| // Copyright ©2013 The Gonum Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package mat |
| |
| import ( |
| "math" |
| |
| "gonum.org/v1/gonum/blas" |
| "gonum.org/v1/gonum/blas/blas64" |
| "gonum.org/v1/gonum/lapack" |
| "gonum.org/v1/gonum/lapack/lapack64" |
| ) |
| |
| const badQR = "mat: invalid QR factorization" |
| |
| // QR is a type for creating and using the QR factorization of a matrix. |
| type QR struct { |
| qr *Dense |
| tau []float64 |
| cond float64 |
| } |
| |
| func (qr *QR) updateCond(norm lapack.MatrixNorm) { |
| // Since A = Q*R, and Q is orthogonal, we get for the condition number κ |
| // κ(A) := |A| |A^-1| = |Q*R| |(Q*R)^-1| = |R| |R^-1 * Qᵀ| |
| // = |R| |R^-1| = κ(R), |
| // where we used that fact that Q^-1 = Qᵀ. However, this assumes that |
| // the matrix norm is invariant under orthogonal transformations which |
| // is not the case for CondNorm. Hopefully the error is negligible: κ |
| // is only a qualitative measure anyway. |
| n := qr.qr.mat.Cols |
| work := getFloats(3*n, false) |
| iwork := getInts(n, false) |
| r := qr.qr.asTriDense(n, blas.NonUnit, blas.Upper) |
| v := lapack64.Trcon(norm, r.mat, work, iwork) |
| putFloats(work) |
| putInts(iwork) |
| qr.cond = 1 / v |
| } |
| |
| // Factorize computes the QR factorization of an m×n matrix a where m >= n. The QR |
| // factorization always exists even if A is singular. |
| // |
| // The QR decomposition is a factorization of the matrix A such that A = Q * R. |
| // The matrix Q is an orthonormal m×m matrix, and R is an m×n upper triangular matrix. |
| // Q and R can be extracted using the QTo and RTo methods. |
| func (qr *QR) Factorize(a Matrix) { |
| qr.factorize(a, CondNorm) |
| } |
| |
| func (qr *QR) factorize(a Matrix, norm lapack.MatrixNorm) { |
| m, n := a.Dims() |
| if m < n { |
| panic(ErrShape) |
| } |
| k := min(m, n) |
| if qr.qr == nil { |
| qr.qr = &Dense{} |
| } |
| qr.qr.CloneFrom(a) |
| work := []float64{0} |
| qr.tau = make([]float64, k) |
| lapack64.Geqrf(qr.qr.mat, qr.tau, work, -1) |
| work = getFloats(int(work[0]), false) |
| lapack64.Geqrf(qr.qr.mat, qr.tau, work, len(work)) |
| putFloats(work) |
| qr.updateCond(norm) |
| } |
| |
| // isValid returns whether the receiver contains a factorization. |
| func (qr *QR) isValid() bool { |
| return qr.qr != nil && !qr.qr.IsEmpty() |
| } |
| |
| // Cond returns the condition number for the factorized matrix. |
| // Cond will panic if the receiver does not contain a factorization. |
| func (qr *QR) Cond() float64 { |
| if !qr.isValid() { |
| panic(badQR) |
| } |
| return qr.cond |
| } |
| |
| // TODO(btracey): Add in the "Reduced" forms for extracting the n×n orthogonal |
| // and upper triangular matrices. |
| |
| // RTo extracts the m×n upper trapezoidal matrix from a QR decomposition. |
| // |
| // If dst is empty, RTo will resize dst to be r×c. When dst is non-empty, |
| // RTo will panic if dst is not r×c. RTo will also panic if the receiver |
| // does not contain a successful factorization. |
| func (qr *QR) RTo(dst *Dense) { |
| if !qr.isValid() { |
| panic(badQR) |
| } |
| |
| r, c := qr.qr.Dims() |
| if dst.IsEmpty() { |
| dst.ReuseAs(r, c) |
| } else { |
| r2, c2 := dst.Dims() |
| if c != r2 || c != c2 { |
| panic(ErrShape) |
| } |
| } |
| |
| // Disguise the QR as an upper triangular |
| t := &TriDense{ |
| mat: blas64.Triangular{ |
| N: c, |
| Stride: qr.qr.mat.Stride, |
| Data: qr.qr.mat.Data, |
| Uplo: blas.Upper, |
| Diag: blas.NonUnit, |
| }, |
| cap: qr.qr.capCols, |
| } |
| dst.Copy(t) |
| |
| // Zero below the triangular. |
| for i := r; i < c; i++ { |
| zero(dst.mat.Data[i*dst.mat.Stride : i*dst.mat.Stride+c]) |
| } |
| } |
| |
| // QTo extracts the r×r orthonormal matrix Q from a QR decomposition. |
| // |
| // If dst is empty, QTo will resize dst to be r×r. When dst is non-empty, |
| // QTo will panic if dst is not r×r. QTo will also panic if the receiver |
| // does not contain a successful factorization. |
| func (qr *QR) QTo(dst *Dense) { |
| if !qr.isValid() { |
| panic(badQR) |
| } |
| |
