blob: 83d5315bb27ae33ff9485ea8a49f620a03aa4197 [file] [log] [blame]
"""_g_l_y_f.py -- Converter classes for the 'glyf' table."""
from __future__ import print_function, division, absolute_import
from collections import namedtuple
from fontTools.misc.py23 import *
from fontTools.misc import sstruct
from fontTools import ttLib
from fontTools import version
from fontTools.misc.textTools import safeEval, pad
from fontTools.misc.arrayTools import calcBounds, calcIntBounds, pointInRect
from fontTools.misc.bezierTools import calcQuadraticBounds
from fontTools.misc.fixedTools import (
fixedToFloat as fi2fl,
floatToFixed as fl2fi,
otRound,
)
from numbers import Number
from . import DefaultTable
from . import ttProgram
import sys
import struct
import array
import logging
import os
from fontTools.misc import xmlWriter
from fontTools.misc.filenames import userNameToFileName
log = logging.getLogger(__name__)
# We compute the version the same as is computed in ttlib/__init__
# so that we can write 'ttLibVersion' attribute of the glyf TTX files
# when glyf is written to separate files.
version = ".".join(version.split('.')[:2])
#
# The Apple and MS rasterizers behave differently for
# scaled composite components: one does scale first and then translate
# and the other does it vice versa. MS defined some flags to indicate
# the difference, but it seems nobody actually _sets_ those flags.
#
# Funny thing: Apple seems to _only_ do their thing in the
# WE_HAVE_A_SCALE (eg. Chicago) case, and not when it's WE_HAVE_AN_X_AND_Y_SCALE
# (eg. Charcoal)...
#
SCALE_COMPONENT_OFFSET_DEFAULT = 0 # 0 == MS, 1 == Apple
class table__g_l_y_f(DefaultTable.DefaultTable):
# this attribute controls the amount of padding applied to glyph data upon compile.
# Glyph lenghts are aligned to multiples of the specified value.
# Allowed values are (0, 1, 2, 4). '0' means no padding; '1' (default) also means
# no padding, except for when padding would allow to use short loca offsets.
padding = 1
def decompile(self, data, ttFont):
loca = ttFont['loca']
last = int(loca[0])
noname = 0
self.glyphs = {}
self.glyphOrder = glyphOrder = ttFont.getGlyphOrder()
for i in range(0, len(loca)-1):
try:
glyphName = glyphOrder[i]
except IndexError:
noname = noname + 1
glyphName = 'ttxautoglyph%s' % i
next = int(loca[i+1])
glyphdata = data[last:next]
if len(glyphdata) != (next - last):
raise ttLib.TTLibError("not enough 'glyf' table data")
glyph = Glyph(glyphdata)
self.glyphs[glyphName] = glyph
last = next
if len(data) - next >= 4:
log.warning(
"too much 'glyf' table data: expected %d, received %d bytes",
next, len(data))
if noname:
log.warning('%s glyphs have no name', noname)
if ttFont.lazy is False: # Be lazy for None and True
for glyph in self.glyphs.values():
glyph.expand(self)
def compile(self, ttFont):
if not hasattr(self, "glyphOrder"):
self.glyphOrder = ttFont.getGlyphOrder()
padding = self.padding
assert padding in (0, 1, 2, 4)
locations = []
currentLocation = 0
dataList = []
recalcBBoxes = ttFont.recalcBBoxes
for glyphName in self.glyphOrder:
glyph = self.glyphs[glyphName]
glyphData = glyph.compile(self, recalcBBoxes)
if padding > 1:
glyphData = pad(glyphData, size=padding)
locations.append(currentLocation)
currentLocation = currentLocation + len(glyphData)
dataList.append(glyphData)
locations.append(currentLocation)
if padding == 1 and currentLocation < 0x20000:
# See if we can pad any odd-lengthed glyphs to allow loca
# table to use the short offsets.
indices = [i for i,glyphData in enumerate(dataList) if len(glyphData) % 2 == 1]
if indices and currentLocation + len(indices) < 0x20000:
# It fits. Do it.
for i in indices:
dataList[i] += b'\0'
currentLocation = 0
for i,glyphData in enumerate(dataList):
locations[i] = currentLocation
currentLocation += len(glyphData)
locations[len(dataList)] = currentLocation
data = bytesjoin(dataList)
if 'loca' in ttFont:
ttFont['loca'].set(locations)
if 'maxp' in ttFont:
ttFont['maxp'].numGlyphs = len(self.glyphs)
return data
def toXML(self, writer, ttFont, splitGlyphs=False):
notice = (
"The xMin, yMin, xMax and yMax values\n"
"will be recalculated by the compiler.")
glyphNames = ttFont.getGlyphNames()
if not splitGlyphs:
writer.newline()
writer.comment(notice)
writer.newline()
writer.newline()
numGlyphs = len(glyphNames)
if splitGlyphs:
path, ext = os.path.splitext(writer.file.name)
existingGlyphFiles = set()
for glyphName in glyphNames:
glyph = self[glyphName]
if glyph.numberOfContours:
if splitGlyphs:
glyphPath = userNameToFileName(
tounicode(glyphName, 'utf-8'),
existingGlyphFiles,
prefix=path + ".",
suffix=ext)
existingGlyphFiles.add(glyphPath.lower())
glyphWriter = xmlWriter.XMLWriter(
glyphPath, idlefunc=writer.idlefunc,
newlinestr=writer.newlinestr)
glyphWriter.begintag("ttFont", ttLibVersion=version)
glyphWriter.newline()
glyphWriter.begintag("glyf")
glyphWriter.newline()
glyphWriter.comment(notice)
glyphWriter.newline()
writer.simpletag("TTGlyph", src=os.path.basename(glyphPath))
else:
glyphWriter = writer
glyphWriter.begintag('TTGlyph', [
("name", glyphName),
("xMin", glyph.xMin),
("yMin", glyph.yMin),
("xMax", glyph.xMax),
("yMax", glyph.yMax),
])
glyphWriter.newline()
glyph.toXML(glyphWriter, ttFont)
glyphWriter.endtag('TTGlyph')
glyphWriter.newline()
if splitGlyphs:
glyphWriter.endtag("glyf")
glyphWriter.newline()
glyphWriter.endtag("ttFont")
glyphWriter.newline()
glyphWriter.close()
else:
writer.simpletag('TTGlyph', name=glyphName)
writer.comment("contains no outline data")
if not splitGlyphs:
writer.newline()
writer.newline()
def fromXML(self, name, attrs, content, ttFont):
if name != "TTGlyph":
return
if not hasattr(self, "glyphs"):
self.glyphs = {}
if not hasattr(self, "glyphOrder"):
self.glyphOrder = ttFont.getGlyphOrder()
glyphName = attrs["name"]
log.debug("unpacking glyph '%s'", glyphName)
glyph = Glyph()
for attr in ['xMin', 'yMin', 'xMax', 'yMax']:
setattr(glyph, attr, safeEval(attrs.get(attr, '0')))
self.glyphs[glyphName] = glyph
for element in content:
if not isinstance(element, tuple):
continue
name, attrs, content = element
glyph.fromXML(name, attrs, content, ttFont)
if not ttFont.recalcBBoxes:
glyph.compact(self, 0)
def setGlyphOrder(self, glyphOrder):
self.glyphOrder = glyphOrder
def getGlyphName(self, glyphID):
return self.glyphOrder[glyphID]
def getGlyphID(self, glyphName):
