumSum finds the cumulative sum of the first i elements in |
| // s and puts them in place into the ith element of the |
| // destination dst. |
| // It panics if the argument lengths do not match. |
| // |
| // At the return of the function, dst[i] = s[i] + s[i-1] + s[i-2] + ... |
| func CumSum(dst, s []float64) []float64 { |
| if len(dst) != len(s) { |
| panic(badDstLength) |
| } |
| if len(dst) == 0 { |
| return dst |
| } |
| return f64.CumSum(dst, s) |
| } |
| |
| // Distance computes the L-norm of s - t. See Norm for special cases. |
| // It panics if the slice argument lengths do not match. |
| func Distance(s, t []float64, L float64) float64 { |
| if len(s) != len(t) { |
| panic(badLength) |
| } |
| if len(s) == 0 { |
| return 0 |
| } |
| if L == 2 { |
| return f64.L2DistanceUnitary(s, t) |
| } |
| var norm float64 |
| if L == 1 { |
| for i, v := range s { |
| norm += math.Abs(t[i] - v) |
| } |
| return norm |
| } |
| if math.IsInf(L, 1) { |
| for i, v := range s { |
| absDiff := math.Abs(t[i] - v) |
| if absDiff > norm { |
| norm = absDiff |
| } |
| } |
| return norm |
| } |
| for i, v := range s { |
| norm += math.Pow(math.Abs(t[i]-v), L) |
| } |
| return math.Pow(norm, 1/L) |
| } |
| |
| // Div performs element-wise division dst / s |
| // and stores the value in dst. |
| // It panics if the argument lengths do not match. |
| func Div(dst, s []float64) { |
| if len(dst) != len(s) { |
| panic(badLength) |
| } |
| f64.Div(dst, s) |
| } |
| |
| // DivTo performs element-wise division s / t |
| // and stores the value in dst. |
| // It panics if the argument lengths do not match. |
| func DivTo(dst, s, t []float64) []float64 { |
| if len(s) != len(t) { |
| panic(badLength) |
| } |
| if len(dst) != len(s) { |
| panic(badDstLength) |
| } |
| return f64.DivTo(dst, s, t) |
| } |
| |
| // Dot computes the dot product of s1 and s2, i.e. |
| // sum_{i = 1}^N s1[i]*s2[i]. |
| // It panics if the argument lengths do not match. |
| func Dot(s1, s2 []float64) float64 { |
| if len(s1) != len(s2) { |
| panic(badLength) |
| } |
| return f64.DotUnitary(s1, s2) |
| } |
| |
| // Equal returns true when the slices have equal lengths and |
| // all elements are numerically identical. |
| func Equal(s1, s2 []float64) bool { |
| if len(s1) != len(s2) { |
| return false |
| } |
| for i, val := range s1 { |
| if s2[i] != val { |
| return false |
| } |
| } |
| return true |
| } |
| |
| // EqualApprox returns true when the slices have equal lengths and |
| // all element pairs have an absolute tolerance less than tol or a |
| // relative tolerance less than tol. |
| func EqualApprox(s1, s2 []float64, tol float64) bool { |
| if len(s1) != len(s2) { |
| return false |
| } |
| for i, a := range s1 { |
| if !scalar.EqualWithinAbsOrRel(a, s2[i], tol, tol) { |
| return false |
| } |
| } |
| return true |
| } |
| |
| // EqualFunc returns true when the slices have the same lengths |
| // and the function returns true for all element pairs. |
| func EqualFunc(s1, s2 []float64, f func(float64, float64) bool) bool { |
| if len(s1) != len(s2) { |
| return false |
| } |
| for i, val := range s1 { |
| if !f(val, s2[i]) { |
| return false |
| } |
| } |
| return true |
| } |
| |
| // EqualLengths returns true when all of the slices have equal length, |
| // and false otherwise. It also returns true when there are no input slices. |