| r, _ := qr.qr.Dims() |
| if dst.IsEmpty() { |
| dst.ReuseAs(r, r) |
| } else { |
| r2, c2 := dst.Dims() |
| if r != r2 || r != c2 { |
| panic(ErrShape) |
| } |
| dst.Zero() |
| } |
| |
| // Set Q = I. |
| for i := 0; i < r*r; i += r + 1 { |
| dst.mat.Data[i] = 1 |
| } |
| |
| // Construct Q from the elementary reflectors. |
| work := []float64{0} |
| lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, -1) |
| work = getFloats(int(work[0]), false) |
| lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, len(work)) |
| putFloats(work) |
| } |
| |
| // SolveTo finds a minimum-norm solution to a system of linear equations defined |
| // by the matrices A and b, where A is an m×n matrix represented in its QR factorized |
| // form. If A is singular or near-singular a Condition error is returned. |
| // See the documentation for Condition for more information. |
| // |
| // The minimization problem solved depends on the input parameters. |
| // If trans == false, find X such that ||A*X - B||_2 is minimized. |
| // If trans == true, find the minimum norm solution of Aᵀ * X = B. |
| // The solution matrix, X, is stored in place into dst. |
| // SolveTo will panic if the receiver does not contain a factorization. |
| func (qr *QR) SolveTo(dst *Dense, trans bool, b Matrix) error { |
| if !qr.isValid() { |
| panic(badQR) |
| } |
| |
| r, c := qr.qr.Dims() |
| br, bc := b.Dims() |
| |
| // The QR solve algorithm stores the result in-place into the right hand side. |
| // The storage for the answer must be large enough to hold both b and x. |
| // However, this method's receiver must be the size of x. Copy b, and then |
| // copy the result into m at the end. |
| if trans { |
| if c != br { |
| panic(ErrShape) |
| } |
| dst.reuseAsNonZeroed(r, bc) |
| } else { |
| if r != br { |
| panic(ErrShape) |
| } |
| dst.reuseAsNonZeroed(c, bc) |
| } |
| // Do not need to worry about overlap between m and b because x has its own |
| // independent storage. |
| w := getWorkspace(max(r, c), bc, false) |
| w.Copy(b) |
| t := qr.qr.asTriDense(qr.qr.mat.Cols, blas.NonUnit, blas.Upper).mat |
| if trans { |
| ok := lapack64.Trtrs(blas.Trans, t, w.mat) |
| if !ok { |
| return Condition(math.Inf(1)) |
| } |
| for i := c; i < r; i++ { |
| zero(w.mat.Data[i*w.mat.Stride : i*w.mat.Stride+bc]) |
| } |
| work := []float64{0} |
| lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, w.mat, work, -1) |
| work = getFloats(int(work[0]), false) |
| lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, w.mat, work, len(work)) |
| putFloats(work) |
| } else { |
| work := []float64{0} |
| lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, w.mat, work, -1) |
| work = getFloats(int(work[0]), false) |
| lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, w.mat, work, len(work)) |
| putFloats(work) |
| |
| ok := lapack64.Trtrs(blas.NoTrans, t, w.mat) |
| if !ok { |
| return Condition(math.Inf(1)) |
| } |
| } |
| // X was set above to be the correct size for the result. |
| dst.Copy(w) |
| putWorkspace(w) |
| if qr.cond > ConditionTolerance { |
| return Condition(qr.cond) |
| } |
| return nil |
| } |
| |
| // SolveVecTo finds a minimum-norm solution to a system of linear equations, |
| // Ax = b. |
| // See QR.SolveTo for the full documentation. |
| // SolveVecTo will panic if the receiver does not contain a factorization. |
| func (qr *QR) SolveVecTo(dst *VecDense, trans bool, b Vector) error { |
| if !qr.isValid() { |
| panic(badQR) |
| } |
| |
| r, c := qr.qr.Dims() |
| if _, bc := b.Dims(); bc != 1 { |
| panic(ErrShape) |
| } |
| |
| // The Solve implementation is non-trivial, so rather than duplicate the code, |
| // instead recast the VecDenses as Dense and call the matrix code. |
| bm := Matrix(b) |
| if rv, ok := b.(RawVectorer); ok { |
| bmat := rv.RawVector() |
| if dst != b { |
| dst.checkOverlap(bmat) |
| } |
| b := VecDense{mat: bmat} |
| bm = b.asDense() |
| } |
| if trans { |
| dst.reuseAsNonZeroed(r) |
| } else { |
| dst.reuseAsNonZeroed(c) |
| } |
| return qr.SolveTo(dst.asDense(), trans, bm) |
| |
| } |