# XXX optimize with reverse dict!!!
return self.glyphOrder.index(glyphName)
def removeHinting(self):
for glyph in self.glyphs.values():
glyph.removeHinting()
def keys(self):
return self.glyphs.keys()
def has_key(self, glyphName):
return glyphName in self.glyphs
__contains__ = has_key
def __getitem__(self, glyphName):
glyph = self.glyphs[glyphName]
glyph.expand(self)
return glyph
def __setitem__(self, glyphName, glyph):
self.glyphs[glyphName] = glyph
if glyphName not in self.glyphOrder:
self.glyphOrder.append(glyphName)
def __delitem__(self, glyphName):
del self.glyphs[glyphName]
self.glyphOrder.remove(glyphName)
def __len__(self):
assert len(self.glyphOrder) == len(self.glyphs)
return len(self.glyphs)
glyphHeaderFormat = """
> # big endian
numberOfContours: h
xMin: h
yMin: h
xMax: h
yMax: h
"""
# flags
flagOnCurve = 0x01
flagXShort = 0x02
flagYShort = 0x04
flagRepeat = 0x08
flagXsame = 0x10
flagYsame = 0x20
flagOverlapSimple = 0x40
flagReserved = 0x80
# These flags are kept for XML output after decompiling the coordinates
keepFlags = flagOnCurve + flagOverlapSimple
_flagSignBytes = {
0: 2,
flagXsame: 0,
flagXShort|flagXsame: +1,
flagXShort: -1,
flagYsame: 0,
flagYShort|flagYsame: +1,
flagYShort: -1,
}
def flagBest(x, y, onCurve):
"""For a given x,y delta pair, returns the flag that packs this pair
most efficiently, as well as the number of byte cost of such flag."""
flag = flagOnCurve if onCurve else 0
cost = 0
# do x
if x == 0:
flag = flag | flagXsame
elif -255 <= x <= 255:
flag = flag | flagXShort
if x > 0:
flag = flag | flagXsame
cost += 1
else:
cost += 2
# do y
if y == 0:
flag = flag | flagYsame
elif -255 <= y <= 255:
flag = flag | flagYShort
if y > 0:
flag = flag | flagYsame
cost += 1
else:
cost += 2
return flag, cost
def flagFits(newFlag, oldFlag, mask):
newBytes = _flagSignBytes[newFlag & mask]
oldBytes = _flagSignBytes[oldFlag & mask]
return newBytes == oldBytes or abs(newBytes) > abs(oldBytes)
def flagSupports(newFlag, oldFlag):
return ((oldFlag & flagOnCurve) == (newFlag & flagOnCurve) and
flagFits(newFlag, oldFlag, flagXsame|flagXShort) and
flagFits(newFlag, oldFlag, flagYsame|flagYShort))
def flagEncodeCoord(flag, mask, coord, coordBytes):
byteCount = _flagSignBytes[flag & mask]
if byteCount == 1:
coordBytes.append(coord)
elif byteCount == -1:
coordBytes.append(-coord)
elif byteCount == 2:
coordBytes.append((coord >> 8) & 0xFF)
coordBytes.append(coord & 0xFF)
def flagEncodeCoords(flag, x, y, xBytes, yBytes):
flagEncodeCoord(flag, flagXsame|flagXShort, x, xBytes)
flagEncodeCoord(flag, flagYsame|flagYShort, y, yBytes)
ARG_1_AND_2_ARE_WORDS = 0x0001 # if set args are words otherwise they are bytes
ARGS_ARE_XY_VALUES = 0x0002 # if set args are xy values, otherwise they are points
ROUND_XY_TO_GRID = 0x0004 # for the xy values if above is true
WE_HAVE_A_SCALE = 0x0008 # Sx = Sy, otherwise scale == 1.0
NON_OVERLAPPING = 0x0010 # set to same value for all components (obsolete!)
MORE_COMPONENTS = 0x0020 # indicates at least one more glyph after this one
WE_HAVE_AN_X_AND_Y_SCALE = 0x0040 # Sx, Sy
WE_HAVE_A_TWO_BY_TWO = 0x0080 # t00, t01, t10, t11
WE_HAVE_INSTRUCTIONS = 0x0100 # instructions follow
USE_MY_METRICS = 0x0200 # apply these metrics to parent glyph
OVERLAP_COMPOUND = 0x0400 # used by Apple in GX fonts
SCALED_COMPONENT_OFFSET = 0x0800 # composite designed to have the component offset scaled (designed for Apple)
UNSCALED_COMPONENT_OFFSET = 0x1000 # composite designed not to have the component offset scaled (designed for MS)
CompositeMaxpValues = namedtuple('CompositeMaxpValues', ['nPoints', 'nContours', 'maxComponentDepth'])
class Glyph(object):
def __init__(self, data=""):
if not data:
# empty char
self.numberOfContours = 0
return
self.data = data
def compact(self, glyfTable, recalcBBoxes=True):
data = self.compile(glyfTable, recalcBBoxes)
self.__dict__.clear()
self.data = data
def expand(self, glyfTable):
if not hasattr(self, "data"):
# already unpacked
return
if not self.data:
# empty char
del self.data
self.numberOfContours = 0
return
dummy, data = sstruct.unpack2(glyphHeaderFormat, self.data, self)
