| /**************************************************************************** |
| * |
| * ftbbox.c |
| * |
| * FreeType bbox computation (body). |
| * |
| * Copyright (C) 1996-2020 by |
| * David Turner, Robert Wilhelm, and Werner Lemberg. |
| * |
| * This file is part of the FreeType project, and may only be used |
| * modified and distributed under the terms of the FreeType project |
| * license, LICENSE.TXT. By continuing to use, modify, or distribute |
| * this file you indicate that you have read the license and |
| * understand and accept it fully. |
| * |
| */ |
| |
| |
| /************************************************************************** |
| * |
| * This component has a _single_ role: to compute exact outline bounding |
| * boxes. |
| * |
| */ |
| |
| |
| #include <freetype/internal/ftdebug.h> |
| |
| #include <freetype/ftbbox.h> |
| #include <freetype/ftimage.h> |
| #include <freetype/ftoutln.h> |
| #include <freetype/internal/ftcalc.h> |
| #include <freetype/internal/ftobjs.h> |
| |
| |
| typedef struct TBBox_Rec_ |
| { |
| FT_Vector last; |
| FT_BBox bbox; |
| |
| } TBBox_Rec; |
| |
| |
| #define FT_UPDATE_BBOX( p, bbox ) \ |
| FT_BEGIN_STMNT \ |
| if ( p->x < bbox.xMin ) \ |
| bbox.xMin = p->x; \ |
| if ( p->x > bbox.xMax ) \ |
| bbox.xMax = p->x; \ |
| if ( p->y < bbox.yMin ) \ |
| bbox.yMin = p->y; \ |
| if ( p->y > bbox.yMax ) \ |
| bbox.yMax = p->y; \ |
| FT_END_STMNT |
| |
| #define CHECK_X( p, bbox ) \ |
| ( p->x < bbox.xMin || p->x > bbox.xMax ) |
| |
| #define CHECK_Y( p, bbox ) \ |
| ( p->y < bbox.yMin || p->y > bbox.yMax ) |
| |
| |
| /************************************************************************** |
| * |
| * @Function: |
| * BBox_Move_To |
| * |
| * @Description: |
| * This function is used as a `move_to' emitter during |
| * FT_Outline_Decompose(). It simply records the destination point |
| * in `user->last'. We also update bbox in case contour starts with |
| * an implicit `on' point. |
| * |
| * @Input: |
| * to :: |
| * A pointer to the destination vector. |
| * |
| * @InOut: |
| * user :: |
| * A pointer to the current walk context. |
| * |
| * @Return: |
| * Always 0. Needed for the interface only. |
| */ |
| static int |
| BBox_Move_To( FT_Vector* to, |
| TBBox_Rec* user ) |
| { |
| FT_UPDATE_BBOX( to, user->bbox ); |
| |
| user->last = *to; |
| |
| return 0; |
| } |
| |
| |
| /************************************************************************** |
| * |
| * @Function: |
| * BBox_Line_To |
| * |
| * @Description: |
| * This function is used as a `line_to' emitter during |
| * FT_Outline_Decompose(). It simply records the destination point |
| * in `user->last'; no further computations are necessary because |
| * bbox already contains both explicit ends of the line segment. |
| * |
| * @Input: |
| * to :: |
| * A pointer to the destination vector. |
| * |
| * @InOut: |
| * user :: |
| * A pointer to the current walk context. |
| * |
| * @Return: |
| * Always 0. Needed for the interface only. |
| */ |
| static int |
| BBox_Line_To( FT_Vector* to, |
| TBBox_Rec* user ) |
| { |
| user->last = *to; |
| |
| return 0; |
| } |
| |
| |
| /************************************************************************** |
