blob: a6877088a944dbc7fe8e58db7e1230c52950b451 [file] [log] [blame]
/* BFD back-end for Renesas H8/300 COFF binaries.
Copyright (C) 1990-2016 Free Software Foundation, Inc.
Written by Steve Chamberlain, <sac@cygnus.com>.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#include "bfdlink.h"
#include "genlink.h"
#include "coff/h8300.h"
#include "coff/internal.h"
#include "libcoff.h"
#include "libiberty.h"
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
/* We derive a hash table from the basic BFD hash table to
hold entries in the function vector. Aside from the
info stored by the basic hash table, we need the offset
of a particular entry within the hash table as well as
the offset where we'll add the next entry. */
struct funcvec_hash_entry
{
/* The basic hash table entry. */
struct bfd_hash_entry root;
/* The offset within the vectors section where
this entry lives. */
bfd_vma offset;
};
struct funcvec_hash_table
{
/* The basic hash table. */
struct bfd_hash_table root;
bfd *abfd;
/* Offset at which we'll add the next entry. */
unsigned int offset;
};
/* To lookup a value in the function vector hash table. */
#define funcvec_hash_lookup(table, string, create, copy) \
((struct funcvec_hash_entry *) \
bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
/* The derived h8300 COFF linker table. Note it's derived from
the generic linker hash table, not the COFF backend linker hash
table! We use this to attach additional data structures we
need while linking on the h8300. */
struct h8300_coff_link_hash_table {
/* The main hash table. */
struct generic_link_hash_table root;
/* Section for the vectors table. This gets attached to a
random input bfd, we keep it here for easy access. */
asection *vectors_sec;
/* Hash table of the functions we need to enter into the function
vector. */
struct funcvec_hash_table *funcvec_hash_table;
};
static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
/* Get the H8/300 COFF linker hash table from a link_info structure. */
#define h8300_coff_hash_table(p) \
((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
/* Initialize fields within a funcvec hash table entry. Called whenever
a new entry is added to the funcvec hash table. */
static struct bfd_hash_entry *
funcvec_hash_newfunc (struct bfd_hash_entry *entry,
struct bfd_hash_table *gen_table,
const char *string)
{
struct funcvec_hash_entry *ret;
struct funcvec_hash_table *table;
ret = (struct funcvec_hash_entry *) entry;
table = (struct funcvec_hash_table *) gen_table;
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (ret == NULL)
ret = ((struct funcvec_hash_entry *)
bfd_hash_allocate (gen_table,
sizeof (struct funcvec_hash_entry)));
if (ret == NULL)
return NULL;
/* Call the allocation method of the superclass. */
ret = ((struct funcvec_hash_entry *)
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
if (ret == NULL)
return NULL;
/* Note where this entry will reside in the function vector table. */
ret->offset = table->offset;
/* Bump the offset at which we store entries in the function
vector. We'd like to bump up the size of the vectors section,
but it's not easily available here. */
switch (bfd_get_mach (table->abfd))
{
case bfd_mach_h8300:
case bfd_mach_h8300hn:
case bfd_mach_h8300sn:
table->offset += 2;
break;
case bfd_mach_h8300h:
case bfd_mach_h8300s:
table->offset += 4;
break;
default:
return NULL;
}
/* Everything went OK. */
return (struct bfd_hash_entry *) ret;
}
/* Initialize the function vector hash table. */
static bfd_boolean
funcvec_hash_table_init (struct funcvec_hash_table *table,
bfd *abfd,
struct bfd_hash_entry *(*newfunc)
(struct bfd_hash_entry *,
struct bfd_hash_table *,
const char *),
unsigned int entsize)
{
/* Initialize our local fields, then call the generic initialization
routine. */
table->offset = 0;
table->abfd = abfd;
return (bfd_hash_table_init (&table->root, newfunc, entsize));
}
/* Create the derived linker hash table. We use a derived hash table
basically to hold "static" information during an H8/300 coff link
without using static variables. */
static struct bfd_link_hash_table *
h8300_coff_link_hash_table_create (bfd *abfd)
{
struct h8300_coff_link_hash_table *ret;
bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
ret = (struct h8300_coff_link_hash_table *) bfd_zmalloc (amt);
if (ret == NULL)
return NULL;
if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
_bfd_generic_link_hash_newfunc,
sizeof (struct generic_link_hash_entry)))
{
free (ret);
return NULL;
}
return &ret->root.root;
}
/* Special handling for H8/300 relocs.