del self.data
# Some fonts (eg. Neirizi.ttf) have a 0 for numberOfContours in
# some glyphs; decompileCoordinates assumes that there's at least
# one, so short-circuit here.
if self.numberOfContours == 0:
return
if self.isComposite():
self.decompileComponents(data, glyfTable)
else:
self.decompileCoordinates(data)
def compile(self, glyfTable, recalcBBoxes=True):
if hasattr(self, "data"):
if recalcBBoxes:
# must unpack glyph in order to recalculate bounding box
self.expand(glyfTable)
else:
return self.data
if self.numberOfContours == 0:
return ""
if recalcBBoxes:
self.recalcBounds(glyfTable)
data = sstruct.pack(glyphHeaderFormat, self)
if self.isComposite():
data = data + self.compileComponents(glyfTable)
else:
data = data + self.compileCoordinates()
return data
def toXML(self, writer, ttFont):
if self.isComposite():
for compo in self.components:
compo.toXML(writer, ttFont)
haveInstructions = hasattr(self, "program")
else:
last = 0
for i in range(self.numberOfContours):
writer.begintag("contour")
writer.newline()
for j in range(last, self.endPtsOfContours[i] + 1):
attrs = [
("x", self.coordinates[j][0]),
("y", self.coordinates[j][1]),
("on", self.flags[j] & flagOnCurve),
]
if self.flags[j] & flagOverlapSimple:
# Apple's rasterizer uses flagOverlapSimple in the first contour/first pt to flag glyphs that contain overlapping contours
attrs.append(("overlap", 1))
writer.simpletag("pt", attrs)
writer.newline()
last = self.endPtsOfContours[i] + 1
writer.endtag("contour")
writer.newline()
haveInstructions = self.numberOfContours > 0
if haveInstructions:
if self.program:
writer.begintag("instructions")
writer.newline()
self.program.toXML(writer, ttFont)
writer.endtag("instructions")
else:
writer.simpletag("instructions")
writer.newline()
def fromXML(self, name, attrs, content, ttFont):
if name == "contour":
if self.numberOfContours < 0:
raise ttLib.TTLibError("can't mix composites and contours in glyph")
self.numberOfContours = self.numberOfContours + 1
coordinates = GlyphCoordinates()
flags = []
for element in content:
if not isinstance(element, tuple):
continue
name, attrs, content = element
if name != "pt":
continue # ignore anything but "pt"
coordinates.append((safeEval(attrs["x"]), safeEval(attrs["y"])))
flag = not not safeEval(attrs["on"])
if "overlap" in attrs and bool(safeEval(attrs["overlap"])):
flag |= flagOverlapSimple
flags.append(flag)
flags = array.array("B", flags)
if not hasattr(self, "coordinates"):
self.coordinates = coordinates
self.flags = flags
self.endPtsOfContours = [len(coordinates)-1]
else:
self.coordinates.extend (coordinates)
self.flags.extend(flags)
self.endPtsOfContours.append(len(self.coordinates)-1)
elif name == "component":
if self.numberOfContours > 0:
raise ttLib.TTLibError("can't mix composites and contours in glyph")
self.numberOfContours = -1
if not hasattr(self, "components"):
self.components = []
component = GlyphComponent()
self.components.append(component)
component.fromXML(name, attrs, content, ttFont)
elif name == "instructions":
self.program = ttProgram.Program()
for element in content:
if not isinstance(element, tuple):
continue
name, attrs, content = element
self.program.fromXML(name, attrs, content, ttFont)
def getCompositeMaxpValues(self, glyfTable, maxComponentDepth=1):
assert self.isComposite()
nContours = 0
nPoints = 0
for compo in self.components:
baseGlyph = glyfTable[compo.glyphName]
if baseGlyph.numberOfContours == 0:
continue
elif baseGlyph.numberOfContours > 0:
nP, nC = baseGlyph.getMaxpValues()
else:
nP, nC, maxComponentDepth = baseGlyph.getCompositeMaxpValues(
glyfTable, maxComponentDepth + 1)
nPoints = nPoints + nP
nContours = nContours + nC
return CompositeMaxpValues(nPoints, nContours, maxComponentDepth)
def getMaxpValues(self):
assert self.numberOfContours > 0
return len(self.coordinates), len(self.endPtsOfContours)
def decompileComponents(self, data, glyfTable):
self.components = []
more = 1
haveInstructions = 0
while more:
component = GlyphComponent()
more, haveInstr, data = component.decompile(data, glyfTable)
haveInstructions = haveInstructions | haveInstr
self.components.append(component)
if haveInstructions:
numInstructions, = struct.unpack(">h", data[:2])
data = data[2:]
self.program = ttProgram.Program()
self.program.fromBytecode(data[:numInstructions])
data = data[numInstructions:]
if len(data) >= 4:
log.warning(
"too much glyph data at the end of composite glyph: %d excess bytes",
len(data))
def decompileCoordinates(self, data):
endPtsOfContours = array.array("h")
endPtsOfContours.fromstring(data[:2*self.numberOfContours])
if sys.byteorder != "big": endPtsOfContours.byteswap()
self.endPtsOfContours = endPtsOfContours.tolist()
data = data[2*self.numberOfContours:]
instructionLength, = struct.unpack(">h", data[:2])
data = data[2:]
self.program = ttProgram.Program()
self.program.fromBytecode(data[:instructionLength])
data = data[instructionLength:]
nCoordinates = self.endPtsOfContours[-1] + 1
flags, xCoordinates, yCoordinates = \
self.decompileCoordinatesRaw(nCoordinates, data)
# fill in repetitions and apply signs
self.coordinates = coordinates = GlyphCoordinates.zeros(nCoordinates)
xIndex = 0
yIndex = 0
for i in range(nCoordinates):
flag = flags[i]
# x coordinate
if flag & flagXShort:
if flag & flagXsame:
x = xCoordinates[xIndex]
else:
x = -xCoordinates[xIndex]
xIndex = xIndex + 1
elif flag & flagXsame:
x = 0
else:
x = xCoordinates[xIndex]
xIndex = xIndex + 1
# y coordinate
if flag & flagYShort:
if flag & flagYsame:
y = yCoordinates[yIndex]
else:
y = -yCoordinates[yIndex]
yIndex = yIndex + 1
elif flag & flagYsame:
y = 0
else:
y = yCoordinates[yIndex]
yIndex = yIndex + 1
coordinates[i] = (x, y)
assert xIndex == len(xCoordinates)
assert yIndex == len(yCoordinates)
coordinates.relativeToAbsolute()
# discard all flags except "keepFlags"
self.flags = array.array("B", (f & keepFlags for f in flags))
def decompileCoordinatesRaw(self, nCoordinates, data):
# unpack flags and prepare unpacking of coordinates
flags = array.array("B", [0] * nCoordinates)