| func EqualLengths(slices ...[]float64) bool { |
| // This length check is needed: http://play.golang.org/p/sdty6YiLhM |
| if len(slices) == 0 { |
| return true |
| } |
| l := len(slices[0]) |
| for i := 1; i < len(slices); i++ { |
| if len(slices[i]) != l { |
| return false |
| } |
| } |
| return true |
| } |
| |
| // Find applies f to every element of s and returns the indices of the first |
| // k elements for which the f returns true, or all such elements |
| // if k < 0. |
| // Find will reslice inds to have 0 length, and will append |
| // found indices to inds. |
| // If k > 0 and there are fewer than k elements in s satisfying f, |
| // all of the found elements will be returned along with an error. |
| // At the return of the function, the input inds will be in an undetermined state. |
| func Find(inds []int, f func(float64) bool, s []float64, k int) ([]int, error) { |
| // inds is also returned to allow for calling with nil. |
| |
| // Reslice inds to have zero length. |
| inds = inds[:0] |
| |
| // If zero elements requested, can just return. |
| if k == 0 { |
| return inds, nil |
| } |
| |
| // If k < 0, return all of the found indices. |
| if k < 0 { |
| for i, val := range s { |
| if f(val) { |
| inds = append(inds, i) |
| } |
| } |
| return inds, nil |
| } |
| |
| // Otherwise, find the first k elements. |
| nFound := 0 |
| for i, val := range s { |
| if f(val) { |
| inds = append(inds, i) |
| nFound++ |
| if nFound == k { |
| return inds, nil |
| } |
| } |
| } |
| // Finished iterating over the loop, which means k elements were not found. |
| return inds, errors.New("floats: insufficient elements found") |
| } |
| |
| // HasNaN returns true when the slice s has any values that are NaN and false |
| // otherwise. |
| func HasNaN(s []float64) bool { |
| for _, v := range s { |
| if math.IsNaN(v) { |
| return true |
| } |
| } |
| return false |
| } |
| |
| // LogSpan returns a set of n equally spaced points in log space between, |
| // l and u where N is equal to len(dst). The first element of the |
| // resulting dst will be l and the final element of dst will be u. |
| // It panics if the length of dst is less than 2. |
| // Note that this call will return NaNs if either l or u are negative, and |
| // will return all zeros if l or u is zero. |
| // Also returns the mutated slice dst, so that it can be used in range, like: |
| // |
| // for i, x := range LogSpan(dst, l, u) { ... } |
| func LogSpan(dst []float64, l, u float64) []float64 { |
| Span(dst, math.Log(l), math.Log(u)) |
| for i := range dst { |
| dst[i] = math.Exp(dst[i]) |
| } |
| return dst |
| } |
| |
| // LogSumExp returns the log of the sum of the exponentials of the values in s. |
| // Panics if s is an empty slice. |
| func LogSumExp(s []float64) float64 { |
| // Want to do this in a numerically stable way which avoids |
| // overflow and underflow |
| // First, find the maximum value in the slice. |
| maxval := Max(s) |
| if math.IsInf(maxval, 0) { |
| // If it's infinity either way, the logsumexp will be infinity as well |
| // returning now avoids NaNs |
| return maxval |
| } |
| var lse float64 |
| // Compute the sumexp part |
| for _, val := range s { |
| lse += math.Exp(val - maxval) |
| } |
| // Take the log and add back on the constant taken out |
| return math.Log(lse) + maxval |
| } |
| |
| // Max returns the maximum value in the input slice. If the slice is empty, Max will panic. |
