| // Copyright ©2016 The Gonum Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gonum |
| |
| // Dorghr generates an n×n orthogonal matrix Q which is defined as the product |
| // of ihi-ilo elementary reflectors: |
| // Q = H_{ilo} H_{ilo+1} ... H_{ihi-1}. |
| // |
| // a and lda represent an n×n matrix that contains the elementary reflectors, as |
| // returned by Dgehrd. On return, a is overwritten by the n×n orthogonal matrix |
| // Q. Q will be equal to the identity matrix except in the submatrix |
| // Q[ilo+1:ihi+1,ilo+1:ihi+1]. |
| // |
| // ilo and ihi must have the same values as in the previous call of Dgehrd. It |
| // must hold that |
| // 0 <= ilo <= ihi < n if n > 0, |
| // ilo = 0, ihi = -1 if n == 0. |
| // |
| // tau contains the scalar factors of the elementary reflectors, as returned by |
| // Dgehrd. tau must have length n-1. |
| // |
| // work must have length at least max(1,lwork) and lwork must be at least |
| // ihi-ilo. For optimum performance lwork must be at least (ihi-ilo)*nb where nb |
| // is the optimal blocksize. On return, work[0] will contain the optimal value |
| // of lwork. |
| // |
| // If lwork == -1, instead of performing Dorghr, only the optimal value of lwork |
| // will be stored into work[0]. |
| // |
| // If any requirement on input sizes is not met, Dorghr will panic. |
| // |
| // Dorghr is an internal routine. It is exported for testing purposes. |
| func (impl Implementation) Dorghr(n, ilo, ihi int, a []float64, lda int, tau, work []float64, lwork int) { |
| nh := ihi - ilo |
| switch { |
| case ilo < 0 || max(1, n) <= ilo: |
| panic(badIlo) |
| case ihi < min(ilo, n-1) || n <= ihi: |
| panic(badIhi) |
| case lda < max(1, n): |
| panic(badLdA) |
| case lwork < max(1, nh) && lwork != -1: |
| panic(badLWork) |
| case len(work) < max(1, lwork): |
| panic(shortWork) |
| } |
| |
| // Quick return if possible. |
| if n == 0 { |
| work[0] = 1 |
| return |
| } |
| |
| lwkopt := max(1, nh) * impl.Ilaenv(1, "DORGQR", " ", nh, nh, nh, -1) |
| if lwork == -1 { |
| work[0] = float64(lwkopt) |
| return |
| } |
| |
| switch { |
| case len(a) < (n-1)*lda+n: |
| panic(shortA) |
| case len(tau) < n-1: |
| panic(shortTau) |
| } |
| |
| // Shift the vectors which define the elementary reflectors one column |
| // to the right. |
| for i := ilo + 2; i < ihi+1; i++ { |
| copy(a[i*lda+ilo+1:i*lda+i], a[i*lda+ilo:i*lda+i-1]) |
| } |
| // Set the first ilo+1 and the last n-ihi-1 rows and columns to those of |
| // the identity matrix. |
| for i := 0; i < ilo+1; i++ { |
| for j := 0; j < n; j++ { |
| a[i*lda+j] = 0 |
| } |
| a[i*lda+i] = 1 |
| } |
| for i := ilo + 1; i < ihi+1; i++ { |
| for j := 0; j <= ilo; j++ { |
| a[i*lda+j] = 0 |
| } |
| for j := i; j < n; j++ { |
| a[i*lda+j] = 0 |
| } |
| } |
| for i := ihi + 1; i < n; i++ { |
| for j := 0; j < n; j++ { |
| a[i*lda+j] = 0 |
| } |
| a[i*lda+i] = 1 |
| } |
| if nh > 0 { |
| // Generate Q[ilo+1:ihi+1,ilo+1:ihi+1]. |
| impl.Dorgqr(nh, nh, nh, a[(ilo+1)*lda+ilo+1:], lda, tau[ilo:ihi], work, lwork) |
| } |
| work[0] = float64(lwkopt) |
| } |