# Warning: deep Python trickery going on. We use the struct module to unpack
# the coordinates. We build a format string based on the flags, so we can
# unpack the coordinates in one struct.unpack() call.
xFormat = ">" # big endian
yFormat = ">" # big endian
i = j = 0
while True:
flag = byteord(data[i])
i = i + 1
repeat = 1
if flag & flagRepeat:
repeat = byteord(data[i]) + 1
i = i + 1
for k in range(repeat):
if flag & flagXShort:
xFormat = xFormat + 'B'
elif not (flag & flagXsame):
xFormat = xFormat + 'h'
if flag & flagYShort:
yFormat = yFormat + 'B'
elif not (flag & flagYsame):
yFormat = yFormat + 'h'
flags[j] = flag
j = j + 1
if j >= nCoordinates:
break
assert j == nCoordinates, "bad glyph flags"
data = data[i:]
# unpack raw coordinates, krrrrrr-tching!
xDataLen = struct.calcsize(xFormat)
yDataLen = struct.calcsize(yFormat)
if len(data) - (xDataLen + yDataLen) >= 4:
log.warning(
"too much glyph data: %d excess bytes", len(data) - (xDataLen + yDataLen))
xCoordinates = struct.unpack(xFormat, data[:xDataLen])
yCoordinates = struct.unpack(yFormat, data[xDataLen:xDataLen+yDataLen])
return flags, xCoordinates, yCoordinates
def compileComponents(self, glyfTable):
data = b""
lastcomponent = len(self.components) - 1
more = 1
haveInstructions = 0
for i in range(len(self.components)):
if i == lastcomponent:
haveInstructions = hasattr(self, "program")
more = 0
compo = self.components[i]
data = data + compo.compile(more, haveInstructions, glyfTable)
if haveInstructions:
instructions = self.program.getBytecode()
data = data + struct.pack(">h", len(instructions)) + instructions
return data
def compileCoordinates(self):
assert len(self.coordinates) == len(self.flags)
data = []
endPtsOfContours = array.array("h", self.endPtsOfContours)
if sys.byteorder != "big": endPtsOfContours.byteswap()
data.append(endPtsOfContours.tostring())
instructions = self.program.getBytecode()
data.append(struct.pack(">h", len(instructions)))
data.append(instructions)
deltas = self.coordinates.copy()
if deltas.isFloat():
# Warn?
deltas.toInt()
deltas.absoluteToRelative()
# TODO(behdad): Add a configuration option for this?
deltas = self.compileDeltasGreedy(self.flags, deltas)
#deltas = self.compileDeltasOptimal(self.flags, deltas)
data.extend(deltas)
return bytesjoin(data)
def compileDeltasGreedy(self, flags, deltas):
# Implements greedy algorithm for packing coordinate deltas:
# uses shortest representation one coordinate at a time.
compressedflags = []
xPoints = []
yPoints = []
lastflag = None
repeat = 0
for flag,(x,y) in zip(flags, deltas):
# Oh, the horrors of TrueType
# do x
if x == 0:
flag = flag | flagXsame
elif -255 <= x <= 255:
flag = flag | flagXShort
if x > 0:
flag = flag | flagXsame
else:
x = -x
xPoints.append(bytechr(x))
else:
xPoints.append(struct.pack(">h", x))
# do y
if y == 0:
flag = flag | flagYsame
elif -255 <= y <= 255:
flag = flag | flagYShort
if y > 0:
flag = flag | flagYsame
else:
y = -y
yPoints.append(bytechr(y))
else:
yPoints.append(struct.pack(">h", y))
# handle repeating flags
if flag == lastflag and repeat != 255:
repeat = repeat + 1
if repeat == 1:
compressedflags.append(flag)
else:
compressedflags[-2] = flag | flagRepeat
compressedflags[-1] = repeat
else:
repeat = 0
compressedflags.append(flag)
lastflag = flag
compressedFlags = array.array("B", compressedflags).tostring()
compressedXs = bytesjoin(xPoints)
compressedYs = bytesjoin(yPoints)
return (compressedFlags, compressedXs, compressedYs)
def compileDeltasOptimal(self, flags, deltas):
