| /* |
| * Elliptic curve DSA |
| * |
| * Copyright The Mbed TLS Contributors |
| * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later |
| * |
| * This file is provided under the Apache License 2.0, or the |
| * GNU General Public License v2.0 or later. |
| * |
| * ********** |
| * Apache License 2.0: |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); you may |
| * not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| * ********** |
| * |
| * ********** |
| * GNU General Public License v2.0 or later: |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * ********** |
| */ |
| |
| /* |
| * References: |
| * |
| * SEC1 http://www.secg.org/index.php?action=secg,docs_secg |
| */ |
| |
| #if !defined(MBEDTLS_CONFIG_FILE) |
| #include "mbedtls/config.h" |
| #else |
| #include MBEDTLS_CONFIG_FILE |
| #endif |
| |
| #if defined(MBEDTLS_ECDSA_C) |
| |
| #include "mbedtls/ecdsa.h" |
| #include "mbedtls/asn1write.h" |
| |
| #include <string.h> |
| |
| #if defined(MBEDTLS_ECDSA_DETERMINISTIC) |
| #include "mbedtls/hmac_drbg.h" |
| #endif |
| |
| /* |
| * Derive a suitable integer for group grp from a buffer of length len |
| * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3 |
| */ |
| static int derive_mpi( const mbedtls_ecp_group *grp, mbedtls_mpi *x, |
| const unsigned char *buf, size_t blen ) |
| { |
| int ret; |
| size_t n_size = ( grp->nbits + 7 ) / 8; |
| size_t use_size = blen > n_size ? n_size : blen; |
| |
| MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( x, buf, use_size ) ); |
| if( use_size * 8 > grp->nbits ) |
| MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( x, use_size * 8 - grp->nbits ) ); |
| |
| /* While at it, reduce modulo N */ |
| if( mbedtls_mpi_cmp_mpi( x, &grp->N ) >= 0 ) |
| MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( x, x, &grp->N ) ); |
| |
| cleanup: |
| return( ret ); |
| } |
| |
| #if !defined(MBEDTLS_ECDSA_SIGN_ALT) |
| /* |
| * Compute ECDSA signature of a hashed message (SEC1 4.1.3) |
| * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message) |
| */ |
| static int ecdsa_sign_internal( mbedtls_ecp_group *grp, mbedtls_mpi *r, |
| mbedtls_mpi *s, const mbedtls_mpi *d, |
| const unsigned char *buf, size_t blen, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng, |
| int (*f_rng_blind)(void *, unsigned char *, |
| size_t), |
| void *p_rng_blind ) |
| { |
| int ret, key_tries, sign_tries, blind_tries; |
| mbedtls_ecp_point R; |
| mbedtls_mpi k, e, t; |
| |
| /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */ |
| if( grp->N.p == NULL ) |
| return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); |
| |
| /* Make sure d is in range 1..n-1 */ |
| if( mbedtls_mpi_cmp_int( d, 1 ) < 0 || mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 ) |
| return( MBEDTLS_ERR_ECP_INVALID_KEY ); |
| |
| mbedtls_ecp_point_init( &R ); |
| mbedtls_mpi_init( &k ); mbedtls_mpi_init( &e ); mbedtls_mpi_init( &t ); |
| |
| sign_tries = 0; |
| do |
| { |
| /* |
| * Steps 1-3: generate a suitable ephemeral keypair |
| * and set r = xR mod n |
| */ |
| key_tries = 0; |
| do |
| { |
| MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, &k, f_rng, p_rng ) ); |
| |
| MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, &R, &k, &grp->G, |
| f_rng_blind, p_rng_blind ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( r, &R.X, &grp->N ) ); |
| |
| if( key_tries++ > 10 ) |