| func Max(s []float64) float64 { |
| return s[MaxIdx(s)] |
| } |
| |
| // MaxIdx returns the index of the maximum value in the input slice. If several |
| // entries have the maximum value, the first such index is returned. |
| // It panics if s is zero length. |
| func MaxIdx(s []float64) int { |
| if len(s) == 0 { |
| panic(zeroLength) |
| } |
| max := math.NaN() |
| var ind int |
| for i, v := range s { |
| if math.IsNaN(v) { |
| continue |
| } |
| if v > max || math.IsNaN(max) { |
| max = v |
| ind = i |
| } |
| } |
| return ind |
| } |
| |
| // Min returns the minimum value in the input slice. |
| // It panics if s is zero length. |
| func Min(s []float64) float64 { |
| return s[MinIdx(s)] |
| } |
| |
| // MinIdx returns the index of the minimum value in the input slice. If several |
| // entries have the minimum value, the first such index is returned. |
| // It panics if s is zero length. |
| func MinIdx(s []float64) int { |
| if len(s) == 0 { |
| panic(zeroLength) |
| } |
| min := math.NaN() |
| var ind int |
| for i, v := range s { |
| if math.IsNaN(v) { |
| continue |
| } |
| if v < min || math.IsNaN(min) { |
| min = v |
| ind = i |
| } |
| } |
| return ind |
| } |
| |
| // Mul performs element-wise multiplication between dst |
| // and s and stores the value in dst. |
| // It panics if the argument lengths do not match. |
| func Mul(dst, s []float64) { |
| if len(dst) != len(s) { |
| panic(badLength) |
| } |
| for i, val := range s { |
| dst[i] *= val |
| } |
| } |
| |
| // MulTo performs element-wise multiplication between s |
| // and t and stores the value in dst. |
| // It panics if the argument lengths do not match. |
| func MulTo(dst, s, t []float64) []float64 { |
| if len(s) != len(t) { |
| panic(badLength) |
| } |
| if len(dst) != len(s) { |
| panic(badDstLength) |
| } |
| for i, val := range t { |
| dst[i] = val * s[i] |
| } |
| return dst |
| } |
| |
| // NearestIdx returns the index of the element in s |
| // whose value is nearest to v. If several such |
| // elements exist, the lowest index is returned. |
| // It panics if s is zero length. |
| func NearestIdx(s []float64, v float64) int { |
| if len(s) == 0 { |
| panic(zeroLength) |
| } |
| switch { |
| case math.IsNaN(v): |
| return 0 |
| case math.IsInf(v, 1): |
| return MaxIdx(s) |
| case math.IsInf(v, -1): |
| return MinIdx(s) |
| } |
| var ind int |
| dist := math.NaN() |
| for i, val := range s { |
| newDist := math.Abs(v - val) |
| // A NaN distance will not be closer. |
| if math.IsNaN(newDist) { |
| continue |
| } |
| if newDist < dist || math.IsNaN(dist) { |
| dist = newDist |
| ind = i |
| } |
| } |
| return ind |
| } |
| |
| // NearestIdxForSpan return the index of a hypothetical vector created |
| // by Span with length n and bounds l and u whose value is closest |
| // to v. That is, NearestIdxForSpan(n, l, u, v) is equivalent to |
| // Nearest(Span(make([]float64, n),l,u),v) without an allocation. |
| // It panics if n is less than two. |
| func NearestIdxForSpan(n int, l, u float64, v float64) int { |
| if n < 2 { |
| panic(shortSpan) |
| } |
| if math.IsNaN(v) { |
| return 0 |
| } |
| |
| // Special cases for Inf and NaN. |
| switch { |
| case math.IsNaN(l) && !math.IsNaN(u): |
| return n - 1 |
| case math.IsNaN(u): |
| return 0 |
| case math.IsInf(l, 0) && math.IsInf(u, 0): |