# Implements optimal, dynaic-programming, algorithm for packing coordinate
# deltas. The savings are negligible :(.
candidates = []
bestTuple = None
bestCost = 0
repeat = 0
for flag,(x,y) in zip(flags, deltas):
# Oh, the horrors of TrueType
flag, coordBytes = flagBest(x, y, flag)
bestCost += 1 + coordBytes
newCandidates = [(bestCost, bestTuple, flag, coordBytes),
(bestCost+1, bestTuple, (flag|flagRepeat), coordBytes)]
for lastCost,lastTuple,lastFlag,coordBytes in candidates:
if lastCost + coordBytes <= bestCost + 1 and (lastFlag & flagRepeat) and (lastFlag < 0xff00) and flagSupports(lastFlag, flag):
if (lastFlag & 0xFF) == (flag|flagRepeat) and lastCost == bestCost + 1:
continue
newCandidates.append((lastCost + coordBytes, lastTuple, lastFlag+256, coordBytes))
candidates = newCandidates
bestTuple = min(candidates, key=lambda t:t[0])
bestCost = bestTuple[0]
flags = []
while bestTuple:
cost, bestTuple, flag, coordBytes = bestTuple
flags.append(flag)
flags.reverse()
compressedFlags = array.array("B")
compressedXs = array.array("B")
compressedYs = array.array("B")
coords = iter(deltas)
ff = []
for flag in flags:
repeatCount, flag = flag >> 8, flag & 0xFF
compressedFlags.append(flag)
if flag & flagRepeat:
assert(repeatCount > 0)
compressedFlags.append(repeatCount)
else:
assert(repeatCount == 0)
for i in range(1 + repeatCount):
x,y = next(coords)
flagEncodeCoords(flag, x, y, compressedXs, compressedYs)
ff.append(flag)
try:
next(coords)
raise Exception("internal error")
except StopIteration:
pass
compressedFlags = compressedFlags.tostring()
compressedXs = compressedXs.tostring()
compressedYs = compressedYs.tostring()
return (compressedFlags, compressedXs, compressedYs)
def recalcBounds(self, glyfTable):
coords, endPts, flags = self.getCoordinates(glyfTable)
if len(coords) > 0:
if 0:
# This branch calculates exact glyph outline bounds
# analytically, handling cases without on-curve
# extremas, etc. However, the glyf table header
# simply says that the bounds should be min/max x/y
# "for coordinate data", so I suppose that means no
# fancy thing here, just get extremas of all coord
# points (on and off). As such, this branch is
# disabled.
# Collect on-curve points
onCurveCoords = [coords[j] for j in range(len(coords))
if flags[j] & flagOnCurve]
# Add implicit on-curve points
start = 0
for end in endPts:
last = end
for j in range(start, end + 1):
if not ((flags[j] | flags[last]) & flagOnCurve):
x = (coords[last][0] + coords[j][0]) / 2
y = (coords[last][1] + coords[j][1]) / 2
onCurveCoords.append((x,y))
last = j
start = end + 1
# Add bounds for curves without an explicit extrema
start = 0
for end in endPts:
last = end
for j in range(start, end + 1):
if not (flags[j] & flagOnCurve):
next = j + 1 if j < end else start
bbox = calcBounds([coords[last], coords[next]])
if not pointInRect(coords[j], bbox):
# Ouch!
log.warning("Outline has curve with implicit extrema.")
# Ouch! Find analytical curve bounds.
pthis = coords[j]
plast = coords[last]
if not (flags[last] & flagOnCurve):
plast = ((pthis[0]+plast[0])/2, (pthis[1]+plast[1])/2)
pnext = coords[next]
if not (flags[next] & flagOnCurve):
pnext = ((pthis[0]+pnext[0])/2, (pthis[1]+pnext[1])/2)
bbox = calcQuadraticBounds(plast, pthis, pnext)
onCurveCoords.append((bbox[0],bbox[1]))
onCurveCoords.append((bbox[2],bbox[3]))
last = j
start = end + 1
self.xMin, self.yMin, self.xMax, self.yMax = calcIntBounds(onCurveCoords)
else:
self.xMin, self.yMin, self.xMax, self.yMax = calcIntBounds(coords)
else:
self.xMin, self.yMin, self.xMax, self.yMax = (0, 0, 0, 0)
def isComposite(self):
"""Can be called on compact or expanded glyph."""
if hasattr(self, "data") and self.data:
return struct.unpack(">h", self.data[:2])[0] == -1
else:
return self.numberOfContours == -1
def __getitem__(self, componentIndex):
if not self.isComposite():
raise ttLib.TTLibError("can't use glyph as sequence")
return self.components[componentIndex]
def getCoordinates(self, glyfTable):
if self.numberOfContours > 0:
return self.coordinates, self.endPtsOfContours, self.flags
elif self.isComposite():
# it's a composite
allCoords = GlyphCoordinates()
allFlags = array.array("B")
allEndPts = []
for compo in self.components:
g = glyfTable[compo.glyphName]
try:
coordinates, endPts, flags = g.getCoordinates(glyfTable)
except RecursionError:
raise ttLib.TTLibError("glyph '%s' contains a recursive component reference" % compo.glyphName)
if hasattr(compo, "firstPt"):
# move according to two reference points
x1,y1 = allCoords[compo.firstPt]
x2,y2 = coordinates[compo.secondPt]
move = x1-x2, y1-y2
else:
move = compo.x, compo.y
coordinates = GlyphCoordinates(coordinates)
if not hasattr(compo, "transform"):
coordinates.translate(move)
else:
apple_way = compo.flags & SCALED_COMPONENT_OFFSET
ms_way = compo.flags & UNSCALED_COMPONENT_OFFSET
assert not (apple_way and ms_way)
if not (apple_way or ms_way):
scale_component_offset = SCALE_COMPONENT_OFFSET_DEFAULT # see top of this file
else:
scale_component_offset = apple_way
if scale_component_offset:
# the Apple way: first move, then scale (ie. scale the component offset)
coordinates.translate(move)
coordinates.transform(compo.transform)
else:
# the MS way: first scale, then move
coordinates.transform(compo.transform)
coordinates.translate(move)
offset = len(allCoords)
allEndPts.extend(e + offset for e in endPts)
allCoords.extend(coordinates)
allFlags.extend(flags)
return allCoords, allEndPts, allFlags
else:
return GlyphCoordinates(), [], array.array("B")
def getComponentNames(self, glyfTable):
if not hasattr(self, "data"):
if self.isComposite():
return [c.glyphName for c in self.components]
else:
return []
# Extract components without expanding glyph
if not self.data or struct.unpack(">h", self.data[:2])[0] >= 0:
return [] # Not composite
data = self.data
i = 10
components = []
more = 1
while more:
flags, glyphID = struct.unpack(">HH", data[i:i+4])
i += 4
flags = int(flags)
components.append(glyfTable.getGlyphName(int(glyphID)))
if flags & ARG_1_AND_2_ARE_WORDS: i += 4
else: i += 2
if flags & WE_HAVE_A_SCALE: i += 2
elif flags & WE_HAVE_AN_X_AND_Y_SCALE: i += 4
elif flags & WE_HAVE_A_TWO_BY_TWO: i += 8
more = flags & MORE_COMPONENTS
return components
def trim(self, remove_hinting=False):
""" Remove padding and, if requested, hinting, from a glyph.