| { |
| ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; |
| goto cleanup; |
| } |
| } |
| while( mbedtls_mpi_cmp_int( r, 0 ) == 0 ); |
| |
| /* |
| * Step 5: derive MPI from hashed message |
| */ |
| MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); |
| |
| /* |
| * Generate a random value to blind inv_mod in next step, |
| * avoiding a potential timing leak. |
| * |
| * This loop does the same job as mbedtls_ecp_gen_privkey() and it is |
| * replaced by a call to it in the mainline. This change is not |
| * necessary to backport the fix separating the blinding and ephemeral |
| * key generating RNGs, therefore the original code is kept. |
| */ |
| blind_tries = 0; |
| do |
| { |
| size_t n_size = ( grp->nbits + 7 ) / 8; |
| MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &t, n_size, f_rng_blind, |
| p_rng_blind ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &t, 8 * n_size - grp->nbits ) ); |
| |
| if( ++blind_tries > 30 ) |
| return( MBEDTLS_ERR_ECP_RANDOM_FAILED ); |
| } |
| while( mbedtls_mpi_cmp_int( &t, 1 ) < 0 || |
| mbedtls_mpi_cmp_mpi( &t, &grp->N ) >= 0 ); |
| |
| /* |
| * Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n |
| */ |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, r, d ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &e, &e, s ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &e, &e, &t ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &k, &k, &t ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &k, &k, &grp->N ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( s, &k, &grp->N ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, s, &e ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( s, s, &grp->N ) ); |
| |
| if( sign_tries++ > 10 ) |
| { |
| ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; |
| goto cleanup; |
| } |
| } |
| while( mbedtls_mpi_cmp_int( s, 0 ) == 0 ); |
| |
| cleanup: |
| mbedtls_ecp_point_free( &R ); |
| mbedtls_mpi_free( &k ); mbedtls_mpi_free( &e ); mbedtls_mpi_free( &t ); |
| |
| return( ret ); |
| } |
| |
| int mbedtls_ecdsa_sign( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s, |
| const mbedtls_mpi *d, const unsigned char *buf, |
| size_t blen, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng ) |
| { |
| /* Use the same RNG for both blinding and ephemeral key generation */ |
| return( ecdsa_sign_internal( grp, r, s, d, buf, blen, f_rng, p_rng, |
| f_rng, p_rng ) ); |
| } |
| #endif /* MBEDTLS_ECDSA_SIGN_ALT */ |
| |
| #if defined(MBEDTLS_ECDSA_DETERMINISTIC) |
| static int ecdsa_sign_det_internal( mbedtls_ecp_group *grp, mbedtls_mpi *r, |
| mbedtls_mpi *s, const mbedtls_mpi *d, |
| const unsigned char *buf, size_t blen, |
| mbedtls_md_type_t md_alg, |
| int (*f_rng_blind)(void *, unsigned char *, |
| size_t), |
| void *p_rng_blind ) |
| { |
| int ret; |
| mbedtls_hmac_drbg_context rng_ctx; |
| unsigned char data[2 * MBEDTLS_ECP_MAX_BYTES]; |
| size_t grp_len = ( grp->nbits + 7 ) / 8; |
| const mbedtls_md_info_t *md_info; |
| mbedtls_mpi h; |
| /* Variables for deterministic blinding fallback */ |
| const char* blind_label = "BLINDING CONTEXT"; |
| mbedtls_hmac_drbg_context rng_ctx_blind; |
| |
| if( ( md_info = mbedtls_md_info_from_type( md_alg ) ) == NULL ) |
| return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); |
| |
| mbedtls_mpi_init( &h ); |
| mbedtls_hmac_drbg_init( &rng_ctx ); |
