| // Copyright ©2013 The Gonum Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package mat |
| |
| import ( |
| "math" |
| |
| "gonum.org/v1/gonum/blas" |
| "gonum.org/v1/gonum/blas/blas64" |
| "gonum.org/v1/gonum/lapack" |
| "gonum.org/v1/gonum/lapack/lapack64" |
| ) |
| |
| const badLQ = "mat: invalid LQ factorization" |
| |
| // LQ is a type for creating and using the LQ factorization of a matrix. |
| type LQ struct { |
| lq *Dense |
| tau []float64 |
| cond float64 |
| } |
| |
| func (lq *LQ) updateCond(norm lapack.MatrixNorm) { |
| // Since A = L*Q, and Q is orthogonal, we get for the condition number κ |
| // κ(A) := |A| |A^-1| = |L*Q| |(L*Q)^-1| = |L| |Qᵀ * L^-1| |
| // = |L| |L^-1| = κ(L), |
| // where we used that fact that Q^-1 = Qᵀ. However, this assumes that |
| // the matrix norm is invariant under orthogonal transformations which |
| // is not the case for CondNorm. Hopefully the error is negligible: κ |
| // is only a qualitative measure anyway. |
| m := lq.lq.mat.Rows |
| work := getFloats(3*m, false) |
| iwork := getInts(m, false) |
| l := lq.lq.asTriDense(m, blas.NonUnit, blas.Lower) |
| v := lapack64.Trcon(norm, l.mat, work, iwork) |
| lq.cond = 1 / v |
| putFloats(work) |
| putInts(iwork) |
| } |
| |
| // Factorize computes the LQ factorization of an m×n matrix a where m <= n. The LQ |
| // factorization always exists even if A is singular. |
| // |
| // The LQ decomposition is a factorization of the matrix A such that A = L * Q. |
| // The matrix Q is an orthonormal n×n matrix, and L is an m×n lower triangular matrix. |
| // L and Q can be extracted using the LTo and QTo methods. |
| func (lq *LQ) Factorize(a Matrix) { |
| lq.factorize(a, CondNorm) |
| } |
| |
| func (lq *LQ) factorize(a Matrix, norm lapack.MatrixNorm) { |
| m, n := a.Dims() |
| if m > n { |
| panic(ErrShape) |
| } |
| k := min(m, n) |
| if lq.lq == nil { |
| lq.lq = &Dense{} |
| } |
| lq.lq.CloneFrom(a) |
| work := []float64{0} |
| lq.tau = make([]float64, k) |
| lapack64.Gelqf(lq.lq.mat, lq.tau, work, -1) |
| work = getFloats(int(work[0]), false) |
| lapack64.Gelqf(lq.lq.mat, lq.tau, work, len(work)) |
| putFloats(work) |
| lq.updateCond(norm) |
| } |
| |
| // isValid returns whether the receiver contains a factorization. |
| func (lq *LQ) isValid() bool { |
| return lq.lq != nil && !lq.lq.IsEmpty() |
| } |
| |
| // Cond returns the condition number for the factorized matrix. |
| // Cond will panic if the receiver does not contain a factorization. |
| func (lq *LQ) Cond() float64 { |
| if !lq.isValid() { |
| panic(badLQ) |
| } |
| return lq.cond |
| } |
| |
| // TODO(btracey): Add in the "Reduced" forms for extracting the m×m orthogonal |
| // and upper triangular matrices. |
| |
| // LTo extracts the m×n lower trapezoidal matrix from a LQ decomposition. |
| // |
| // If dst is empty, LTo will resize dst to be r×c. When dst is |
| // non-empty, LTo will panic if dst is not r×c. LTo will also panic |
| // if the receiver does not contain a successful factorization. |
| func (lq *LQ) LTo(dst *Dense) { |
| if !lq.isValid() { |
| panic(badLQ) |
| } |
| |
| r, c := lq.lq.Dims() |
| if dst.IsEmpty() { |
| dst.ReuseAs(r, c) |
| } else { |
| r2, c2 := dst.Dims() |
| if r != r2 || c != c2 { |
| panic(ErrShape) |
| } |
| } |
| |
| // Disguise the LQ as a lower triangular. |
| t := &TriDense{ |
| mat: blas64.Triangular{ |
| N: r, |
| Stride: lq.lq.mat.Stride, |
| Data: lq.lq.mat.Data, |
| Uplo: blas.Lower, |
| Diag: blas.NonUnit, |
| }, |
| cap: lq.lq.capCols, |
| } |
| dst.Copy(t) |
| |
| if r == c { |
| return |
| } |
| // Zero right of the triangular. |
| for i := 0; i < r; i++ { |
| zero(dst.mat.Data[i*dst.mat.Stride+r : i*dst.mat.Stride+c]) |
| } |
| } |
| |
| // QTo extracts the n×n orthonormal matrix Q from an LQ decomposition. |
| // |
| // If dst is empty, QTo will resize dst to be c×c. When dst is |
| // non-empty, QTo will panic if dst is not c×c. QTo will also panic |
| // if the receiver does not contain a successful factorization. |
| func (lq *LQ) QTo(dst *Dense) { |
| if !lq.isValid() { |
| panic(badLQ) |
