blob: ff09bb4c86d125d8b23af5fb6c58d9fb9bfc3007 [file] [log] [blame]
// Copyright ©2021 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build safe
// +build safe
// TODO(kortschak): Get rid of this rigmarole if https://golang.org/issue/50118
// is accepted.
package r3
import (
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/mat"
)
type array [9]float64
// At returns the value of a matrix element at row i, column j.
// At expects indices in the range [0,2].
// It will panic if i or j are out of bounds for the matrix.
func (m *Mat) At(i, j int) float64 {
if uint(i) > 2 {
panic(mat.ErrRowAccess)
}
if uint(j) > 2 {
panic(mat.ErrColAccess)
}
if m.data == nil {
m.data = new(array)
}
return m.data[i*3+j]
}
// Set sets the element at row i, column j to the value v.
func (m *Mat) Set(i, j int, v float64) {
if uint(i) > 2 {
panic(mat.ErrRowAccess)
}
if uint(j) > 2 {
panic(mat.ErrColAccess)
}
if m.data == nil {
m.data = new(array)
}
m.data[i*3+j] = v
}
// Eye returns the 3×3 Identity matrix
func Eye() *Mat {
return &Mat{&array{
1, 0, 0,
0, 1, 0,
0, 0, 1,
}}
}
// Skew returns the 3×3 skew symmetric matrix (right hand system) of v.
//
// ⎡ 0 -z y⎤
// Skew({x,y,z}) = ⎢ z 0 -x⎥
// ⎣-y x 0⎦
//
// Deprecated: use Mat.Skew()
func Skew(v Vec) (M *Mat) {
return &Mat{&array{
0, -v.Z, v.Y,
v.Z, 0, -v.X,
-v.Y, v.X, 0,
}}
}
// Mul takes the matrix product of a and b, placing the result in the receiver.
// If the number of columns in a does not equal 3, Mul will panic.
func (m *Mat) Mul(a, b mat.Matrix) {
ra, ca := a.Dims()
rb, cb := b.Dims()
switch {
case ra != 3:
panic(mat.ErrShape)
case cb != 3:
panic(mat.ErrShape)
case ca != rb:
panic(mat.ErrShape)
}
if m.data == nil {
m.data = new(array)
}
if ca != 3 {
// General matrix multiplication for the case where the inner dimension is not 3.
var t mat.Dense
t.Mul(a, b)
copy(m.data[:], t.RawMatrix().Data)
return
}
a00 := a.At(0, 0)
b00 := b.At(0, 0)
a01 := a.At(0, 1)
b01 := b.At(0, 1)
a02 := a.At(0, 2)
b02 := b.At(0, 2)
a10 := a.At(1, 0)
b10 := b.At(1, 0)
a11 := a.At(1, 1)
b11 := b.At(1, 1)
a12 := a.At(1, 2)
b12 := b.At(1, 2)
a20 := a.At(2, 0)
b20 := b.At(2, 0)
a21 := a.At(2, 1)
b21 := b.At(2, 1)
a22 := a.At(2, 2)
b22 := b.At(2, 2)
*(m.data) = array{
a00*b00 + a01*b10 + a02*b20, a00*b01 + a01*b11 + a02*b21, a00*b02 + a01*b12 + a02*b22,
a10*b00 + a11*b10 + a12*b20, a10*b01 + a11*b11 + a12*b21, a10*b02 + a11*b12 + a12*b22,
a20*b00 + a21*b10 + a22*b20, a20*b01 + a21*b11 + a22*b21, a20*b02 + a21*b12 + a22*b22,
}
}
// RawMatrix returns the blas representation of the matrix with the backing
// data of this matrix. Changes to the returned matrix will be reflected in
// the receiver.
func (m *Mat) RawMatrix() blas64.General {
if m.data == nil {
m.data = new(array)
}
return blas64.General{Rows: 3, Cols: 3, Data: m.data[:], Stride: 3}
}
func arrayFrom(vals []float64) *array {
return (*array)(vals)
}
// Mat returns a 3×3 rotation matrix corresponding to the receiver. It
// may be used to perform rotations on a 3-vector or to apply the rotation
// to a 3×n matrix of column vectors. If the receiver is not a unit
// quaternion, the returned matrix will not be a pure rotation.
func (r Rotation) Mat() *Mat {
w, i, j, k := r.Real, r.Imag, r.Jmag, r.Kmag
ii := 2 * i * i
jj := 2 * j * j
kk := 2 * k * k
wi := 2 * w * i
wj := 2 * w * j
wk := 2 * w * k
ij := 2 * i * j
jk := 2 * j * k
ki := 2 * k * i
return &Mat{&array{
1 - (jj + kk), ij - wk, ki + wj,
ij + wk, 1 - (ii + kk), jk - wi,
ki - wj, jk + wi, 1 - (ii + jj),
}}
}