We only come here for pcrel stuff and return normally if not an -r link.
When doing -r, we can't do any arithmetic for the pcrel stuff, because
the code in reloc.c assumes that we can manipulate the targets of
the pcrel branches. This isn't so, since the H8/300 can do relaxing,
which means that the gap after the instruction may not be enough to
contain the offset required for the branch, so we have to use only
the addend until the final link. */
static bfd_reloc_status_type
special (bfd * abfd ATTRIBUTE_UNUSED,
arelent * reloc_entry ATTRIBUTE_UNUSED,
asymbol * symbol ATTRIBUTE_UNUSED,
void * data ATTRIBUTE_UNUSED,
asection * input_section ATTRIBUTE_UNUSED,
bfd * output_bfd,
char ** error_message ATTRIBUTE_UNUSED)
{
if (output_bfd == (bfd *) NULL)
return bfd_reloc_continue;
/* Adjust the reloc address to that in the output section. */
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
static reloc_howto_type howto_table[] =
{
HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
/* An indirect reference to a function. This causes the function's address
to be added to the function vector in lo-mem and puts the address of
the function vector's entry in the jsr instruction. */
HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
/* Internal reloc for relaxing. This is created when a 16-bit pc-relative
branch is turned into an 8-bit pc-relative branch. */
HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
};
/* Turn a howto into a reloc number. */
#define SELECT_RELOC(x,howto) \
{ x.r_type = select_reloc (howto); }
#define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
&& H8300HNBADMAG(x) && H8300SNBADMAG(x))
#define H8300 1 /* Customize coffcode.h */
#define __A_MAGIC_SET__
/* Code to swap in the reloc. */
#define SWAP_IN_RELOC_OFFSET H_GET_32
#define SWAP_OUT_RELOC_OFFSET H_PUT_32
#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
dst->r_stuff[0] = 'S'; \
dst->r_stuff[1] = 'C';
static int
select_reloc (reloc_howto_type *howto)
{
return howto->type;
}
/* Code to turn a r_type into a howto ptr, uses the above howto table. */
static void
rtype2howto (arelent *internal, struct internal_reloc *dst)
{
switch (dst->r_type)
{
case R_RELBYTE:
internal->howto = howto_table + 0;
break;
case R_RELWORD:
internal->howto = howto_table + 1;
break;
case R_RELLONG:
internal->howto = howto_table + 2;
break;
case R_PCRBYTE:
internal->howto = howto_table + 3;
break;
case R_PCRWORD:
internal->howto = howto_table + 4;
break;
case R_PCRLONG:
internal->howto = howto_table + 5;
break;
case R_MOV16B1:
internal->howto = howto_table + 6;
break;
case R_MOV16B2:
internal->howto = howto_table + 7;
break;
case R_JMP1:
internal->howto = howto_table + 8;
break;
case R_JMP2:
internal->howto = howto_table + 9;
break;
case R_JMPL1:
internal->howto = howto_table + 10;
break;
case R_JMPL2:
internal->howto = howto_table + 11;
break;
case R_MOV24B1:
internal->howto = howto_table + 12;
break;
case R_MOV24B2:
internal->howto = howto_table + 13;
break;
case R_MEM_INDIRECT:
internal->howto = howto_table + 14;
break;
case R_PCRWORD_B:
internal->howto = howto_table + 15;
break;
case R_MOVL1:
internal->howto = howto_table + 16;
break;
case R_MOVL2:
internal->howto = howto_table + 17;
break;
case R_BCC_INV:
internal->howto = howto_table + 18;
break;
case R_JMP_DEL:
internal->howto = howto_table + 19;
break;
default:
internal->howto = NULL;
break;
}
}
#define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
/* Perform any necessary magic to the addend in a reloc entry. */
#define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
cache_ptr->addend = ext_reloc.r_offset;
#define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
reloc_processing (relent, reloc, symbols, abfd, section)
static void
reloc_processing (arelent *relent, struct internal_reloc *reloc,
asymbol **symbols, bfd *abfd, asection *section)
{
relent->address = reloc->r_vaddr;
rtype2howto (relent, reloc);
if (((int) reloc->r_symndx) > 0)
relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
else
relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
relent->addend = reloc->r_offset;
relent->address -= section->vma;
}
static bfd_boolean
h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
{
asymbol **s;
s = _bfd_generic_link_get_symbols (abfd);
BFD_ASSERT (s != (asymbol **) NULL);
/* Search all the symbols for one in INPUT_SECTION with
address ADDRESS. */
while (*s)
{
asymbol *p = *s;
if (p->section == input_section
&& (input_section->output_section->vma
+ input_section->output_offset
+ p->value) == address)
return TRUE;
s++;
}
return FALSE;
}
/* If RELOC represents a relaxable instruction/reloc, change it into
the relaxed reloc, notify the linker that symbol addresses
have changed (bfd_perform_slip) and return how much the current
section has shrunk by.