| if l == u { |
| return 0 |
| } |
| if n%2 == 1 { |
| if !math.IsInf(v, 0) { |
| return n / 2 |
| } |
| if math.Copysign(1, v) == math.Copysign(1, l) { |
| return 0 |
| } |
| return n/2 + 1 |
| } |
| if math.Copysign(1, v) == math.Copysign(1, l) { |
| return 0 |
| } |
| return n / 2 |
| case math.IsInf(l, 0): |
| if v == l { |
| return 0 |
| } |
| return n - 1 |
| case math.IsInf(u, 0): |
| if v == u { |
| return n - 1 |
| } |
| return 0 |
| case math.IsInf(v, -1): |
| if l <= u { |
| return 0 |
| } |
| return n - 1 |
| case math.IsInf(v, 1): |
| if u <= l { |
| return 0 |
| } |
| return n - 1 |
| } |
| |
| // Special cases for v outside (l, u) and (u, l). |
| switch { |
| case l < u: |
| if v <= l { |
| return 0 |
| } |
| if v >= u { |
| return n - 1 |
| } |
| case l > u: |
| if v >= l { |
| return 0 |
| } |
| if v <= u { |
| return n - 1 |
| } |
| default: |
| return 0 |
| } |
| |
| // Can't guarantee anything about exactly halfway between |
| // because of floating point weirdness. |
| return int((float64(n)-1)/(u-l)*(v-l) + 0.5) |
| } |
| |
| // Norm returns the L norm of the slice S, defined as |
| // (sum_{i=1}^N s[i]^L)^{1/L} |
| // Special cases: |
| // L = math.Inf(1) gives the maximum absolute value. |
| // Does not correctly compute the zero norm (use Count). |
| func Norm(s []float64, L float64) float64 { |
| // Should this complain if L is not positive? |
| // Should this be done in log space for better numerical stability? |
| // would be more cost |
| // maybe only if L is high? |
| if len(s) == 0 { |
| return 0 |
| } |
| if L == 2 { |
| return f64.L2NormUnitary(s) |
| } |
| var norm float64 |
| if L == 1 { |
| for _, val := range s { |
| norm += math.Abs(val) |
| } |
| return norm |
| } |
| if math.IsInf(L, 1) { |
| for _, val := range s { |
| norm = math.Max(norm, math.Abs(val)) |
| } |
| return norm |
| } |
| for _, val := range s { |
| norm += math.Pow(math.Abs(val), L) |
| } |
| return math.Pow(norm, 1/L) |
| } |
| |
| // Prod returns the product of the elements of the slice. |
| // Returns 1 if len(s) = 0. |
| func Prod(s []float64) float64 { |
| prod := 1.0 |
| for _, val := range s { |
| prod *= val |
| } |
| return prod |
| } |
| |
| // Reverse reverses the order of elements in the slice. |
| func Reverse(s []float64) { |
| for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 { |
| s[i], s[j] = s[j], s[i] |
| } |
| } |
| |
| // Same returns true when the input slices have the same length and all |
| // elements have the same value with NaN treated as the same. |
| func Same(s, t []float64) bool { |
| if len(s) != len(t) { |
| return false |
| } |
| for i, v := range s { |
| w := t[i] |
| if v != w && !(math.IsNaN(v) && math.IsNaN(w)) { |
| return false |
| } |
| } |
| return true |
| } |
| |
| // Scale multiplies every element in dst by the scalar c. |
| func Scale(c float64, dst []float64) { |
| if len(dst) > 0 { |
| f64.ScalUnitary(c, dst) |
| } |
| } |
| |
| // ScaleTo multiplies the elements in s by c and stores the result in dst. |
| // It panics if the slice argument lengths do not match. |
| func ScaleTo(dst []float64, c float64, s []float64) []float64 { |
| if len(dst) != len(s) { |
| panic(badDstLength) |
| } |
| if len(dst) > 0 { |
| f64.ScalUnitaryTo(dst, c, s) |
| } |
| return dst |
| } |
| |
| // Span returns a set of N equally spaced points between l and u, where N |