| mbedtls_hmac_drbg_init( &rng_ctx_blind ); |
| |
| /* Use private key and message hash (reduced) to initialize HMAC_DRBG */ |
| MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( d, data, grp_len ) ); |
| MBEDTLS_MPI_CHK( derive_mpi( grp, &h, buf, blen ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &h, data + grp_len, grp_len ) ); |
| mbedtls_hmac_drbg_seed_buf( &rng_ctx, md_info, data, 2 * grp_len ); |
| |
| if( f_rng_blind != NULL ) |
| ret = ecdsa_sign_internal( grp, r, s, d, buf, blen, |
| mbedtls_hmac_drbg_random, &rng_ctx, |
| f_rng_blind, p_rng_blind ); |
| else |
| { |
| /* |
| * To avoid reusing rng_ctx and risking incorrect behavior we seed a |
| * second HMAC-DRBG with the same seed. We also apply a label to avoid |
| * reusing the bits of the ephemeral key for blinding and eliminate the |
| * risk that they leak this way. |
| */ |
| |
| mbedtls_hmac_drbg_seed_buf( &rng_ctx_blind, md_info, |
| data, 2 * grp_len ); |
| ret = mbedtls_hmac_drbg_update_ret( &rng_ctx_blind, |
| (const unsigned char*) blind_label, |
| strlen( blind_label ) ); |
| if( ret != 0 ) |
| goto cleanup; |
| |
| /* |
| * Since the output of the RNGs is always the same for the same key and |
| * message, this limits the efficiency of blinding and leaks information |
| * through side channels. After mbedtls_ecdsa_sign_det() is removed NULL |
| * won't be a valid value for f_rng_blind anymore. Therefore it should |
| * be checked by the caller and this branch and check can be removed. |
| */ |
| ret = ecdsa_sign_internal( grp, r, s, d, buf, blen, |
| mbedtls_hmac_drbg_random, &rng_ctx, |
| mbedtls_hmac_drbg_random, &rng_ctx_blind ); |
| |
| } |
| |
| cleanup: |
| mbedtls_hmac_drbg_free( &rng_ctx ); |
| mbedtls_hmac_drbg_free( &rng_ctx_blind ); |
| mbedtls_mpi_free( &h ); |
| |
| return( ret ); |
| } |
| |
| /* |
| * Deterministic signature wrappers |
| */ |
| int mbedtls_ecdsa_sign_det( mbedtls_ecp_group *grp, mbedtls_mpi *r, |
| mbedtls_mpi *s, const mbedtls_mpi *d, |
| const unsigned char *buf, size_t blen, |
| mbedtls_md_type_t md_alg ) |
| { |
| return( ecdsa_sign_det_internal( grp, r, s, d, buf, blen, md_alg, |
| NULL, NULL ) ); |
| } |
| |
| int mbedtls_ecdsa_sign_det_ext( mbedtls_ecp_group *grp, mbedtls_mpi *r, |
| mbedtls_mpi *s, const mbedtls_mpi *d, |
| const unsigned char *buf, size_t blen, |
| mbedtls_md_type_t md_alg, |
| int (*f_rng_blind)(void *, unsigned char *, |
| size_t), |
| void *p_rng_blind ) |
| { |
| return( ecdsa_sign_det_internal( grp, r, s, d, buf, blen, md_alg, |
| f_rng_blind, p_rng_blind ) ); |
| } |
| #endif /* MBEDTLS_ECDSA_DETERMINISTIC */ |
| |
| #if !defined(MBEDTLS_ECDSA_VERIFY_ALT) |
| /* |
| * Verify ECDSA signature of hashed message (SEC1 4.1.4) |
| * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message) |
| */ |
| int mbedtls_ecdsa_verify( mbedtls_ecp_group *grp, |
| const unsigned char *buf, size_t blen, |
| const mbedtls_ecp_point *Q, const mbedtls_mpi *r, const mbedtls_mpi *s) |
| { |
| int ret; |
| mbedtls_mpi e, s_inv, u1, u2; |
| mbedtls_ecp_point R; |
| |
| mbedtls_ecp_point_init( &R ); |
| mbedtls_mpi_init( &e ); mbedtls_mpi_init( &s_inv ); mbedtls_mpi_init( &u1 ); mbedtls_mpi_init( &u2 ); |
| |
| /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */ |
| if( grp->N.p == NULL ) |
| return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); |
| |
| /* |
| * Step 1: make sure r and s are in range 1..n-1 |