FIXME: Much of this code has knowledge of the ordering of entries
in the howto table. This needs to be fixed. */
static int
h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
unsigned int shrink, struct bfd_link_info *link_info)
{
bfd_vma value;
bfd_vma dot;
bfd_vma gap;
static asection *last_input_section = NULL;
static arelent *last_reloc = NULL;
/* The address of the thing to be relocated will have moved back by
the size of the shrink - but we don't change reloc->address here,
since we need it to know where the relocation lives in the source
uncooked section. */
bfd_vma address = reloc->address - shrink;
if (input_section != last_input_section)
last_reloc = NULL;
/* Only examine the relocs which might be relaxable. */
switch (reloc->howto->type)
{
/* This is the 16-/24-bit absolute branch which could become an
8-bit pc-relative branch. */
case R_JMP1:
case R_JMPL1:
/* Get the address of the target of this branch. */
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
/* Get the address of the next instruction (not the reloc). */
dot = (input_section->output_section->vma
+ input_section->output_offset + address);
/* Adjust for R_JMP1 vs R_JMPL1. */
dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
/* Compute the distance from this insn to the branch target. */
gap = value - dot;
/* If the distance is within -128..+128 inclusive, then we can relax
this jump. +128 is valid since the target will move two bytes
closer if we do relax this branch. */
if ((int) gap >= -128 && (int) gap <= 128)
{
bfd_byte code;
if (!bfd_get_section_contents (abfd, input_section, & code,
reloc->address, 1))
break;
code = bfd_get_8 (abfd, & code);
/* It's possible we may be able to eliminate this branch entirely;
if the previous instruction is a branch around this instruction,
and there's no label at this instruction, then we can reverse
the condition on the previous branch and eliminate this jump.
original: new:
bCC lab1 bCC' lab2
jmp lab2
lab1: lab1:
This saves 4 bytes instead of two, and should be relatively
common.
Only perform this optimisation for jumps (code 0x5a) not
subroutine calls, as otherwise it could transform:
mov.w r0,r0
beq .L1
jsr @_bar
.L1: rts
_bar: rts
into:
mov.w r0,r0
bne _bar
rts
_bar: rts
which changes the call (jsr) into a branch (bne). */
if (code == 0x5a
&& gap <= 126
&& last_reloc
&& last_reloc->howto->type == R_PCRBYTE)
{
bfd_vma last_value;
last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
input_section) + 1;
if (last_value == dot + 2
&& last_reloc->address + 1 == reloc->address
&& !h8300_symbol_address_p (abfd, input_section, dot - 2))
{
reloc->howto = howto_table + 19;
last_reloc->howto = howto_table + 18;
last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
last_reloc->addend = reloc->addend;
shrink += 4;
bfd_perform_slip (abfd, 4, input_section, address);
break;
}
}
/* Change the reloc type. */
reloc->howto = reloc->howto + 1;
/* This shrinks this section by two bytes. */
shrink += 2;
bfd_perform_slip (abfd, 2, input_section, address);
}
break;
/* This is the 16-bit pc-relative branch which could become an 8-bit
pc-relative branch. */
case R_PCRWORD:
/* Get the address of the target of this branch, add one to the value
because the addend field in PCrel jumps is off by -1. */
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
/* Get the address of the next instruction if we were to relax. */
dot = input_section->output_section->vma +
input_section->output_offset + address;
/* Compute the distance from this insn to the branch target. */
gap = value - dot;
/* If the distance is within -128..+128 inclusive, then we can relax
this jump. +128 is valid since the target will move two bytes
closer if we do relax this branch. */
if ((int) gap >= -128 && (int) gap <= 128)
{
/* Change the reloc type. */
reloc->howto = howto_table + 15;
/* This shrinks this section by two bytes. */
shrink += 2;
bfd_perform_slip (abfd, 2, input_section, address);
}
break;
/* This is a 16-bit absolute address in a mov.b insn, which can
become an 8-bit absolute address if it's in the right range. */
case R_MOV16B1:
/* Get the address of the data referenced by this mov.b insn. */
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
value = bfd_h8300_pad_address (abfd, value);
/* If the address is in the top 256 bytes of the address space
