| // Copyright ©2015 The Gonum Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gonum |
| |
| import ( |
| "gonum.org/v1/gonum/blas" |
| "gonum.org/v1/gonum/blas/blas64" |
| ) |
| |
| // Dgetrs solves a system of equations using an LU factorization. |
| // The system of equations solved is |
| // A * X = B if trans == blas.Trans |
| // Aᵀ * X = B if trans == blas.NoTrans |
| // A is a general n×n matrix with stride lda. B is a general matrix of size n×nrhs. |
| // |
| // On entry b contains the elements of the matrix B. On exit, b contains the |
| // elements of X, the solution to the system of equations. |
| // |
| // a and ipiv contain the LU factorization of A and the permutation indices as |
| // computed by Dgetrf. ipiv is zero-indexed. |
| func (impl Implementation) Dgetrs(trans blas.Transpose, n, nrhs int, a []float64, lda int, ipiv []int, b []float64, ldb int) { |
| switch { |
| case trans != blas.NoTrans && trans != blas.Trans && trans != blas.ConjTrans: |
| panic(badTrans) |
| case n < 0: |
| panic(nLT0) |
| case nrhs < 0: |
| panic(nrhsLT0) |
| case lda < max(1, n): |
| panic(badLdA) |
| case ldb < max(1, nrhs): |
| panic(badLdB) |
| } |
| |
| // Quick return if possible. |
| if n == 0 || nrhs == 0 { |
| return |
| } |
| |
| switch { |
| case len(a) < (n-1)*lda+n: |
| panic(shortA) |
| case len(b) < (n-1)*ldb+nrhs: |
| panic(shortB) |
| case len(ipiv) != n: |
| panic(badLenIpiv) |
| } |
| |
| bi := blas64.Implementation() |
| |
| if trans == blas.NoTrans { |
| // Solve A * X = B. |
| impl.Dlaswp(nrhs, b, ldb, 0, n-1, ipiv, 1) |
| // Solve L * X = B, updating b. |
| bi.Dtrsm(blas.Left, blas.Lower, blas.NoTrans, blas.Unit, |
| n, nrhs, 1, a, lda, b, ldb) |
| // Solve U * X = B, updating b. |
| bi.Dtrsm(blas.Left, blas.Upper, blas.NoTrans, blas.NonUnit, |
| n, nrhs, 1, a, lda, b, ldb) |
| return |
| } |
| // Solve Aᵀ * X = B. |
| // Solve Uᵀ * X = B, updating b. |
| bi.Dtrsm(blas.Left, blas.Upper, blas.Trans, blas.NonUnit, |
| n, nrhs, 1, a, lda, b, ldb) |
| // Solve Lᵀ * X = B, updating b. |
| bi.Dtrsm(blas.Left, blas.Lower, blas.Trans, blas.Unit, |
| n, nrhs, 1, a, lda, b, ldb) |
| impl.Dlaswp(nrhs, b, ldb, 0, n-1, ipiv, -1) |
| } |