This works on both expanded and compacted glyphs, without
expanding it."""
if not hasattr(self, "data"):
if remove_hinting:
if self.isComposite():
if hasattr(self, "program"):
del self.program
else:
self.program = ttProgram.Program()
self.program.fromBytecode([])
# No padding to trim.
return
if not self.data:
return
numContours = struct.unpack(">h", self.data[:2])[0]
data = array.array("B", self.data)
i = 10
if numContours >= 0:
i += 2 * numContours # endPtsOfContours
nCoordinates = ((data[i-2] << 8) | data[i-1]) + 1
instructionLen = (data[i] << 8) | data[i+1]
if remove_hinting:
# Zero instruction length
data[i] = data [i+1] = 0
i += 2
if instructionLen:
# Splice it out
data = data[:i] + data[i+instructionLen:]
instructionLen = 0
else:
i += 2 + instructionLen
coordBytes = 0
j = 0
while True:
flag = data[i]
i = i + 1
repeat = 1
if flag & flagRepeat:
repeat = data[i] + 1
i = i + 1
xBytes = yBytes = 0
if flag & flagXShort:
xBytes = 1
elif not (flag & flagXsame):
xBytes = 2
if flag & flagYShort:
yBytes = 1
elif not (flag & flagYsame):
yBytes = 2
coordBytes += (xBytes + yBytes) * repeat
j += repeat
if j >= nCoordinates:
break
assert j == nCoordinates, "bad glyph flags"
i += coordBytes
# Remove padding
data = data[:i]
else:
more = 1
we_have_instructions = False
while more:
flags =(data[i] << 8) | data[i+1]
if remove_hinting:
flags &= ~WE_HAVE_INSTRUCTIONS
if flags & WE_HAVE_INSTRUCTIONS:
we_have_instructions = True
data[i+0] = flags >> 8
data[i+1] = flags & 0xFF
i += 4
flags = int(flags)
if flags & ARG_1_AND_2_ARE_WORDS: i += 4
else: i += 2
if flags & WE_HAVE_A_SCALE: i += 2
elif flags & WE_HAVE_AN_X_AND_Y_SCALE: i += 4
elif flags & WE_HAVE_A_TWO_BY_TWO: i += 8
more = flags & MORE_COMPONENTS
if we_have_instructions:
instructionLen = (data[i] << 8) | data[i+1]
i += 2 + instructionLen
# Remove padding
data = data[:i]
self.data = data.tostring()
def removeHinting(self):
self.trim (remove_hinting=True)
def draw(self, pen, glyfTable, offset=0):
if self.isComposite():
for component in self.components:
glyphName, transform = component.getComponentInfo()
pen.addComponent(glyphName, transform)
return
coordinates, endPts, flags = self.getCoordinates(glyfTable)
if offset:
coordinates = coordinates.copy()
coordinates.translate((offset, 0))
start = 0
for end in endPts:
end = end + 1
contour = coordinates[start:end]
cFlags = flags[start:end]
start = end
if 1 not in cFlags:
# There is not a single on-curve point on the curve,
# use pen.qCurveTo's special case by specifying None
# as the on-curve point.
contour.append(None)
pen.qCurveTo(*contour)
else:
# Shuffle the points so that contour the is guaranteed
# to *end* in an on-curve point, which we'll use for
# the moveTo.
firstOnCurve = cFlags.index(1) + 1
contour = contour[firstOnCurve:] + contour[:firstOnCurve]
cFlags = cFlags[firstOnCurve:] + cFlags[:firstOnCurve]
pen.moveTo(contour[-1])
while contour:
nextOnCurve = cFlags.index(1) + 1
if nextOnCurve == 1:
pen.lineTo(contour[0])
else:
pen.qCurveTo(*contour[:nextOnCurve])
contour = contour[nextOnCurve:]
cFlags = cFlags[nextOnCurve:]
pen.closePath()
def drawPoints(self, pen, glyfTable, offset=0):
"""Draw the glyph using the supplied pointPen. Opposed to Glyph.draw(),
this will not change the point indices.
"""
if self.isComposite():
for component in self.components:
glyphName, transform = component.getComponentInfo()
pen.addComponent(glyphName, transform)
return
coordinates, endPts, flags = self.getCoordinates(glyfTable)
if offset:
coordinates = coordinates.copy()
coordinates.translate((offset, 0))
start = 0
for end in endPts:
end = end + 1
contour = coordinates[start:end]
cFlags = flags[start:end]
start = end
pen.beginPath()
# Start with the appropriate segment type based on the final segment
segmentType = "line" if cFlags[-1] == 1 else "qcurve"
for i, pt in enumerate(contour):
if cFlags[i] == 1:
pen.addPoint(pt, segmentType=segmentType)
segmentType = "line"
else:
pen.addPoint(pt)
segmentType = "qcurve"
pen.endPath()
def __eq__(self, other):
if type(self) != type(other):
return NotImplemented
return self.__dict__ == other.__dict__
def __ne__(self, other):
result = self.__eq__(other)
return result if result is NotImplemented else not result
class GlyphComponent(object):
def __init__(self):
pass
def getComponentInfo(self):
"""Return the base glyph name and a transform."""