then we can relax this instruction. */
if (value >= 0xffffff00u)
{
/* Change the reloc type. */
reloc->howto = reloc->howto + 1;
/* This shrinks this section by two bytes. */
shrink += 2;
bfd_perform_slip (abfd, 2, input_section, address);
}
break;
/* Similarly for a 24-bit absolute address in a mov.b. Note that
if we can't relax this into an 8-bit absolute, we'll fall through
and try to relax it into a 16-bit absolute. */
case R_MOV24B1:
/* Get the address of the data referenced by this mov.b insn. */
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
value = bfd_h8300_pad_address (abfd, value);
if (value >= 0xffffff00u)
{
/* Change the reloc type. */
reloc->howto = reloc->howto + 1;
/* This shrinks this section by four bytes. */
shrink += 4;
bfd_perform_slip (abfd, 4, input_section, address);
/* Done with this reloc. */
break;
}
/* Fall through. */
/* This is a 24-/32-bit absolute address in a mov insn, which can
become an 16-bit absolute address if it's in the right range. */
case R_MOVL1:
/* Get the address of the data referenced by this mov insn. */
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
value = bfd_h8300_pad_address (abfd, value);
/* If the address is a sign-extended 16-bit value then we can
relax this instruction. */
if (value <= 0x7fff || value >= 0xffff8000u)
{
/* Change the reloc type. */
reloc->howto = howto_table + 17;
/* This shrinks this section by two bytes. */
shrink += 2;
bfd_perform_slip (abfd, 2, input_section, address);
}
break;
/* No other reloc types represent relaxing opportunities. */
default:
break;
}
last_reloc = reloc;
last_input_section = input_section;
return shrink;
}
/* Handle relocations for the H8/300, including relocs for relaxed
instructions.
FIXME: Not all relocations check for overflow! */
static void
h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
struct bfd_link_order *link_order, arelent *reloc,
bfd_byte *data, unsigned int *src_ptr,
unsigned int *dst_ptr)
{
unsigned int src_address = *src_ptr;
unsigned int dst_address = *dst_ptr;
asection *input_section = link_order->u.indirect.section;
bfd_vma value;
bfd_vma dot;
int gap, tmp;
unsigned char temp_code;
switch (reloc->howto->type)
{
/* Generic 8-bit pc-relative relocation. */
case R_PCRBYTE:
/* Get the address of the target of this branch. */
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
dot = (input_section->output_offset
+ dst_address
+ link_order->u.indirect.section->output_section->vma);
gap = value - dot;
/* Sanity check. */
if (gap < -128 || gap > 126)
(*link_info->callbacks->reloc_overflow)
(link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
reloc->howto->name, reloc->addend, input_section->owner,
input_section, reloc->address);
/* Everything looks OK. Apply the relocation and update the
src/dst address appropriately. */
bfd_put_8 (abfd, gap, data + dst_address);
dst_address++;
src_address++;
/* All done. */
break;
/* Generic 16-bit pc-relative relocation. */
case R_PCRWORD:
/* Get the address of the target of this branch. */
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
/* Get the address of the instruction (not the reloc). */
dot = (input_section->output_offset
+ dst_address
+ link_order->u.indirect.section->output_section->vma + 1);
gap = value - dot;
/* Sanity check. */
if (gap > 32766 || gap < -32768)
(*link_info->callbacks->reloc_overflow)
(link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
reloc->howto->name, reloc->addend, input_section->owner,
input_section, reloc->address);
/* Everything looks OK. Apply the relocation and update the
src/dst address appropriately. */
bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
dst_address += 2;
src_address += 2;
/* All done. */
break;
/* Generic 8-bit absolute relocation. */
case R_RELBYTE:
/* Get the address of the object referenced by this insn. */
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
bfd_put_8 (abfd, value & 0xff, data + dst_address);
dst_address += 1;
src_address += 1;
/* All done. */
break;
/* Various simple 16-bit absolute relocations. */
case R_MOV16B1:
case R_JMP1:
case R_RELWORD:
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
bfd_put_16 (abfd, value, data + dst_address);
dst_address += 2;
src_address += 2;
break;
/* Various simple 24-/32-bit absolute relocations. */
