blob: 25c3e4d0bba6b6c9cae3d4f4f637a9c77a0adf0f [file] [log] [blame]
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package graph_test
import (
"fmt"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/iterator"
"gonum.org/v1/gonum/graph/simple"
"gonum.org/v1/gonum/graph/topo"
)
// GraphNode is a node in an implicit graph.
type GraphNode struct {
id int64
neighbors []graph.Node
roots []*GraphNode
}
// NewGraphNode returns a new GraphNode.
func NewGraphNode(id int64) *GraphNode {
return &GraphNode{id: id}
}
// Node allows GraphNode to satisfy the graph.Graph interface.
func (g *GraphNode) Node(id int64) graph.Node {
if id == g.id {
return g
}
seen := map[int64]struct{}{g.id: {}}
for _, root := range g.roots {
if root.ID() == id {
return root
}
if root.has(seen, id) {
return root
}
}
for _, n := range g.neighbors {
if n.ID() == id {
return n
}
if gn, ok := n.(*GraphNode); ok {
if gn.has(seen, id) {
return gn
}
}
}
return nil
}
func (g *GraphNode) has(seen map[int64]struct{}, id int64) bool {
for _, root := range g.roots {
if _, ok := seen[root.ID()]; ok {
continue
}
seen[root.ID()] = struct{}{}
if root.ID() == id {
return true
}
if root.has(seen, id) {
return true
}
}
for _, n := range g.neighbors {
if _, ok := seen[n.ID()]; ok {
continue
}
seen[n.ID()] = struct{}{}
if n.ID() == id {
return true
}
if gn, ok := n.(*GraphNode); ok {
if gn.has(seen, id) {
return true
}
}
}
return false
}
// Nodes allows GraphNode to satisfy the graph.Graph interface.
func (g *GraphNode) Nodes() graph.Nodes {
nodes := []graph.Node{g}
seen := map[int64]struct{}{g.id: {}}
for _, root := range g.roots {
nodes = append(nodes, root)
seen[root.ID()] = struct{}{}
nodes = root.nodes(nodes, seen)
}
for _, n := range g.neighbors {
nodes = append(nodes, n)
seen[n.ID()] = struct{}{}
if gn, ok := n.(*GraphNode); ok {
nodes = gn.nodes(nodes, seen)
}
}
return iterator.NewOrderedNodes(nodes)
}
func (g *GraphNode) nodes(dst []graph.Node, seen map[int64]struct{}) []graph.Node {
for _, root := range g.roots {
if _, ok := seen[root.ID()]; ok {
continue
}
seen[root.ID()] = struct{}{}
dst = append(dst, graph.Node(root))
dst = root.nodes(dst, seen)
}
for _, n := range g.neighbors {
if _, ok := seen[n.ID()]; ok {
continue
}
dst = append(dst, n)
if gn, ok := n.(*GraphNode); ok {
dst = gn.nodes(dst, seen)
}
}
return dst
}
// From allows GraphNode to satisfy the graph.Graph interface.
func (g *GraphNode) From(id int64) graph.Nodes {
if id == g.ID() {
return iterator.NewOrderedNodes(g.neighbors)
}
seen := map[int64]struct{}{g.id: {}}
for _, root := range g.roots {
seen[root.ID()] = struct{}{}
if result := root.findNeighbors(id, seen); result != nil {
return iterator.NewOrderedNodes(result)
}
}
for _, n := range g.neighbors {
seen[n.ID()] = struct{}{}
if gn, ok := n.(*GraphNode); ok {
if result := gn.findNeighbors(id, seen); result != nil {
return iterator.NewOrderedNodes(result)
}
}
}
return nil
}
func (g *GraphNode) findNeighbors(id int64, seen map[int64]struct{}) []graph.Node {
if id == g.ID() {
return g.neighbors
}
for _, root := range g.roots {
if _, ok := seen[root.ID()]; ok {
continue
}
seen[root.ID()] = struct{}{}
if result := root.findNeighbors(id, seen); result != nil {
return result
}
}
for _, n := range g.neighbors {
if _, ok := seen[n.ID()]; ok {
continue
}
seen[n.ID()] = struct{}{}
if gn, ok := n.(*GraphNode); ok {
if result := gn.findNeighbors(id, seen); result != nil {
return result
}
}
}
return nil
}
// HasEdgeBetween allows GraphNode to satisfy the graph.Graph interface.
