| // Copyright ©2013 The Gonum Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package mat |
| |
| import ( |
| "math" |
| "math/cmplx" |
| |
| "gonum.org/v1/gonum/blas/cblas128" |
| "gonum.org/v1/gonum/floats/scalar" |
| ) |
| |
| // CMatrix is the basic matrix interface type for complex matrices. |
| type CMatrix interface { |
| // Dims returns the dimensions of a Matrix. |
| Dims() (r, c int) |
| |
| // At returns the value of a matrix element at row i, column j. |
| // It will panic if i or j are out of bounds for the matrix. |
| At(i, j int) complex128 |
| |
| // H returns the conjugate transpose of the Matrix. Whether H |
| // returns a copy of the underlying data is implementation dependent. |
| // This method may be implemented using the Conjugate type, which |
| // provides an implicit matrix conjugate transpose. |
| H() CMatrix |
| } |
| |
| // A RawCMatrixer can return a cblas128.General representation of the receiver. Changes to the cblas128.General.Data |
| // slice will be reflected in the original matrix, changes to the Rows, Cols and Stride fields will not. |
| type RawCMatrixer interface { |
| RawCMatrix() cblas128.General |
| } |
| |
| var ( |
| _ CMatrix = Conjugate{} |
| _ Unconjugator = Conjugate{} |
| ) |
| |
| // Conjugate is a type for performing an implicit matrix conjugate transpose. |
| // It implements the Matrix interface, returning values from the conjugate |
| // transpose of the matrix within. |
| type Conjugate struct { |
| CMatrix CMatrix |
| } |
| |
| // At returns the value of the element at row i and column j of the conjugate |
| // transposed matrix, that is, row j and column i of the Matrix field. |
| func (t Conjugate) At(i, j int) complex128 { |
| z := t.CMatrix.At(j, i) |
| return cmplx.Conj(z) |
| } |
| |
| // Dims returns the dimensions of the transposed matrix. The number of rows returned |
| // is the number of columns in the Matrix field, and the number of columns is |
| // the number of rows in the Matrix field. |
| func (t Conjugate) Dims() (r, c int) { |
| c, r = t.CMatrix.Dims() |
| return r, c |
| } |
| |
| // H performs an implicit conjugate transpose by returning the Matrix field. |
| func (t Conjugate) H() CMatrix { |
| return t.CMatrix |
| } |
| |
| // Unconjugate returns the Matrix field. |
| func (t Conjugate) Unconjugate() CMatrix { |
| return t.CMatrix |
| } |
| |
| // Unconjugator is a type that can undo an implicit conjugate transpose. |
| type Unconjugator interface { |
| // Note: This interface is needed to unify all of the Conjugate types. In |
| // the cmat128 methods, we need to test if the Matrix has been implicitly |
| // transposed. If this is checked by testing for the specific Conjugate type |
| // then the behavior will be different if the user uses H() or HTri() for a |
| // triangular matrix. |
| |
| // Unconjugate returns the underlying Matrix stored for the implicit |
| // conjugate transpose. |
| Unconjugate() CMatrix |
| } |
| |
| // useC returns a complex128 slice with l elements, using c if it |
| // has the necessary capacity, otherwise creating a new slice. |
| func useC(c []complex128, l int) []complex128 { |
| if l <= cap(c) { |
| return c[:l] |
| } |
| return make([]complex128, l) |
| } |
| |
| // useZeroedC returns a complex128 slice with l elements, using c if it |
| // has the necessary capacity, otherwise creating a new slice. The |
| // elements of the returned slice are guaranteed to be zero. |
| func useZeroedC(c []complex128, l int) []complex128 { |
| if l <= cap(c) { |
| c = c[:l] |
| zeroC(c) |
| return c |
| } |
| return make([]complex128, l) |
| } |
| |
| // zeroC zeros the given slice's elements. |
| func zeroC(c []complex128) { |
| for i := range c { |
| c[i] = 0 |
| } |
| } |
| |
| // unconjugate unconjugates a matrix if applicable. If a is an Unconjugator, then |
| // unconjugate returns the underlying matrix and true. If it is not, then it returns |
| // the input matrix and false. |
| func unconjugate(a CMatrix) (CMatrix, bool) { |
| if ut, ok := a.(Unconjugator); ok { |
| return ut.Unconjugate(), true |
| } |
| return a, false |
| } |
| |
| // CEqual returns whether the matrices a and b have the same size |
| // and are element-wise equal. |
| func CEqual(a, b CMatrix) bool { |
| ar, ac := a.Dims() |
| br, bc := b.Dims() |
| if ar != br || ac != bc { |
| return false |
| } |
| // TODO(btracey): Add in fast-paths. |
| for i := 0; i < ar; i++ { |
| for j := 0; j < ac; j++ { |
| if a.At(i, j) != b.At(i, j) { |
| return false |
| } |
| } |
| } |
| return true |
| } |
| |
| // CEqualApprox returns whether the matrices a and b have the same size and contain all equal |
| // elements with tolerance for element-wise equality specified by epsilon. Matrices |
| // with non-equal shapes are not equal. |
| func CEqualApprox(a, b CMatrix, epsilon float64) bool { |
| // TODO(btracey): |
| ar, ac := a.Dims() |
| br, bc := b.Dims() |
| if ar != br || ac != bc { |
| return false |
| } |
| for i := 0; i < ar; i++ { |
| for j := 0; j < ac; j++ { |
| if !cEqualWithinAbsOrRel(a.At(i, j), b.At(i, j), epsilon, epsilon) { |
| return false |
| } |
| } |
| } |
| return true |
| } |
| |
| // TODO(btracey): Move these into a cmplxs if/when we have one. |
| |
| func cEqualWithinAbsOrRel(a, b complex128, absTol, relTol float64) bool { |
| if cEqualWithinAbs(a, b, absTol) { |
| return true |
| } |
| return cEqualWithinRel(a, b, relTol) |
| } |
| |
| // cEqualWithinAbs returns true if a and b have an absolute |
| // difference of less than tol. |
| func cEqualWithinAbs(a, b complex128, tol float64) bool { |
| return a == b || cmplx.Abs(a-b) <= tol |
| } |
| |
| const minNormalFloat64 = 2.2250738585072014e-308 |
| |
| // cEqualWithinRel returns true if the difference between a and b |
| // is not greater than tol times the greater value. |
| func cEqualWithinRel(a, b complex128, tol float64) bool { |
| if a == b { |
| return true |
| } |
| if cmplx.IsNaN(a) || cmplx.IsNaN(b) { |
| return false |
| } |
| // Cannot play the same trick as in floats/scalar because there are multiple |
| // possible infinities. |
| if cmplx.IsInf(a) { |
| if !cmplx.IsInf(b) { |
| return false |
| } |
| ra := real(a) |
| if math.IsInf(ra, 0) { |
| if ra == real(b) { |
| return scalar.EqualWithinRel(imag(a), imag(b), tol) |
| } |
| return false |
| } |
| if imag(a) == imag(b) { |
| return scalar.EqualWithinRel(ra, real(b), tol) |
| } |
| return false |
| } |
| if cmplx.IsInf(b) { |
| return false |
| } |
| |
| delta := cmplx.Abs(a - b) |
| if delta <= minNormalFloat64 { |
| return delta <= tol*minNormalFloat64 |
| } |
| return delta/math.Max(cmplx.Abs(a), cmplx.Abs(b)) <= tol |
| } |