| // Copyright ©2019 The Gonum Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package r3 |
| |
| import "math" |
| |
| // Vec is a 3D vector. |
| type Vec struct { |
| X, Y, Z float64 |
| } |
| |
| // Add returns the vector sum of p and q. |
| func Add(p, q Vec) Vec { |
| return Vec{ |
| X: p.X + q.X, |
| Y: p.Y + q.Y, |
| Z: p.Z + q.Z, |
| } |
| } |
| |
| // Sub returns the vector sum of p and -q. |
| func Sub(p, q Vec) Vec { |
| return Vec{ |
| X: p.X - q.X, |
| Y: p.Y - q.Y, |
| Z: p.Z - q.Z, |
| } |
| } |
| |
| // Scale returns the vector p scaled by f. |
| func Scale(f float64, p Vec) Vec { |
| return Vec{ |
| X: f * p.X, |
| Y: f * p.Y, |
| Z: f * p.Z, |
| } |
| } |
| |
| // Dot returns the dot product p·q. |
| func Dot(p, q Vec) float64 { |
| return p.X*q.X + p.Y*q.Y + p.Z*q.Z |
| } |
| |
| // Cross returns the cross product p×q. |
| func Cross(p, q Vec) Vec { |
| return Vec{ |
| p.Y*q.Z - p.Z*q.Y, |
| p.Z*q.X - p.X*q.Z, |
| p.X*q.Y - p.Y*q.X, |
| } |
| } |
| |
| // Rotate returns a new vector, rotated by alpha around the provided axis. |
| func Rotate(p Vec, alpha float64, axis Vec) Vec { |
| return NewRotation(alpha, axis).Rotate(p) |
| } |
| |
| // Norm returns the Euclidean norm of p |
| // |
| // |p| = sqrt(p_x^2 + p_y^2 + p_z^2). |
| func Norm(p Vec) float64 { |
| return math.Hypot(p.X, math.Hypot(p.Y, p.Z)) |
| } |
| |
| // Norm2 returns the Euclidean squared norm of p |
| // |
| // |p|^2 = p_x^2 + p_y^2 + p_z^2. |
| func Norm2(p Vec) float64 { |
| return p.X*p.X + p.Y*p.Y + p.Z*p.Z |
| } |
| |
| // Unit returns the unit vector colinear to p. |
| // Unit returns {NaN,NaN,NaN} for the zero vector. |
| func Unit(p Vec) Vec { |
| if p.X == 0 && p.Y == 0 && p.Z == 0 { |
| return Vec{X: math.NaN(), Y: math.NaN(), Z: math.NaN()} |
| } |
| return Scale(1/Norm(p), p) |
| } |
| |
| // Cos returns the cosine of the opening angle between p and q. |
| func Cos(p, q Vec) float64 { |
| return Dot(p, q) / (Norm(p) * Norm(q)) |
| } |
| |
| // Divergence returns the divergence of the vector field at the point p, |
| // approximated using finite differences with the given step sizes. |
| func Divergence(p, step Vec, field func(Vec) Vec) float64 { |
| sx := Vec{X: step.X} |
| divx := (field(Add(p, sx)).X - field(Sub(p, sx)).X) / step.X |
| sy := Vec{Y: step.Y} |
| divy := (field(Add(p, sy)).Y - field(Sub(p, sy)).Y) / step.Y |
| sz := Vec{Z: step.Z} |
| divz := (field(Add(p, sz)).Z - field(Sub(p, sz)).Z) / step.Z |
| return 0.5 * (divx + divy + divz) |
| } |
| |
| // Gradient returns the gradient of the scalar field at the point p, |
| // approximated using finite differences with the given step sizes. |
| func Gradient(p, step Vec, field func(Vec) float64) Vec { |
| dx := Vec{X: step.X} |
| dy := Vec{Y: step.Y} |
| dz := Vec{Z: step.Z} |
| return Vec{ |
| X: (field(Add(p, dx)) - field(Sub(p, dx))) / (2 * step.X), |
| Y: (field(Add(p, dy)) - field(Sub(p, dy))) / (2 * step.Y), |
| Z: (field(Add(p, dz)) - field(Sub(p, dz))) / (2 * step.Z), |
| } |
| } |
| |
| // minElem return a vector with the minimum components of two vectors. |
| func minElem(a, b Vec) Vec { |
| return Vec{ |
| X: math.Min(a.X, b.X), |
| Y: math.Min(a.Y, b.Y), |
| Z: math.Min(a.Z, b.Z), |
| } |
| } |
| |
| // maxElem return a vector with the maximum components of two vectors. |
| func maxElem(a, b Vec) Vec { |
| return Vec{ |
| X: math.Max(a.X, b.X), |
| Y: math.Max(a.Y, b.Y), |
| Z: math.Max(a.Z, b.Z), |
| } |
| } |
| |
| // absElem returns the vector with components set to their absolute value. |
| func absElem(a Vec) Vec { |
| return Vec{ |
| X: math.Abs(a.X), |
| Y: math.Abs(a.Y), |
| Z: math.Abs(a.Z), |
| } |
| } |
| |
| // mulElem returns the Hadamard product between vectors a and b. |
| // |
| // v = {a.X*b.X, a.Y*b.Y, a.Z*b.Z} |
| func mulElem(a, b Vec) Vec { |
| return Vec{ |
| X: a.X * b.X, |
| Y: a.Y * b.Y, |
| Z: a.Z * b.Z, |
| } |
| } |
| |
| // divElem returns the Hadamard product between vector a |
| // and the inverse components of vector b. |
| // |
| // v = {a.X/b.X, a.Y/b.Y, a.Z/b.Z} |
| func divElem(a, b Vec) Vec { |
| return Vec{ |
| X: a.X / b.X, |
| Y: a.Y / b.Y, |
| Z: a.Z / b.Z, |
| } |
| } |