func (g *GraphNode) HasEdgeBetween(uid, vid int64) bool {
return g.EdgeBetween(uid, vid) != nil
}
// Edge allows GraphNode to satisfy the graph.Graph interface.
func (g *GraphNode) Edge(uid, vid int64) graph.Edge {
return g.EdgeBetween(uid, vid)
}
// EdgeBetween allows GraphNode to satisfy the graph.Graph interface.
func (g *GraphNode) EdgeBetween(uid, vid int64) graph.Edge {
if uid == g.id || vid == g.id {
for _, n := range g.neighbors {
if n.ID() == uid || n.ID() == vid {
return simple.Edge{F: g, T: n}
}
}
return nil
}
seen := map[int64]struct{}{g.id: {}}
for _, root := range g.roots {
seen[root.ID()] = struct{}{}
if result := root.edgeBetween(uid, vid, seen); result != nil {
return result
}
}
for _, n := range g.neighbors {
seen[n.ID()] = struct{}{}
if gn, ok := n.(*GraphNode); ok {
if result := gn.edgeBetween(uid, vid, seen); result != nil {
return result
}
}
}
return nil
}
func (g *GraphNode) edgeBetween(uid, vid int64, seen map[int64]struct{}) graph.Edge {
if uid == g.id || vid == g.id {
for _, n := range g.neighbors {
if n.ID() == uid || n.ID() == vid {
return simple.Edge{F: g, T: n}
}
}
return nil
}
for _, root := range g.roots {
if _, ok := seen[root.ID()]; ok {
continue
}
seen[root.ID()] = struct{}{}
if result := root.edgeBetween(uid, vid, seen); result != nil {
return result
}
}
for _, n := range g.neighbors {
if _, ok := seen[n.ID()]; ok {
continue
}
seen[n.ID()] = struct{}{}
if gn, ok := n.(*GraphNode); ok {
if result := gn.edgeBetween(uid, vid, seen); result != nil {
return result
}
}
}
return nil
}
// ID allows GraphNode to satisfy the graph.Node interface.
func (g *GraphNode) ID() int64 {
return g.id
}
// AddMeighbor adds an edge between g and n.
func (g *GraphNode) AddNeighbor(n *GraphNode) {
g.neighbors = append(g.neighbors, graph.Node(n))
}
// AddRoot adds provides an entrance into the graph g from n.
func (g *GraphNode) AddRoot(n *GraphNode) {
g.roots = append(g.roots, n)
}
func Example_implicit() {
// This example shows the construction of the following graph
// using the implicit graph type above.
//
// The visual representation of the graph can be seen at
// https://graphviz.gitlab.io/_pages/Gallery/undirected/fdpclust.html
//
// graph G {
// e
// subgraph clusterA {
// a -- b
// subgraph clusterC {
// C -- D
// }
// }
// subgraph clusterB {
// d -- f
// }
// d -- D
// e -- clusterB
// clusterC -- clusterB
// }
// graph G {
G := NewGraphNode(0)
// e
e := NewGraphNode(1)
// subgraph clusterA {
clusterA := NewGraphNode(2)
// a -- b
a := NewGraphNode(3)
b := NewGraphNode(4)
a.AddNeighbor(b)
b.AddNeighbor(a)
clusterA.AddRoot(a)
clusterA.AddRoot(b)
// subgraph clusterC {
clusterC := NewGraphNode(5)
// C -- D
C := NewGraphNode(6)
D := NewGraphNode(7)
C.AddNeighbor(D)
D.AddNeighbor(C)
clusterC.AddRoot(C)
clusterC.AddRoot(D)
// }
clusterA.AddRoot(clusterC)
// }
// subgraph clusterB {
clusterB := NewGraphNode(8)
// d -- f
d := NewGraphNode(9)
f := NewGraphNode(10)
d.AddNeighbor(f)
f.AddNeighbor(d)
clusterB.AddRoot(d)
clusterB.AddRoot(f)
// }
// d -- D
d.AddNeighbor(D)
D.AddNeighbor(d)
// e -- clusterB
e.AddNeighbor(clusterB)
clusterB.AddNeighbor(e)
// clusterC -- clusterB
clusterC.AddNeighbor(clusterB)
clusterB.AddNeighbor(clusterC)
G.AddRoot(e)
G.AddRoot(clusterA)
G.AddRoot(clusterB)
// }
if topo.IsPathIn(G, []graph.Node{C, D, d, f}) {
fmt.Println("C--D--d--f is a path in G.")
}
// Output:
//
// C--D--d--f is a path in G.
}