| * |
| * @Function: |
| * BBox_Conic_Check |
| * |
| * @Description: |
| * Find the extrema of a 1-dimensional conic Bezier curve and update |
| * a bounding range. This version uses direct computation, as it |
| * doesn't need square roots. |
| * |
| * @Input: |
| * y1 :: |
| * The start coordinate. |
| * |
| * y2 :: |
| * The coordinate of the control point. |
| * |
| * y3 :: |
| * The end coordinate. |
| * |
| * @InOut: |
| * min :: |
| * The address of the current minimum. |
| * |
| * max :: |
| * The address of the current maximum. |
| */ |
| static void |
| BBox_Conic_Check( FT_Pos y1, |
| FT_Pos y2, |
| FT_Pos y3, |
| FT_Pos* min, |
| FT_Pos* max ) |
| { |
| /* This function is only called when a control off-point is outside */ |
| /* the bbox that contains all on-points. It finds a local extremum */ |
| /* within the segment, equal to (y1*y3 - y2*y2)/(y1 - 2*y2 + y3). */ |
| /* Or, offsetting from y2, we get */ |
| |
| y1 -= y2; |
| y3 -= y2; |
| y2 += FT_MulDiv( y1, y3, y1 + y3 ); |
| |
| if ( y2 < *min ) |
| *min = y2; |
| if ( y2 > *max ) |
| *max = y2; |
| } |
| |
| |
| /************************************************************************** |
| * |
| * @Function: |
| * BBox_Conic_To |
| * |
| * @Description: |
| * This function is used as a `conic_to' emitter during |
| * FT_Outline_Decompose(). It checks a conic Bezier curve with the |
| * current bounding box, and computes its extrema if necessary to |
| * update it. |
| * |
| * @Input: |
| * control :: |
| * A pointer to a control point. |
| * |
| * to :: |
| * A pointer to the destination vector. |
| * |
| * @InOut: |
| * user :: |
| * The address of the current walk context. |
| * |
| * @Return: |
| * Always 0. Needed for the interface only. |
| * |
| * @Note: |
| * In the case of a non-monotonous arc, we compute directly the |
| * extremum coordinates, as it is sufficiently fast. |
| */ |
| static int |
| BBox_Conic_To( FT_Vector* control, |
| FT_Vector* to, |
| TBBox_Rec* user ) |
| { |
| /* in case `to' is implicit and not included in bbox yet */ |
| FT_UPDATE_BBOX( to, user->bbox ); |
| |
| if ( CHECK_X( control, user->bbox ) ) |
| BBox_Conic_Check( user->last.x, |
| control->x, |
| to->x, |
| &user->bbox.xMin, |
| &user->bbox.xMax ); |
| |
| if ( CHECK_Y( control, user->bbox ) ) |
| BBox_Conic_Check( user->last.y, |
| control->y, |
| to->y, |
| &user->bbox.yMin, |
| &user->bbox.yMax ); |
| |
| user->last = *to; |
| |
| return 0; |
| } |
| |
| |
| /************************************************************************** |
| * |
| * @Function: |
| * BBox_Cubic_Check |
| * |
| * @Description: |
| * Find the extrema of a 1-dimensional cubic Bezier curve and |
| * update a bounding range. This version uses iterative splitting |
| * because it is faster than the exact solution with square roots. |
| * |
| * @Input: |
| * p1 :: |
| * The start coordinate. |
| * |
| * p2 :: |
| * The coordinate of the first control point. |
| * |
| * p3 :: |
| * The coordinate of the second control point. |
| * |
| * p4 :: |
| * The end coordinate. |
| * |
| * @InOut: |
| * min :: |
| * The address of the current minimum. |
| * |
| * max :: |
| * The address of the current maximum. |
| */ |
