blob: 8a4fe2b5ff4aabef089733c86c8dd46f4de1aff9 [file] [log] [blame]
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import "gonum.org/v1/gonum/lapack"
// Dorgbr generates one of the matrices Q or Pᵀ computed by Dgebrd
// computed from the decomposition Dgebrd. See Dgebd2 for the description of
// Q and Pᵀ.
//
// If vect == lapack.GenerateQ, then a is assumed to have been an m×k matrix and
// Q is of order m. If m >= k, then Dorgbr returns the first n columns of Q
// where m >= n >= k. If m < k, then Dorgbr returns Q as an m×m matrix.
//
// If vect == lapack.GeneratePT, then A is assumed to have been a k×n matrix, and
// Pᵀ is of order n. If k < n, then Dorgbr returns the first m rows of Pᵀ,
// where n >= m >= k. If k >= n, then Dorgbr returns Pᵀ as an n×n matrix.
//
// Dorgbr is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dorgbr(vect lapack.GenOrtho, m, n, k int, a []float64, lda int, tau, work []float64, lwork int) {
wantq := vect == lapack.GenerateQ
mn := min(m, n)
switch {
case vect != lapack.GenerateQ && vect != lapack.GeneratePT:
panic(badGenOrtho)
case m < 0:
panic(mLT0)
case n < 0:
panic(nLT0)
case k < 0:
panic(kLT0)
case wantq && n > m:
panic(nGTM)
case wantq && n < min(m, k):
panic("lapack: n < min(m,k)")
case !wantq && m > n:
panic(mGTN)
case !wantq && m < min(n, k):
panic("lapack: m < min(n,k)")
case lda < max(1, n) && lwork != -1:
// Normally, we follow the reference and require the leading
// dimension to be always valid, even in case of workspace
// queries. However, if a caller provided a placeholder value
// for lda (and a) when doing a workspace query that didn't
// fulfill the condition here, it would cause a panic. This is
// exactly what Dgesvd does.
panic(badLdA)
case lwork < max(1, mn) && lwork != -1:
panic(badLWork)
case len(work) < max(1, lwork):
panic(shortWork)
}
// Quick return if possible.
work[0] = 1
if m == 0 || n == 0 {
return
}
if wantq {
if m >= k {
impl.Dorgqr(m, n, k, a, lda, tau, work, -1)
} else if m > 1 {
impl.Dorgqr(m-1, m-1, m-1, a[lda+1:], lda, tau, work, -1)
}
} else {
if k < n {
impl.Dorglq(m, n, k, a, lda, tau, work, -1)
} else if n > 1 {
impl.Dorglq(n-1, n-1, n-1, a[lda+1:], lda, tau, work, -1)
}
}
lworkopt := int(work[0])
lworkopt = max(lworkopt, mn)
if lwork == -1 {
work[0] = float64(lworkopt)
return
}
switch {
case len(a) < (m-1)*lda+n:
panic(shortA)
case wantq && len(tau) < min(m, k):
panic(shortTau)
case !wantq && len(tau) < min(n, k):
panic(shortTau)
}
if wantq {
// Form Q, determined by a call to Dgebrd to reduce an m×k matrix.
if m >= k {
impl.Dorgqr(m, n, k, a, lda, tau, work, lwork)
} else {
// Shift the vectors which define the elementary reflectors one
// column to the right, and set the first row and column of Q to
// those of the unit matrix.
for j := m - 1; j >= 1; j-- {
a[j] = 0
for i := j + 1; i < m; i++ {
a[i*lda+j] = a[i*lda+j-1]
}
}
a[0] = 1
for i := 1; i < m; i++ {
a[i*lda] = 0
}
if m > 1 {
// Form Q[1:m-1, 1:m-1]
impl.Dorgqr(m-1, m-1, m-1, a[lda+1:], lda, tau, work, lwork)
}
}
} else {
// Form Pᵀ, determined by a call to Dgebrd to reduce a k×n matrix.
if k < n {
impl.Dorglq(m, n, k, a, lda, tau, work, lwork)
} else {
// Shift the vectors which define the elementary reflectors one
// row downward, and set the first row and column of Pᵀ to
// those of the unit matrix.
a[0] = 1
for i := 1; i < n; i++ {
a[i*lda] = 0
}
for j := 1; j < n; j++ {
for i := j - 1; i >= 1; i-- {
a[i*lda+j] = a[(i-1)*lda+j]
}
a[j] = 0
}
if n > 1 {
impl.Dorglq(n-1, n-1, n-1, a[lda+1:], lda, tau, work, lwork)
}
}
}
work[0] = float64(lworkopt)
}