case R_MOV24B1:
case R_MOVL1:
case R_RELLONG:
/* Get the address of the target of this branch. */
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
bfd_put_32 (abfd, value, data + dst_address);
dst_address += 4;
src_address += 4;
break;
/* Another 24-/32-bit absolute relocation. */
case R_JMPL1:
/* Get the address of the target of this branch. */
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
value = ((value & 0x00ffffff)
| (bfd_get_32 (abfd, data + src_address) & 0xff000000));
bfd_put_32 (abfd, value, data + dst_address);
dst_address += 4;
src_address += 4;
break;
/* This is a 24-/32-bit absolute address in one of the following
instructions:
"band", "bclr", "biand", "bild", "bior", "bist", "bixor",
"bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
"stc.w" and "mov.[bwl]"
We may relax this into an 16-bit absolute address if it's in
the right range. */
case R_MOVL2:
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
value = bfd_h8300_pad_address (abfd, value);
/* Sanity check. */
if (value <= 0x7fff || value >= 0xffff8000u)
{
/* Insert the 16-bit value into the proper location. */
bfd_put_16 (abfd, value, data + dst_address);
/* Fix the opcode. For all the instructions that belong to
this relaxation, we simply need to turn off bit 0x20 in
the previous byte. */
data[dst_address - 1] &= ~0x20;
dst_address += 2;
src_address += 4;
}
else
(*link_info->callbacks->reloc_overflow)
(link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
reloc->howto->name, reloc->addend, input_section->owner,
input_section, reloc->address);
break;
/* A 16-bit absolute branch that is now an 8-bit pc-relative branch. */
case R_JMP2:
/* Get the address of the target of this branch. */
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
/* Get the address of the next instruction. */
dot = (input_section->output_offset
+ dst_address
+ link_order->u.indirect.section->output_section->vma + 1);
gap = value - dot;
/* Sanity check. */
if (gap < -128 || gap > 126)
(*link_info->callbacks->reloc_overflow)
(link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
reloc->howto->name, reloc->addend, input_section->owner,
input_section, reloc->address);
/* Now fix the instruction itself. */
switch (data[dst_address - 1])
{
case 0x5e:
/* jsr -> bsr */
bfd_put_8 (abfd, 0x55, data + dst_address - 1);
break;
case 0x5a:
/* jmp -> bra */
bfd_put_8 (abfd, 0x40, data + dst_address - 1);
break;
default:
abort ();
}
/* Write out the 8-bit value. */
bfd_put_8 (abfd, gap, data + dst_address);
dst_address += 1;
src_address += 3;
break;
/* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch. */
case R_PCRWORD_B:
/* Get the address of the target of this branch. */
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
/* Get the address of the instruction (not the reloc). */
dot = (input_section->output_offset
+ dst_address
+ link_order->u.indirect.section->output_section->vma - 1);
gap = value - dot;
/* Sanity check. */
if (gap < -128 || gap > 126)
(*link_info->callbacks->reloc_overflow)
(link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
reloc->howto->name, reloc->addend, input_section->owner,
input_section, reloc->address);
/* Now fix the instruction. */
switch (data[dst_address - 2])
{
case 0x58:
/* bCC:16 -> bCC:8 */
/* Get the second byte of the original insn, which contains
the condition code. */
tmp = data[dst_address - 1];
/* Compute the fisrt byte of the relaxed instruction. The
original sequence 0x58 0xX0 is relaxed to 0x4X, where X
represents the condition code. */
tmp &= 0xf0;
tmp >>= 4;
tmp |= 0x40;
/* Write it. */
bfd_put_8 (abfd, tmp, data + dst_address - 2);
break;
case 0x5c:
/* bsr:16 -> bsr:8 */
bfd_put_8 (abfd, 0x55, data + dst_address - 2);
break;
default:
abort ();
}
/* Output the target. */
bfd_put_8 (abfd, gap, data + dst_address - 1);
/* We don't advance dst_address -- the 8-bit reloc is applied at
dst_address - 1, so the next insn should begin at dst_address. */
src_address += 2;
break;
/* Similarly for a 24-bit absolute that is now 8 bits. */
case R_JMPL2:
/* Get the address of the target of this branch. */
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
/* Get the address of the instruction (not the reloc). */
dot = (input_section->output_offset
+ dst_address