| */ |
| if( mbedtls_mpi_cmp_int( r, 1 ) < 0 || mbedtls_mpi_cmp_mpi( r, &grp->N ) >= 0 || |
| mbedtls_mpi_cmp_int( s, 1 ) < 0 || mbedtls_mpi_cmp_mpi( s, &grp->N ) >= 0 ) |
| { |
| ret = MBEDTLS_ERR_ECP_VERIFY_FAILED; |
| goto cleanup; |
| } |
| |
| /* |
| * Additional precaution: make sure Q is valid |
| */ |
| MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, Q ) ); |
| |
| /* |
| * Step 3: derive MPI from hashed message |
| */ |
| MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); |
| |
| /* |
| * Step 4: u1 = e / s mod n, u2 = r / s mod n |
| */ |
| MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &s_inv, s, &grp->N ) ); |
| |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u1, &e, &s_inv ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &u1, &u1, &grp->N ) ); |
| |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u2, r, &s_inv ) ); |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &u2, &u2, &grp->N ) ); |
| |
| /* |
| * Step 5: R = u1 G + u2 Q |
| * |
| * Since we're not using any secret data, no need to pass a RNG to |
| * mbedtls_ecp_mul() for countermesures. |
| */ |
| MBEDTLS_MPI_CHK( mbedtls_ecp_muladd( grp, &R, &u1, &grp->G, &u2, Q ) ); |
| |
| if( mbedtls_ecp_is_zero( &R ) ) |
| { |
| ret = MBEDTLS_ERR_ECP_VERIFY_FAILED; |
| goto cleanup; |
| } |
| |
| /* |
| * Step 6: convert xR to an integer (no-op) |
| * Step 7: reduce xR mod n (gives v) |
| */ |
| MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &R.X, &R.X, &grp->N ) ); |
| |
| /* |
| * Step 8: check if v (that is, R.X) is equal to r |
| */ |
| if( mbedtls_mpi_cmp_mpi( &R.X, r ) != 0 ) |
| { |
| ret = MBEDTLS_ERR_ECP_VERIFY_FAILED; |
| goto cleanup; |
| } |
| |
| cleanup: |
| mbedtls_ecp_point_free( &R ); |
| mbedtls_mpi_free( &e ); mbedtls_mpi_free( &s_inv ); mbedtls_mpi_free( &u1 ); mbedtls_mpi_free( &u2 ); |
| |
| return( ret ); |
| } |
| #endif /* MBEDTLS_ECDSA_VERIFY_ALT */ |
| |
| /* |
| * Convert a signature (given by context) to ASN.1 |
| */ |
| static int ecdsa_signature_to_asn1( const mbedtls_mpi *r, const mbedtls_mpi *s, |
| unsigned char *sig, size_t *slen ) |
| { |
| int ret; |
| unsigned char buf[MBEDTLS_ECDSA_MAX_LEN]; |
| unsigned char *p = buf + sizeof( buf ); |
| size_t len = 0; |
| |
| MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, s ) ); |
| MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, r ) ); |
| |
| MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( &p, buf, len ) ); |
| MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( &p, buf, |
| MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ); |
| |
| memcpy( sig, p, len ); |
| *slen = len; |
| |
| return( 0 ); |
| } |
| |
| /* |
| * Compute and write signature |
| */ |
| int mbedtls_ecdsa_write_signature( mbedtls_ecdsa_context *ctx, mbedtls_md_type_t md_alg, |
| const unsigned char *hash, size_t hlen, |
| unsigned char *sig, size_t *slen, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng ) |
| { |
| int ret; |
| mbedtls_mpi r, s; |
| |
| mbedtls_mpi_init( &r ); |
| mbedtls_mpi_init( &s ); |
| |
| #if defined(MBEDTLS_ECDSA_DETERMINISTIC) |
| MBEDTLS_MPI_CHK( ecdsa_sign_det_internal( &ctx->grp, &r, &s, &ctx->d, |
| hash, hlen, md_alg, |
| f_rng, p_rng ) ); |
| #else |
| (void) md_alg; |
| |
| MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign( &ctx->grp, &r, &s, &ctx->d, |
| hash, hlen, f_rng, p_rng ) ); |