| // is equal to the length of the destination. The first element of the destination |
| // is l, the final element of the destination is u. |
| // It panics if the length of dst is less than 2. |
| // |
| // Span also returns the mutated slice dst, so that it can be used in range expressions, |
| // like: |
| // |
| // for i, x := range Span(dst, l, u) { ... } |
| func Span(dst []float64, l, u float64) []float64 { |
| n := len(dst) |
| if n < 2 { |
| panic(shortSpan) |
| } |
| |
| // Special cases for Inf and NaN. |
| switch { |
| case math.IsNaN(l): |
| for i := range dst[:len(dst)-1] { |
| dst[i] = math.NaN() |
| } |
| dst[len(dst)-1] = u |
| return dst |
| case math.IsNaN(u): |
| for i := range dst[1:] { |
| dst[i+1] = math.NaN() |
| } |
| dst[0] = l |
| return dst |
| case math.IsInf(l, 0) && math.IsInf(u, 0): |
| for i := range dst[:len(dst)/2] { |
| dst[i] = l |
| dst[len(dst)-i-1] = u |
| } |
| if len(dst)%2 == 1 { |
| if l != u { |
| dst[len(dst)/2] = 0 |
| } else { |
| dst[len(dst)/2] = l |
| } |
| } |
| return dst |
| case math.IsInf(l, 0): |
| for i := range dst[:len(dst)-1] { |
| dst[i] = l |
| } |
| dst[len(dst)-1] = u |
| return dst |
| case math.IsInf(u, 0): |
| for i := range dst[1:] { |
| dst[i+1] = u |
| } |
| dst[0] = l |
| return dst |
| } |
| |
| step := (u - l) / float64(n-1) |
| for i := range dst { |
| dst[i] = l + step*float64(i) |
| } |
| return dst |
| } |
| |
| // Sub subtracts, element-wise, the elements of s from dst. |
| // It panics if the argument lengths do not match. |
| func Sub(dst, s []float64) { |
| if len(dst) != len(s) { |
| panic(badLength) |
| } |
| f64.AxpyUnitaryTo(dst, -1, s, dst) |
| } |
| |
| // SubTo subtracts, element-wise, the elements of t from s and |
| // stores the result in dst. |
| // It panics if the argument lengths do not match. |
| func SubTo(dst, s, t []float64) []float64 { |
| if len(s) != len(t) { |
| panic(badLength) |
| } |
| if len(dst) != len(s) { |
| panic(badDstLength) |
| } |
| f64.AxpyUnitaryTo(dst, -1, t, s) |
| return dst |
| } |
| |
| // Sum returns the sum of the elements of the slice. |
| func Sum(s []float64) float64 { |
| return f64.Sum(s) |
| } |
| |
| // Within returns the first index i where s[i] <= v < s[i+1]. Within panics if: |
| // - len(s) < 2 |
| // - s is not sorted |
| func Within(s []float64, v float64) int { |
| if len(s) < 2 { |
| panic(shortSpan) |
| } |
| if !sort.Float64sAreSorted(s) { |
| panic("floats: input slice not sorted") |
| } |
| if v < s[0] || v >= s[len(s)-1] || math.IsNaN(v) { |
| return -1 |
| } |
| for i, f := range s[1:] { |
| if v < f { |
| return i |
| } |
| } |
| return -1 |
| } |
| |
| // SumCompensated returns the sum of the elements of the slice calculated with greater |
| // accuracy than Sum at the expense of additional computation. |
| func SumCompensated(s []float64) float64 { |
| // SumCompensated uses an improved version of Kahan's compensated |
| // summation algorithm proposed by Neumaier. |
| // See https://en.wikipedia.org/wiki/Kahan_summation_algorithm for details. |
| var sum, c float64 |
| for _, x := range s { |
| // This type conversion is here to prevent a sufficiently smart compiler |
| // from optimising away these operations. |
| t := float64(sum + x) |
| if math.Abs(sum) >= math.Abs(x) { |
| c += (sum - t) + x |
| } else { |
| c += (x - t) + sum |
| } |
| sum = t |
| } |
| return sum + c |
| } |