+ link_order->u.indirect.section->output_section->vma + 2);
gap = value - dot;
/* Fix the instruction. */
switch (data[src_address])
{
case 0x5e:
/* jsr -> bsr */
bfd_put_8 (abfd, 0x55, data + dst_address);
break;
case 0x5a:
/* jmp ->bra */
bfd_put_8 (abfd, 0x40, data + dst_address);
break;
default:
abort ();
}
bfd_put_8 (abfd, gap, data + dst_address + 1);
dst_address += 2;
src_address += 4;
break;
/* This is a 16-bit absolute address in one of the following
instructions:
"band", "bclr", "biand", "bild", "bior", "bist", "bixor",
"bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
"mov.b"
We may relax this into an 8-bit absolute address if it's in
the right range. */
case R_MOV16B2:
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
/* All instructions with R_H8_DIR16B2 start with 0x6a. */
if (data[dst_address - 2] != 0x6a)
abort ();
temp_code = data[src_address - 1];
/* If this is a mov.b instruction, clear the lower nibble, which
contains the source/destination register number. */
if ((temp_code & 0x10) != 0x10)
temp_code &= 0xf0;
/* Fix up the opcode. */
switch (temp_code)
{
case 0x00:
/* This is mov.b @aa:16,Rd. */
data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
break;
case 0x80:
/* This is mov.b Rs,@aa:16. */
data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
break;
case 0x18:
/* This is a bit-maniputation instruction that stores one
bit into memory, one of "bclr", "bist", "bnot", "bset",
and "bst". */
data[dst_address - 2] = 0x7f;
break;
case 0x10:
/* This is a bit-maniputation instruction that loads one bit
from memory, one of "band", "biand", "bild", "bior",
"bixor", "bld", "bor", "btst", and "bxor". */
data[dst_address - 2] = 0x7e;
break;
default:
abort ();
}
bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
src_address += 2;
break;
/* This is a 24-bit absolute address in one of the following
instructions:
"band", "bclr", "biand", "bild", "bior", "bist", "bixor",
"bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
"mov.b"
We may relax this into an 8-bit absolute address if it's in
the right range. */
case R_MOV24B2:
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
/* All instructions with R_MOV24B2 start with 0x6a. */
if (data[dst_address - 2] != 0x6a)
abort ();
temp_code = data[src_address - 1];
/* If this is a mov.b instruction, clear the lower nibble, which
contains the source/destination register number. */
if ((temp_code & 0x30) != 0x30)
temp_code &= 0xf0;
/* Fix up the opcode. */
switch (temp_code)
{
case 0x20:
/* This is mov.b @aa:24/32,Rd. */
data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
break;
case 0xa0:
/* This is mov.b Rs,@aa:24/32. */
data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
break;
case 0x38:
/* This is a bit-maniputation instruction that stores one
bit into memory, one of "bclr", "bist", "bnot", "bset",
and "bst". */
data[dst_address - 2] = 0x7f;
break;
case 0x30:
/* This is a bit-maniputation instruction that loads one bit
from memory, one of "band", "biand", "bild", "bior",
"bixor", "bld", "bor", "btst", and "bxor". */
data[dst_address - 2] = 0x7e;
break;
default:
abort ();
}
bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
src_address += 4;
break;
case R_BCC_INV:
/* Get the address of the target of this branch. */
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
dot = (input_section->output_offset
+ dst_address
+ link_order->u.indirect.section->output_section->vma) + 1;
gap = value - dot;
/* Sanity check. */
if (gap < -128 || gap > 126)
(*link_info->callbacks->reloc_overflow)
(link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
reloc->howto->name, reloc->addend, input_section->owner,
input_section, reloc->address);
/* Everything looks OK. Fix the condition in the instruction, apply
the relocation, and update the src/dst address appropriately. */
bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
data + dst_address - 1);
bfd_put_8 (abfd, gap, data + dst_address);
dst_address++;
src_address++;
/* All done. */
break;
case R_JMP_DEL:
src_address += 4;
break;
/* An 8-bit memory indirect instruction (jmp/jsr).
There's several things that need to be done to handle
this relocation.
If this is a reloc against the absolute symbol, then
we should handle it just R_RELBYTE. Likewise if it's
for a symbol with a value ge 0 and le 0xff.