| #endif /* MBEDTLS_ECDSA_DETERMINISTIC */ |
| |
| MBEDTLS_MPI_CHK( ecdsa_signature_to_asn1( &r, &s, sig, slen ) ); |
| |
| cleanup: |
| mbedtls_mpi_free( &r ); |
| mbedtls_mpi_free( &s ); |
| |
| return( ret ); |
| } |
| |
| #if ! defined(MBEDTLS_DEPRECATED_REMOVED) && \ |
| defined(MBEDTLS_ECDSA_DETERMINISTIC) |
| int mbedtls_ecdsa_write_signature_det( mbedtls_ecdsa_context *ctx, |
| const unsigned char *hash, size_t hlen, |
| unsigned char *sig, size_t *slen, |
| mbedtls_md_type_t md_alg ) |
| { |
| return( mbedtls_ecdsa_write_signature( ctx, md_alg, hash, hlen, sig, slen, |
| NULL, NULL ) ); |
| } |
| #endif |
| |
| /* |
| * Read and check signature |
| */ |
| int mbedtls_ecdsa_read_signature( mbedtls_ecdsa_context *ctx, |
| const unsigned char *hash, size_t hlen, |
| const unsigned char *sig, size_t slen ) |
| { |
| int ret; |
| unsigned char *p = (unsigned char *) sig; |
| const unsigned char *end = sig + slen; |
| size_t len; |
| mbedtls_mpi r, s; |
| |
| mbedtls_mpi_init( &r ); |
| mbedtls_mpi_init( &s ); |
| |
| if( ( ret = mbedtls_asn1_get_tag( &p, end, &len, |
| MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 ) |
| { |
| ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| goto cleanup; |
| } |
| |
| if( p + len != end ) |
| { |
| ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA + |
| MBEDTLS_ERR_ASN1_LENGTH_MISMATCH; |
| goto cleanup; |
| } |
| |
| if( ( ret = mbedtls_asn1_get_mpi( &p, end, &r ) ) != 0 || |
| ( ret = mbedtls_asn1_get_mpi( &p, end, &s ) ) != 0 ) |
| { |
| ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| goto cleanup; |
| } |
| |
| if( ( ret = mbedtls_ecdsa_verify( &ctx->grp, hash, hlen, |
| &ctx->Q, &r, &s ) ) != 0 ) |
| goto cleanup; |
| |
| /* At this point we know that the buffer starts with a valid signature. |
| * Return 0 if the buffer just contains the signature, and a specific |
| * error code if the valid signature is followed by more data. */ |
| if( p != end ) |
| ret = MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH; |
| |
| cleanup: |
| mbedtls_mpi_free( &r ); |
| mbedtls_mpi_free( &s ); |
| |
| return( ret ); |
| } |
| |
| #if !defined(MBEDTLS_ECDSA_GENKEY_ALT) |
| /* |
| * Generate key pair |
| */ |
| int mbedtls_ecdsa_genkey( mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid, |
| int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) |
| { |
| int ret = 0; |
| ret = mbedtls_ecp_group_load( &ctx->grp, gid ); |
| if( ret != 0 ) |
| return( ret ); |
| |
| return( mbedtls_ecp_gen_keypair( &ctx->grp, &ctx->d, |
| &ctx->Q, f_rng, p_rng ) ); |
| } |
| #endif /* MBEDTLS_ECDSA_GENKEY_ALT */ |
| |
| /* |
| * Set context from an mbedtls_ecp_keypair |
| */ |
| int mbedtls_ecdsa_from_keypair( mbedtls_ecdsa_context *ctx, const mbedtls_ecp_keypair *key ) |
| { |
| int ret; |
| |
| if( ( ret = mbedtls_ecp_group_copy( &ctx->grp, &key->grp ) ) != 0 || |
| ( ret = mbedtls_mpi_copy( &ctx->d, &key->d ) ) != 0 || |
| ( ret = mbedtls_ecp_copy( &ctx->Q, &key->Q ) ) != 0 ) |
| { |
| mbedtls_ecdsa_free( ctx ); |
| } |
| |
| return( ret ); |
| } |
| |
| /* |
| * Initialize context |
| */ |
| void mbedtls_ecdsa_init( mbedtls_ecdsa_context *ctx ) |
| { |
| mbedtls_ecp_keypair_init( ctx ); |
| } |
| |
| /* |
| * Free context |
| */ |
| void mbedtls_ecdsa_free( mbedtls_ecdsa_context *ctx ) |
| { |
| mbedtls_ecp_keypair_free( ctx ); |
| } |
| |
| #endif /* MBEDTLS_ECDSA_C */ |