| // Copyright ©2019 The Gonum Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package barneshut |
| |
| import ( |
| "errors" |
| "fmt" |
| "math" |
| |
| "gonum.org/v1/gonum/spatial/r2" |
| ) |
| |
| // Particle2 is a particle in a plane. |
| type Particle2 interface { |
| Coord2() r2.Vec |
| Mass() float64 |
| } |
| |
| // Force2 is a force modeling function for interactions between p1 and p2, |
| // m1 is the mass of p1 and m2 of p2. The vector v is the vector from p1 to |
| // p2. The returned value is the force vector acting on p1. |
| // |
| // In models where the identity of particles must be known, p1 and p2 may be |
| // compared. Force2 may be passed nil for p2 when the Barnes-Hut approximation |
| // is being used. A nil p2 indicates that the second mass center is an |
| // aggregate. |
| type Force2 func(p1, p2 Particle2, m1, m2 float64, v r2.Vec) r2.Vec |
| |
| // Gravity2 returns a vector force on m1 by m2, equal to (m1⋅m2)/‖v‖² |
| // in the directions of v. Gravity2 ignores the identity of the interacting |
| // particles and returns a zero vector when the two particles are |
| // coincident, but performs no other sanity checks. |
| func Gravity2(_, _ Particle2, m1, m2 float64, v r2.Vec) r2.Vec { |
| d2 := v.X*v.X + v.Y*v.Y |
| if d2 == 0 { |
| return r2.Vec{} |
| } |
| return r2.Scale((m1*m2)/(d2*math.Sqrt(d2)), v) |
| } |
| |
| // Plane implements Barnes-Hut force approximation calculations. |
| type Plane struct { |
| root tile |
| |
| Particles []Particle2 |
| } |
| |
| // NewPlane returns a new Plane. If the plane is too large to allow |
| // particle coordinates to be distinguished due to floating point |
| // precision limits, NewPlane will return a non-nil error. |
| func NewPlane(p []Particle2) (*Plane, error) { |
| q := Plane{Particles: p} |
| err := q.Reset() |
| if err != nil { |
| return nil, err |
| } |
| return &q, nil |
| } |
| |
| // Reset reconstructs the Barnes-Hut tree. Reset must be called if the |
| // Particles field or elements of Particles have been altered, unless |
| // ForceOn is called with theta=0 or no data structures have been |
| // previously built. If the plane is too large to allow particle |
| // coordinates to be distinguished due to floating point precision |
| // limits, Reset will return a non-nil error. |
| func (q *Plane) Reset() (err error) { |
| if len(q.Particles) == 0 { |
| q.root = tile{} |
| return nil |
| } |
| |
| q.root = tile{ |
| particle: q.Particles[0], |
| center: q.Particles[0].Coord2(), |
| mass: q.Particles[0].Mass(), |
| } |
| q.root.bounds.Min = q.root.center |
| q.root.bounds.Max = q.root.center |
| for _, e := range q.Particles[1:] { |
| c := e.Coord2() |
| if c.X < q.root.bounds.Min.X { |
| q.root.bounds.Min.X = c.X |
| } |
| if c.X > q.root.bounds.Max.X { |
| q.root.bounds.Max.X = c.X |
| } |
| if c.Y < q.root.bounds.Min.Y { |
| q.root.bounds.Min.Y = c.Y |
| } |
| if c.Y > q.root.bounds.Max.Y { |
| q.root.bounds.Max.Y = c.Y |
| } |
| } |
| |
| defer func() { |
| switch r := recover(); r { |
| case nil: |
| case planeTooBig: |
| err = planeTooBig |
| default: |
| panic(r) |
| } |
| }() |
| |
| // TODO(kortschak): Partially parallelise this by |
| // choosing the direction and using one of four |
| // goroutines to work on each root quadrant. |
| for _, e := range q.Particles[1:] { |
| q.root.insert(e) |
| } |
| q.root.summarize() |
| return nil |
| } |
| |
| var planeTooBig = errors.New("barneshut: plane too big") |
| |
| // ForceOn returns a force vector on p given p's mass and the force function, f, |
| // using the Barnes-Hut theta approximation parameter. |
| // |
| // Calls to f will include p in the p1 position and a non-nil p2 if the force |