| } |
| |
| _, c := lq.lq.Dims() |
| if dst.IsEmpty() { |
| dst.ReuseAs(c, c) |
| } else { |
| r2, c2 := dst.Dims() |
| if c != r2 || c != c2 { |
| panic(ErrShape) |
| } |
| dst.Zero() |
| } |
| q := dst.mat |
| |
| // Set Q = I. |
| ldq := q.Stride |
| for i := 0; i < c; i++ { |
| q.Data[i*ldq+i] = 1 |
| } |
| |
| // Construct Q from the elementary reflectors. |
| work := []float64{0} |
| lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, -1) |
| work = getFloats(int(work[0]), false) |
| lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, len(work)) |
| putFloats(work) |
| } |
| |
| // SolveTo finds a minimum-norm solution to a system of linear equations defined |
| // by the matrices A and b, where A is an m×n matrix represented in its LQ factorized |
| // form. If A is singular or near-singular a Condition error is returned. |
| // See the documentation for Condition for more information. |
| // |
| // The minimization problem solved depends on the input parameters. |
| // If trans == false, find the minimum norm solution of A * X = B. |
| // If trans == true, find X such that ||A*X - B||_2 is minimized. |
| // The solution matrix, X, is stored in place into dst. |
| // SolveTo will panic if the receiver does not contain a factorization. |
| func (lq *LQ) SolveTo(dst *Dense, trans bool, b Matrix) error { |
| if !lq.isValid() { |
| panic(badLQ) |
| } |
| |
| r, c := lq.lq.Dims() |
| br, bc := b.Dims() |
| |
| // The LQ solve algorithm stores the result in-place into the right hand side. |
| // The storage for the answer must be large enough to hold both b and x. |
| // However, this method's receiver must be the size of x. Copy b, and then |
| // copy the result into x at the end. |
| if trans { |
| if c != br { |
| panic(ErrShape) |
| } |
| dst.reuseAsNonZeroed(r, bc) |
| } else { |
| if r != br { |
| panic(ErrShape) |
| } |
| dst.reuseAsNonZeroed(c, bc) |
| } |
| // Do not need to worry about overlap between x and b because w has its own |
| // independent storage. |
| w := getWorkspace(max(r, c), bc, false) |
| w.Copy(b) |
| t := lq.lq.asTriDense(lq.lq.mat.Rows, blas.NonUnit, blas.Lower).mat |
| if trans { |
| work := []float64{0} |
| lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, w.mat, work, -1) |
| work = getFloats(int(work[0]), false) |
| lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, w.mat, work, len(work)) |
| putFloats(work) |
| |
| ok := lapack64.Trtrs(blas.Trans, t, w.mat) |
| if !ok { |
| return Condition(math.Inf(1)) |
| } |
| } else { |
| ok := lapack64.Trtrs(blas.NoTrans, t, w.mat) |
| if !ok { |
| return Condition(math.Inf(1)) |
| } |
| for i := r; i < c; i++ { |
| zero(w.mat.Data[i*w.mat.Stride : i*w.mat.Stride+bc]) |
| } |
| work := []float64{0} |
| lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, w.mat, work, -1) |
| work = getFloats(int(work[0]), false) |
| lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, w.mat, work, len(work)) |
| putFloats(work) |
| } |
| // x was set above to be the correct size for the result. |
| dst.Copy(w) |
| putWorkspace(w) |
| if lq.cond > ConditionTolerance { |
| return Condition(lq.cond) |
| } |
| return nil |
| } |
| |
| // SolveVecTo finds a minimum-norm solution to a system of linear equations. |
| // See LQ.SolveTo for the full documentation. |
| // SolveToVec will panic if the receiver does not contain a factorization. |
| func (lq *LQ) SolveVecTo(dst *VecDense, trans bool, b Vector) error { |
| if !lq.isValid() { |
| panic(badLQ) |
| } |
| |
| r, c := lq.lq.Dims() |
| if _, bc := b.Dims(); bc != 1 { |
| panic(ErrShape) |
| } |
| |
| // The Solve implementation is non-trivial, so rather than duplicate the code, |
| // instead recast the VecDenses as Dense and call the matrix code. |
| bm := Matrix(b) |
| if rv, ok := b.(RawVectorer); ok { |
| bmat := rv.RawVector() |
| if dst != b { |
| dst.checkOverlap(bmat) |
| } |
| b := VecDense{mat: bmat} |
| bm = b.asDense() |
| } |
| if trans { |
| dst.reuseAsNonZeroed(r) |
| } else { |
| dst.reuseAsNonZeroed(c) |
| } |
| return lq.SolveTo(dst.asDense(), trans, bm) |
| } |