blob: 54bf5875629fcbd15984e10d35dddae83fea18b0 [file] [log] [blame]
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import "math"
// Dlasq6 computes one dqd transform in ping-pong form with protection against
// overflow and underflow. z has length at least 4*(n0+1) and holds the qd array.
// i0 is the zero-based first index.
// n0 is the zero-based last index.
//
// Dlasq6 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlasq6(i0, n0 int, z []float64, pp int) (dmin, dmin1, dmin2, dn, dnm1, dnm2 float64) {
switch {
case i0 < 0:
panic(i0LT0)
case n0 < 0:
panic(n0LT0)
case len(z) < 4*n0:
panic(shortZ)
case pp != 0 && pp != 1:
panic(badPp)
}
if n0-i0-1 <= 0 {
return dmin, dmin1, dmin2, dn, dnm1, dnm2
}
safmin := dlamchS
j4 := 4*(i0+1) + pp - 4 // -4 rather than -3 for zero indexing
emin := z[j4+4]
d := z[j4]
dmin = d
if pp == 0 {
for j4loop := 4 * (i0 + 1); j4loop <= 4*((n0+1)-3); j4loop += 4 {
j4 := j4loop - 1 // Translate back to zero-indexed.
z[j4-2] = d + z[j4-1]
if z[j4-2] == 0 {
z[j4] = 0
d = z[j4+1]
dmin = d
emin = 0
} else if safmin*z[j4+1] < z[j4-2] && safmin*z[j4-2] < z[j4+1] {
tmp := z[j4+1] / z[j4-2]
z[j4] = z[j4-1] * tmp
d *= tmp
} else {
z[j4] = z[j4+1] * (z[j4-1] / z[j4-2])
d = z[j4+1] * (d / z[j4-2])
}
dmin = math.Min(dmin, d)
emin = math.Min(emin, z[j4])
}
} else {
for j4loop := 4 * (i0 + 1); j4loop <= 4*((n0+1)-3); j4loop += 4 {
j4 := j4loop - 1
z[j4-3] = d + z[j4]
if z[j4-3] == 0 {
z[j4-1] = 0
d = z[j4+2]
dmin = d
emin = 0
} else if safmin*z[j4+2] < z[j4-3] && safmin*z[j4-3] < z[j4+2] {
tmp := z[j4+2] / z[j4-3]
z[j4-1] = z[j4] * tmp
d *= tmp
} else {
z[j4-1] = z[j4+2] * (z[j4] / z[j4-3])
d = z[j4+2] * (d / z[j4-3])
}
dmin = math.Min(dmin, d)
emin = math.Min(emin, z[j4-1])
}
}
// Unroll last two steps.
dnm2 = d
dmin2 = dmin
j4 = 4*(n0-1) - pp - 1
j4p2 := j4 + 2*pp - 1
z[j4-2] = dnm2 + z[j4p2]
if z[j4-2] == 0 {
z[j4] = 0
dnm1 = z[j4p2+2]
dmin = dnm1
emin = 0
} else if safmin*z[j4p2+2] < z[j4-2] && safmin*z[j4-2] < z[j4p2+2] {
tmp := z[j4p2+2] / z[j4-2]
z[j4] = z[j4p2] * tmp
dnm1 = dnm2 * tmp
} else {
z[j4] = z[j4p2+2] * (z[j4p2] / z[j4-2])
dnm1 = z[j4p2+2] * (dnm2 / z[j4-2])
}
dmin = math.Min(dmin, dnm1)
dmin1 = dmin
j4 += 4
j4p2 = j4 + 2*pp - 1
z[j4-2] = dnm1 + z[j4p2]
if z[j4-2] == 0 {
z[j4] = 0
dn = z[j4p2+2]
dmin = dn
emin = 0
} else if safmin*z[j4p2+2] < z[j4-2] && safmin*z[j4-2] < z[j4p2+2] {
tmp := z[j4p2+2] / z[j4-2]
z[j4] = z[j4p2] * tmp
dn = dnm1 * tmp
} else {
z[j4] = z[j4p2+2] * (z[j4p2] / z[j4-2])
dn = z[j4p2+2] * (dnm1 / z[j4-2])
}
dmin = math.Min(dmin, dn)
z[j4+2] = dn
z[4*(n0+1)-pp-1] = emin
return dmin, dmin1, dmin2, dn, dnm1, dnm2
}