| // interaction is with a non-aggregate mass center, otherwise p2 will be nil. |
| // |
| // It is safe to call ForceOn concurrently. |
| func (q *Plane) ForceOn(p Particle2, theta float64, f Force2) (force r2.Vec) { |
| var empty tile |
| if theta > 0 && q.root != empty { |
| return q.root.forceOn(p, p.Coord2(), p.Mass(), theta, f) |
| } |
| |
| // For the degenerate case, just iterate over the |
| // slice of particles rather than walking the tree. |
| var v r2.Vec |
| m := p.Mass() |
| pv := p.Coord2() |
| for _, e := range q.Particles { |
| v = r2.Add(v, f(p, e, m, e.Mass(), r2.Sub(e.Coord2(), pv))) |
| } |
| return v |
| } |
| |
| // tile is a quad tree quadrant with Barnes-Hut extensions. |
| type tile struct { |
| particle Particle2 |
| |
| bounds r2.Box |
| |
| nodes [4]*tile |
| |
| center r2.Vec |
| mass float64 |
| } |
| |
| // insert inserts p into the subtree rooted at t. |
| func (t *tile) insert(p Particle2) { |
| if t.particle == nil { |
| for _, q := range t.nodes { |
| if q != nil { |
| t.passDown(p) |
| return |
| } |
| } |
| t.particle = p |
| t.center = p.Coord2() |
| t.mass = p.Mass() |
| return |
| } |
| t.passDown(p) |
| t.passDown(t.particle) |
| t.particle = nil |
| t.center = r2.Vec{} |
| t.mass = 0 |
| } |
| |
| func (t *tile) passDown(p Particle2) { |
| dir := quadrantOf(t.bounds, p) |
| if t.nodes[dir] == nil { |
| t.nodes[dir] = &tile{bounds: splitPlane(t.bounds, dir)} |
| } |
| t.nodes[dir].insert(p) |
| } |
| |
| const ( |
| ne = iota |
| se |
| sw |
| nw |
| ) |
| |
| // quadrantOf returns which quadrant of b that p should be placed in. |
| func quadrantOf(b r2.Box, p Particle2) int { |
| center := r2.Vec{ |
| X: (b.Min.X + b.Max.X) / 2, |
| Y: (b.Min.Y + b.Max.Y) / 2, |
| } |
| c := p.Coord2() |
| if checkBounds && (c.X < b.Min.X || b.Max.X < c.X || c.Y < b.Min.Y || b.Max.Y < c.Y) { |
| panic(fmt.Sprintf("p out of range %+v: %#v", b, p)) |
| } |
| if c.X < center.X { |
| if c.Y < center.Y { |
| return nw |
| } else { |
| return sw |
| } |
| } else { |
| if c.Y < center.Y { |
| return ne |
| } else { |
| return se |
| } |
| } |
| } |
| |
| // splitPlane returns a quadrant subdivision of b in the given direction. |
| func splitPlane(b r2.Box, dir int) r2.Box { |
| old := b |
| halfX := (b.Max.X - b.Min.X) / 2 |
| halfY := (b.Max.Y - b.Min.Y) / 2 |
| switch dir { |
| case ne: |
| b.Min.X += halfX |
| b.Max.Y -= halfY |
| case se: |
| b.Min.X += halfX |
| b.Min.Y += halfY |
| case sw: |
| b.Max.X -= halfX |
| b.Min.Y += halfY |
| case nw: |
| b.Max.X -= halfX |
| b.Max.Y -= halfY |
| } |
| if b == old { |
| panic(planeTooBig) |
| } |
| return b |
| } |
| |
| // summarize updates node masses and centers of mass. |
| func (t *tile) summarize() (center r2.Vec, mass float64) { |
| for _, d := range &t.nodes { |
| if d == nil { |
| continue |
| } |
| c, m := d.summarize() |
| t.center.X += c.X * m |
| t.center.Y += c.Y * m |
| t.mass += m |
| } |
| t.center.X /= t.mass |
| t.center.Y /= t.mass |
| return t.center, t.mass |
| } |
| |
| // forceOn returns a force vector on p given p's mass m and the force |
| // calculation function, using the Barnes-Hut theta approximation parameter. |
| func (t *tile) forceOn(p Particle2, pt r2.Vec, m, theta float64, f Force2) (vector r2.Vec) { |
| s := ((t.bounds.Max.X - t.bounds.Min.X) + (t.bounds.Max.Y - t.bounds.Min.Y)) / 2 |
| d := math.Hypot(pt.X-t.center.X, pt.Y-t.center.Y) |
| if s/d < theta || t.particle != nil { |
| return f(p, t.particle, m, t.mass, r2.Sub(t.center, pt)) |
| } |
| |
| var v r2.Vec |
| for _, d := range &t.nodes { |
| if d == nil { |
| continue |
| } |
| v = r2.Add(v, d.forceOn(p, pt, m, theta, f)) |
| } |
| return v |
| } |