blob: 5674b587a5a60d1d5e712db30b2a35ca466de263 [file] [log] [blame]
// Copyright ©2021 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package r3
import (
"math"
"gonum.org/v1/gonum/num/quat"
)
// TODO: possibly useful additions to the current rotation API:
// - create rotations from Euler angles (NewRotationFromEuler?)
// - create rotations from rotation matrices (NewRotationFromMatrix?)
// - return the equivalent Euler angles from a Rotation
//
// Euler angles have issues (see [1] for a discussion).
// We should think carefully before adding them in.
// [1]: http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
// Rotation describes a rotation in space.
type Rotation quat.Number
// NewRotation creates a rotation by alpha, around axis.
func NewRotation(alpha float64, axis Vec) Rotation {
if alpha == 0 {
return Rotation{Real: 1}
}
q := raise(axis)
sin, cos := math.Sincos(0.5 * alpha)
q = quat.Scale(sin/quat.Abs(q), q)
q.Real += cos
if len := quat.Abs(q); len != 1 {
q = quat.Scale(1/len, q)
}
return Rotation(q)
}
// Rotate returns p rotated according to the parameters used to construct
// the receiver.
func (r Rotation) Rotate(p Vec) Vec {
if r.isIdentity() {
return p
}
qq := quat.Number(r)
pp := quat.Mul(quat.Mul(qq, raise(p)), quat.Conj(qq))
return Vec{X: pp.Imag, Y: pp.Jmag, Z: pp.Kmag}
}
func (r Rotation) isIdentity() bool {
return r == Rotation{Real: 1}
}
func raise(p Vec) quat.Number {
return quat.Number{Imag: p.X, Jmag: p.Y, Kmag: p.Z}
}