Otherwise it's a jump/call through the function vector,
and the linker is expected to set up the function vector
and put the right value into the jump/call instruction. */
case R_MEM_INDIRECT:
{
/* We need to find the symbol so we can determine it's
address in the function vector table. */
asymbol *symbol;
const char *name;
struct funcvec_hash_table *ftab;
struct funcvec_hash_entry *h;
struct h8300_coff_link_hash_table *htab;
asection *vectors_sec;
if (link_info->output_bfd->xvec != abfd->xvec)
{
_bfd_error_handler
(_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
link_info->output_bfd->xvec->name);
/* What else can we do? This function doesn't allow return
of an error, and we don't want to call abort as that
indicates an internal error. */
#ifndef EXIT_FAILURE
#define EXIT_FAILURE 1
#endif
xexit (EXIT_FAILURE);
}
htab = h8300_coff_hash_table (link_info);
vectors_sec = htab->vectors_sec;
/* First see if this is a reloc against the absolute symbol
or against a symbol with a nonnegative value <= 0xff. */
symbol = *(reloc->sym_ptr_ptr);
value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
if (symbol == bfd_abs_section_ptr->symbol
|| value <= 0xff)
{
/* This should be handled in a manner very similar to
R_RELBYTES. If the value is in range, then just slam
the value into the right location. Else trigger a
reloc overflow callback. */
if (value <= 0xff)
{
bfd_put_8 (abfd, value, data + dst_address);
dst_address += 1;
src_address += 1;
}
else
(*link_info->callbacks->reloc_overflow)
(link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
reloc->howto->name, reloc->addend, input_section->owner,
input_section, reloc->address);
break;
}
/* This is a jump/call through a function vector, and we're
expected to create the function vector ourselves.
First look up this symbol in the linker hash table -- we need
the derived linker symbol which holds this symbol's index
in the function vector. */
name = symbol->name;
if (symbol->flags & BSF_LOCAL)
{
char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
if (new_name == NULL)
abort ();
sprintf (new_name, "%s_%08x", name, symbol->section->id);
name = new_name;
}
ftab = htab->funcvec_hash_table;
h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
/* This shouldn't ever happen. If it does that means we've got
data corruption of some kind. Aborting seems like a reasonable
thing to do here. */
if (h == NULL || vectors_sec == NULL)
abort ();
/* Place the address of the function vector entry into the
reloc's address. */
bfd_put_8 (abfd,
vectors_sec->output_offset + h->offset,
data + dst_address);
dst_address++;
src_address++;
/* Now create an entry in the function vector itself. */
switch (bfd_get_mach (input_section->owner))
{
case bfd_mach_h8300:
case bfd_mach_h8300hn:
case bfd_mach_h8300sn:
bfd_put_16 (abfd,
bfd_coff_reloc16_get_value (reloc,
link_info,
input_section),
vectors_sec->contents + h->offset);
break;
case bfd_mach_h8300h:
case bfd_mach_h8300s:
bfd_put_32 (abfd,
bfd_coff_reloc16_get_value (reloc,
link_info,
input_section),
vectors_sec->contents + h->offset);
break;
default:
abort ();
}
/* Gross. We've already written the contents of the vector section
before we get here... So we write it again with the new data. */
bfd_set_section_contents (vectors_sec->output_section->owner,
vectors_sec->output_section,
vectors_sec->contents,
(file_ptr) vectors_sec->output_offset,
vectors_sec->size);
break;
}
default:
abort ();
break;
}
*src_ptr = src_address;
*dst_ptr = dst_address;
}
/* Routine for the h8300 linker.
This routine is necessary to handle the special R_MEM_INDIRECT
relocs on the h8300. It's responsible for generating a vectors
section and attaching it to an input bfd as well as sizing
the vectors section. It also creates our vectors hash table.
It uses the generic linker routines to actually add the symbols.