| static FT_Pos |
| cubic_peak( FT_Pos q1, |
| FT_Pos q2, |
| FT_Pos q3, |
| FT_Pos q4 ) |
| { |
| FT_Pos peak = 0; |
| FT_Int shift; |
| |
| |
| /* This function finds a peak of a cubic segment if it is above 0 */ |
| /* using iterative bisection of the segment, or returns 0. */ |
| /* The fixed-point arithmetic of bisection is inherently stable */ |
| /* but may loose accuracy in the two lowest bits. To compensate, */ |
| /* we upscale the segment if there is room. Large values may need */ |
| /* to be downscaled to avoid overflows during bisection. */ |
| /* It is called with either q2 or q3 positive, which is necessary */ |
| /* for the peak to exist and avoids undefined FT_MSB. */ |
| |
| shift = 27 - FT_MSB( (FT_UInt32)( FT_ABS( q1 ) | |
| FT_ABS( q2 ) | |
| FT_ABS( q3 ) | |
| FT_ABS( q4 ) ) ); |
| |
| if ( shift > 0 ) |
| { |
| /* upscaling too much just wastes time */ |
| if ( shift > 2 ) |
| shift = 2; |
| |
| q1 *= 1 << shift; |
| q2 *= 1 << shift; |
| q3 *= 1 << shift; |
| q4 *= 1 << shift; |
| } |
| else |
| { |
| q1 >>= -shift; |
| q2 >>= -shift; |
| q3 >>= -shift; |
| q4 >>= -shift; |
| } |
| |
| /* for a peak to exist above 0, the cubic segment must have */ |
| /* at least one of its control off-points above 0. */ |
| while ( q2 > 0 || q3 > 0 ) |
| { |
| /* determine which half contains the maximum and split */ |
| if ( q1 + q2 > q3 + q4 ) /* first half */ |
| { |
| q4 = q4 + q3; |
| q3 = q3 + q2; |
| q2 = q2 + q1; |
| q4 = q4 + q3; |
| q3 = q3 + q2; |
| q4 = ( q4 + q3 ) >> 3; |
| q3 = q3 >> 2; |
| q2 = q2 >> 1; |
| } |
| else /* second half */ |
| { |
| q1 = q1 + q2; |
| q2 = q2 + q3; |
| q3 = q3 + q4; |
| q1 = q1 + q2; |
| q2 = q2 + q3; |
| q1 = ( q1 + q2 ) >> 3; |
| q2 = q2 >> 2; |
| q3 = q3 >> 1; |
| } |
| |
| /* check whether either end reached the maximum */ |
| if ( q1 == q2 && q1 >= q3 ) |
| { |
| peak = q1; |
| break; |
| } |
| if ( q3 == q4 && q2 <= q4 ) |
| { |
| peak = q4; |
| break; |
| } |
| } |
| |
| if ( shift > 0 ) |
| peak >>= shift; |
| else |
| peak <<= -shift; |
| |
| return peak; |
| } |
| |
| |
| static void |
| BBox_Cubic_Check( FT_Pos p1, |
| FT_Pos p2, |
| FT_Pos p3, |
| FT_Pos p4, |
| FT_Pos* min, |
| FT_Pos* max ) |
| { |
| /* This function is only called when a control off-point is outside */ |
| /* the bbox that contains all on-points. So at least one of the */ |
| /* conditions below holds and cubic_peak is called with at least one */ |
| /* non-zero argument. */ |
| |
| if ( p2 > *max || p3 > *max ) |
| *max += cubic_peak( p1 - *max, p2 - *max, p3 - *max, p4 - *max ); |
| |
| /* now flip the signs to update the minimum */ |
| if ( p2 < *min || p3 < *min ) |
| *min -= cubic_peak( *min - p1, *min - p2, *min - p3, *min - p4 ); |
| } |
| |
| |
| /************************************************************************** |
| * |
| * @Function: |
| * BBox_Cubic_To |
| * |
| * @Description: |
| * This function is used as a `cubic_to' emitter during |
| * FT_Outline_Decompose(). It checks a cubic Bezier curve with the |
| * current bounding box, and computes its extrema if necessary to |
| * update it. |
| * |
| * @Input: |
| * control1 :: |
| * A pointer to the first control point. |
| * |
| * control2 :: |