# XXX Ignoring self.firstPt & self.lastpt for now: I need to implement
# something equivalent in fontTools.objects.glyph (I'd rather not
# convert it to an absolute offset, since it is valuable information).
# This method will now raise "AttributeError: x" on glyphs that use
# this TT feature.
if hasattr(self, "transform"):
[[xx, xy], [yx, yy]] = self.transform
trans = (xx, xy, yx, yy, self.x, self.y)
else:
trans = (1, 0, 0, 1, self.x, self.y)
return self.glyphName, trans
def decompile(self, data, glyfTable):
flags, glyphID = struct.unpack(">HH", data[:4])
self.flags = int(flags)
glyphID = int(glyphID)
self.glyphName = glyfTable.getGlyphName(int(glyphID))
data = data[4:]
if self.flags & ARG_1_AND_2_ARE_WORDS:
if self.flags & ARGS_ARE_XY_VALUES:
self.x, self.y = struct.unpack(">hh", data[:4])
else:
x, y = struct.unpack(">HH", data[:4])
self.firstPt, self.secondPt = int(x), int(y)
data = data[4:]
else:
if self.flags & ARGS_ARE_XY_VALUES:
self.x, self.y = struct.unpack(">bb", data[:2])
else:
x, y = struct.unpack(">BB", data[:2])
self.firstPt, self.secondPt = int(x), int(y)
data = data[2:]
if self.flags & WE_HAVE_A_SCALE:
scale, = struct.unpack(">h", data[:2])
self.transform = [[fi2fl(scale,14), 0], [0, fi2fl(scale,14)]] # fixed 2.14
data = data[2:]
elif self.flags & WE_HAVE_AN_X_AND_Y_SCALE:
xscale, yscale = struct.unpack(">hh", data[:4])
self.transform = [[fi2fl(xscale,14), 0], [0, fi2fl(yscale,14)]] # fixed 2.14
data = data[4:]
elif self.flags & WE_HAVE_A_TWO_BY_TWO:
(xscale, scale01,
scale10, yscale) = struct.unpack(">hhhh", data[:8])
self.transform = [[fi2fl(xscale,14), fi2fl(scale01,14)],
[fi2fl(scale10,14), fi2fl(yscale,14)]] # fixed 2.14
data = data[8:]
more = self.flags & MORE_COMPONENTS
haveInstructions = self.flags & WE_HAVE_INSTRUCTIONS
self.flags = self.flags & (ROUND_XY_TO_GRID | USE_MY_METRICS |
SCALED_COMPONENT_OFFSET | UNSCALED_COMPONENT_OFFSET |
NON_OVERLAPPING | OVERLAP_COMPOUND)
return more, haveInstructions, data
def compile(self, more, haveInstructions, glyfTable):
data = b""
# reset all flags we will calculate ourselves
flags = self.flags & (ROUND_XY_TO_GRID | USE_MY_METRICS |
SCALED_COMPONENT_OFFSET | UNSCALED_COMPONENT_OFFSET |
NON_OVERLAPPING | OVERLAP_COMPOUND)
if more:
flags = flags | MORE_COMPONENTS
if haveInstructions:
flags = flags | WE_HAVE_INSTRUCTIONS
if hasattr(self, "firstPt"):
if (0 <= self.firstPt <= 255) and (0 <= self.secondPt <= 255):
data = data + struct.pack(">BB", self.firstPt, self.secondPt)
else:
data = data + struct.pack(">HH", self.firstPt, self.secondPt)
flags = flags | ARG_1_AND_2_ARE_WORDS
else:
x = otRound(self.x)
y = otRound(self.y)
flags = flags | ARGS_ARE_XY_VALUES
if (-128 <= x <= 127) and (-128 <= y <= 127):
data = data + struct.pack(">bb", x, y)
else:
data = data + struct.pack(">hh", x, y)
flags = flags | ARG_1_AND_2_ARE_WORDS
if hasattr(self, "transform"):
transform = [[fl2fi(x,14) for x in row] for row in self.transform]
if transform[0][1] or transform[1][0]:
flags = flags | WE_HAVE_A_TWO_BY_TWO
data = data + struct.pack(">hhhh",
transform[0][0], transform[0][1],
transform[1][0], transform[1][1])
elif transform[0][0] != transform[1][1]:
flags = flags | WE_HAVE_AN_X_AND_Y_SCALE
data = data + struct.pack(">hh",
transform[0][0], transform[1][1])
else:
flags = flags | WE_HAVE_A_SCALE
data = data + struct.pack(">h",
transform[0][0])
glyphID = glyfTable.getGlyphID(self.glyphName)
return struct.pack(">HH", flags, glyphID) + data
def toXML(self, writer, ttFont):
attrs = [("glyphName", self.glyphName)]
if not hasattr(self, "firstPt"):
attrs = attrs + [("x", self.x), ("y", self.y)]
else:
attrs = attrs + [("firstPt", self.firstPt), ("secondPt", self.secondPt)]
if hasattr(self, "transform"):
transform = self.transform
if transform[0][1] or transform[1][0]:
attrs = attrs + [
("scalex", transform[0][0]), ("scale01", transform[0][1]),
("scale10", transform[1][0]), ("scaley", transform[1][1]),
]
elif transform[0][0] != transform[1][1]:
attrs = attrs + [
("scalex", transform[0][0]), ("scaley", transform[1][1]),
]
else:
attrs = attrs + [("scale", transform[0][0])]
attrs = attrs + [("flags", hex(self.flags))]
writer.simpletag("component", attrs)
writer.newline()
def fromXML(self, name, attrs, content, ttFont):
self.glyphName = attrs["glyphName"]
if "firstPt" in attrs:
self.firstPt = safeEval(attrs["firstPt"])
self.secondPt = safeEval(attrs["secondPt"])
else:
self.x = safeEval(attrs["x"])
self.y = safeEval(attrs["y"])
if "scale01" in attrs:
scalex = safeEval(attrs["scalex"])
scale01 = safeEval(attrs["scale01"])
scale10 = safeEval(attrs["scale10"])
scaley = safeEval(attrs["scaley"])
self.transform = [[scalex, scale01], [scale10, scaley]]
elif "scalex" in attrs:
scalex = safeEval(attrs["scalex"])
scaley = safeEval(attrs["scaley"])
self.transform = [[scalex, 0], [0, scaley]]
elif "scale" in attrs:
scale = safeEval(attrs["scale"])
self.transform = [[scale, 0], [0, scale]]
self.flags = safeEval(attrs["flags"])
def __eq__(self, other):
if type(self) != type(other):
return NotImplemented
return self.__dict__ == other.__dict__
def __ne__(self, other):
result = self.__eq__(other)
return result if result is NotImplemented else not result