from this BFD to the bfd linker hash table. It may add a few
selected static symbols to the bfd linker hash table. */
static bfd_boolean
h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
{
asection *sec;
struct funcvec_hash_table *funcvec_hash_table;
bfd_size_type amt;
struct h8300_coff_link_hash_table *htab;
/* Add the symbols using the generic code. */
_bfd_generic_link_add_symbols (abfd, info);
if (info->output_bfd->xvec != abfd->xvec)
return TRUE;
htab = h8300_coff_hash_table (info);
/* If we haven't created a vectors section, do so now. */
if (!htab->vectors_sec)
{
flagword flags;
/* Make sure the appropriate flags are set, including SEC_IN_MEMORY. */
flags = (SEC_ALLOC | SEC_LOAD
| SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
htab->vectors_sec = bfd_make_section_with_flags (abfd, ".vectors",
flags);
/* If the section wasn't created, or we couldn't set the flags,
quit quickly now, rather than dying a painful death later. */
if (!htab->vectors_sec)
return FALSE;
/* Also create the vector hash table. */
amt = sizeof (struct funcvec_hash_table);
funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
if (!funcvec_hash_table)
return FALSE;
/* And initialize the funcvec hash table. */
if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
funcvec_hash_newfunc,
sizeof (struct funcvec_hash_entry)))
{
bfd_release (abfd, funcvec_hash_table);
return FALSE;
}
/* Store away a pointer to the funcvec hash table. */
htab->funcvec_hash_table = funcvec_hash_table;
}
/* Load up the function vector hash table. */
funcvec_hash_table = htab->funcvec_hash_table;
/* Now scan the relocs for all the sections in this bfd; create
additional space in the .vectors section as needed. */
for (sec = abfd->sections; sec; sec = sec->next)
{
long reloc_size, reloc_count, i;
asymbol **symbols;
arelent **relocs;
/* Suck in the relocs, symbols & canonicalize them. */
reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
if (reloc_size <= 0)
continue;
relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
if (!relocs)
return FALSE;
/* The symbols should have been read in by _bfd_generic link_add_symbols
call abovec, so we can cheat and use the pointer to them that was
saved in the above call. */
symbols = _bfd_generic_link_get_symbols(abfd);
reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
if (reloc_count <= 0)
{
free (relocs);
continue;
}
/* Now walk through all the relocations in this section. */
for (i = 0; i < reloc_count; i++)
{
arelent *reloc = relocs[i];
asymbol *symbol = *(reloc->sym_ptr_ptr);
const char *name;
/* We've got an indirect reloc. See if we need to add it
to the function vector table. At this point, we have
to add a new entry for each unique symbol referenced
by an R_MEM_INDIRECT relocation except for a reloc
against the absolute section symbol. */
if (reloc->howto->type == R_MEM_INDIRECT
&& symbol != bfd_abs_section_ptr->symbol)
{
struct funcvec_hash_table *ftab;
struct funcvec_hash_entry *h;
name = symbol->name;
if (symbol->flags & BSF_LOCAL)
{
char *new_name;
new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
if (new_name == NULL)
abort ();
sprintf (new_name, "%s_%08x", name, symbol->section->id);
name = new_name;
}
/* Look this symbol up in the function vector hash table. */
ftab = htab->funcvec_hash_table;
h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
/* If this symbol isn't already in the hash table, add
it and bump up the size of the hash table. */
if (h == NULL)
{
h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
if (h == NULL)
{
free (relocs);
return FALSE;
}
/* Bump the size of the vectors section. Each vector
takes 2 bytes on the h8300 and 4 bytes on the h8300h. */
switch (bfd_get_mach (abfd))
{
case bfd_mach_h8300:
case bfd_mach_h8300hn:
case bfd_mach_h8300sn:
htab->vectors_sec->size += 2;
break;
case bfd_mach_h8300h:
case bfd_mach_h8300s:
htab->vectors_sec->size += 4;
break;
default:
abort ();
}
}
}
}
/* We're done with the relocations, release them. */
free (relocs);
}
/* Now actually allocate some space for the function vector. It's
wasteful to do this more than once, but this is easier. */
sec = htab->vectors_sec;
if (sec->size != 0)
{
/* Free the old contents. */
if (sec->contents)
free (sec->contents);
/* Allocate new contents. */
sec->contents = bfd_malloc (sec->size);
}
return TRUE;
}
#define coff_reloc16_extra_cases h8300_reloc16_extra_cases
#define coff_reloc16_estimate h8300_reloc16_estimate
#define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
#define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
#define COFF_LONG_FILENAMES
#ifndef bfd_pe_print_pdata
#define bfd_pe_print_pdata NULL
#endif
#include "coffcode.h"
#undef coff_bfd_get_relocated_section_contents
#undef coff_bfd_relax_section
#define coff_bfd_get_relocated_section_contents \
bfd_coff_reloc16_get_relocated_section_contents
#define coff_bfd_relax_section bfd_coff_reloc16_relax_section
CREATE_BIG_COFF_TARGET_VEC (h8300_coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)