| * A pointer to the second control point. |
| * |
| * to :: |
| * A pointer to the destination vector. |
| * |
| * @InOut: |
| * user :: |
| * The address of the current walk context. |
| * |
| * @Return: |
| * Always 0. Needed for the interface only. |
| * |
| * @Note: |
| * In the case of a non-monotonous arc, we don't compute directly |
| * extremum coordinates, we subdivide instead. |
| */ |
| static int |
| BBox_Cubic_To( FT_Vector* control1, |
| FT_Vector* control2, |
| FT_Vector* to, |
| TBBox_Rec* user ) |
| { |
| /* We don't need to check `to' since it is always an on-point, */ |
| /* thus within the bbox. Only segments with an off-point outside */ |
| /* the bbox can possibly reach new extreme values. */ |
| |
| if ( CHECK_X( control1, user->bbox ) || |
| CHECK_X( control2, user->bbox ) ) |
| BBox_Cubic_Check( user->last.x, |
| control1->x, |
| control2->x, |
| to->x, |
| &user->bbox.xMin, |
| &user->bbox.xMax ); |
| |
| if ( CHECK_Y( control1, user->bbox ) || |
| CHECK_Y( control2, user->bbox ) ) |
| BBox_Cubic_Check( user->last.y, |
| control1->y, |
| control2->y, |
| to->y, |
| &user->bbox.yMin, |
| &user->bbox.yMax ); |
| |
| user->last = *to; |
| |
| return 0; |
| } |
| |
| |
| FT_DEFINE_OUTLINE_FUNCS( |
| bbox_interface, |
| |
| (FT_Outline_MoveTo_Func) BBox_Move_To, /* move_to */ |
| (FT_Outline_LineTo_Func) BBox_Line_To, /* line_to */ |
| (FT_Outline_ConicTo_Func)BBox_Conic_To, /* conic_to */ |
| (FT_Outline_CubicTo_Func)BBox_Cubic_To, /* cubic_to */ |
| 0, /* shift */ |
| 0 /* delta */ |
| ) |
| |
| |
| /* documentation is in ftbbox.h */ |
| |
| FT_EXPORT_DEF( FT_Error ) |
| FT_Outline_Get_BBox( FT_Outline* outline, |
| FT_BBox *abbox ) |
| { |
| FT_BBox cbox = { 0x7FFFFFFFL, 0x7FFFFFFFL, |
| -0x7FFFFFFFL, -0x7FFFFFFFL }; |
| FT_BBox bbox = { 0x7FFFFFFFL, 0x7FFFFFFFL, |
| -0x7FFFFFFFL, -0x7FFFFFFFL }; |
| FT_Vector* vec; |
| FT_UShort n; |
| |
| |
| if ( !abbox ) |
| return FT_THROW( Invalid_Argument ); |
| |
| if ( !outline ) |
| return FT_THROW( Invalid_Outline ); |
| |
| /* if outline is empty, return (0,0,0,0) */ |
| if ( outline->n_points == 0 || outline->n_contours <= 0 ) |
| { |
| abbox->xMin = abbox->xMax = 0; |
| abbox->yMin = abbox->yMax = 0; |
| |
| return 0; |
| } |
| |
| /* We compute the control box as well as the bounding box of */ |
| /* all `on' points in the outline. Then, if the two boxes */ |
| /* coincide, we exit immediately. */ |
| |
| vec = outline->points; |
| |
| for ( n = 0; n < outline->n_points; n++ ) |
| { |
| FT_UPDATE_BBOX( vec, cbox ); |
| |
| if ( FT_CURVE_TAG( outline->tags[n] ) == FT_CURVE_TAG_ON ) |
| FT_UPDATE_BBOX( vec, bbox ); |
| |
| vec++; |
| } |
| |
| /* test two boxes for equality */ |
| if ( cbox.xMin < bbox.xMin || cbox.xMax > bbox.xMax || |
| cbox.yMin < bbox.yMin || cbox.yMax > bbox.yMax ) |
| { |
| /* the two boxes are different, now walk over the outline to */ |
| /* get the Bezier arc extrema. */ |
| |
| FT_Error error; |
| TBBox_Rec user; |
| |
| |
| user.bbox = bbox; |
| |
| error = FT_Outline_Decompose( outline, &bbox_interface, &user ); |
| if ( error ) |
| return error; |
| |
| *abbox = user.bbox; |
| } |
| else |
| *abbox = bbox; |
| |
| return FT_Err_Ok; |
| } |
| |
| |
| /* END */ |