class GlyphCoordinates(object):
def __init__(self, iterable=[], typecode="h"):
self._a = array.array(typecode)
self.extend(iterable)
@property
def array(self):
return self._a
def isFloat(self):
return self._a.typecode == 'd'
def _ensureFloat(self):
if self.isFloat():
return
# The conversion to list() is to work around Jython bug
self._a = array.array("d", list(self._a))
def _checkFloat(self, p):
if self.isFloat():
return p
if any(v > 0x7FFF or v < -0x8000 for v in p):
self._ensureFloat()
return p
if any(isinstance(v, float) for v in p):
p = [int(v) if int(v) == v else v for v in p]
if any(isinstance(v, float) for v in p):
self._ensureFloat()
return p
@staticmethod
def zeros(count):
return GlyphCoordinates([(0,0)] * count)
def copy(self):
c = GlyphCoordinates(typecode=self._a.typecode)
c._a.extend(self._a)
return c
def __len__(self):
return len(self._a) // 2
def __getitem__(self, k):
if isinstance(k, slice):
indices = range(*k.indices(len(self)))
return [self[i] for i in indices]
return self._a[2*k],self._a[2*k+1]
def __setitem__(self, k, v):
if isinstance(k, slice):
indices = range(*k.indices(len(self)))
# XXX This only works if len(v) == len(indices)
for j,i in enumerate(indices):
self[i] = v[j]
return
v = self._checkFloat(v)
self._a[2*k],self._a[2*k+1] = v
def __delitem__(self, i):
i = (2*i) % len(self._a)
del self._a[i]
del self._a[i]
def __repr__(self):
return 'GlyphCoordinates(['+','.join(str(c) for c in self)+'])'
def append(self, p):
p = self._checkFloat(p)
self._a.extend(tuple(p))
def extend(self, iterable):
for p in iterable:
p = self._checkFloat(p)
self._a.extend(p)
def toInt(self):
if not self.isFloat():
return
a = array.array("h")
for n in self._a:
a.append(otRound(n))
self._a = a
def relativeToAbsolute(self):
a = self._a
x,y = 0,0
for i in range(len(a) // 2):
x = a[2*i ] + x
y = a[2*i+1] + y
self[i] = (x, y)
def absoluteToRelative(self):
a = self._a
x,y = 0,0
for i in range(len(a) // 2):
dx = a[2*i ] - x
dy = a[2*i+1] - y
x = a[2*i ]
y = a[2*i+1]
self[i] = (dx, dy)
def translate(self, p):
"""
>>> GlyphCoordinates([(1,2)]).translate((.5,0))
"""
(x,y) = self._checkFloat(p)
a = self._a
for i in range(len(a) // 2):
self[i] = (a[2*i] + x, a[2*i+1] + y)
def scale(self, p):
"""
>>> GlyphCoordinates([(1,2)]).scale((.5,0))
"""
(x,y) = self._checkFloat(p)
a = self._a
for i in range(len(a) // 2):
self[i] = (a[2*i] * x, a[2*i+1] * y)
def transform(self, t):
"""
>>> GlyphCoordinates([(1,2)]).transform(((.5,0),(.2,.5)))
"""
a = self._a
for i in range(len(a) // 2):
x = a[2*i ]
y = a[2*i+1]
px = x * t[0][0] + y * t[1][0]
py = x * t[0][1] + y * t[1][1]
self[i] = (px, py)
def __eq__(self, other):
"""
>>> g = GlyphCoordinates([(1,2)])
>>> g2 = GlyphCoordinates([(1.0,2)])
>>> g3 = GlyphCoordinates([(1.5,2)])
>>> g == g2
True
>>> g == g3
False
>>> g2 == g3
False
"""
if type(self) != type(other):
return NotImplemented
return self._a == other._a
def __ne__(self, other):
"""
>>> g = GlyphCoordinates([(1,2)])
>>> g2 = GlyphCoordinates([(1.0,2)])
>>> g3 = GlyphCoordinates([(1.5,2)])
>>> g != g2
False
>>> g != g3
True
>>> g2 != g3
True
"""
result = self.__eq__(other)
return result if result is NotImplemented else not result
# Math operations
def __pos__(self):
"""
>>> g = GlyphCoordinates([(1,2)])
>>> g
GlyphCoordinates([(1, 2)])
>>> g2 = +g
>>> g2
GlyphCoordinates([(1, 2)])
>>> g2.translate((1,0))
>>> g2
GlyphCoordinates([(2, 2)])
>>> g
GlyphCoordinates([(1, 2)])
"""
return self.copy()
def __neg__(self):
"""
>>> g = GlyphCoordinates([(1,2)])
>>> g
GlyphCoordinates([(1, 2)])
>>> g2 = -g
>>> g2
GlyphCoordinates([(-1, -2)])
>>> g
GlyphCoordinates([(1, 2)])
"""
r = self.copy()
a = r._a
for i in range(len(a)):
a[i] = -a[i]
return r
def __round__(self):
"""
Note: This is Python 3 only. Python 2 does not call __round__.
As such, we cannot test this method either. :(
"""
r = self.copy()
r.toInt()
return r
def __add__(self, other): return self.copy().__iadd__(other)
def __sub__(self, other): return self.copy().__isub__(other)
def __mul__(self, other): return self.copy().__imul__(other)
def __truediv__(self, other): return self.copy().__itruediv__(other)
__radd__ = __add__
__rmul__ = __mul__
def __rsub__(self, other): return other + (-self)
def __iadd__(self, other):
"""
>>> g = GlyphCoordinates([(1,2)])
>>> g += (.5,0)
>>> g
GlyphCoordinates([(1.5, 2.0)])
>>> g2 = GlyphCoordinates([(3,4)])
>>> g += g2
>>> g
GlyphCoordinates([(4.5, 6.0)])
"""
if isinstance(other, tuple):
assert len(other) == 2
self.translate(other)
return self
if isinstance(other, GlyphCoordinates):
if other.isFloat(): self._ensureFloat()
other = other._a
a = self._a
assert len(a) == len(other)
for i in range(len(a) // 2):
self[i] = (a[2*i] + other[2*i], a[2*i+1] + other[2*i+1])
return self
return NotImplemented
def __isub__(self, other):
"""
>>> g = GlyphCoordinates([(1,2)])
>>> g -= (.5,0)
>>> g
GlyphCoordinates([(0.5, 2.0)])
>>> g2 = GlyphCoordinates([(3,4)])
>>> g -= g2
>>> g
GlyphCoordinates([(-2.5, -2.0)])
"""
if isinstance(other, tuple):
assert len(other) == 2
self.translate((-other[0],-other[1]))
return self
if isinstance(other, GlyphCoordinates):
if other.isFloat(): self._ensureFloat()
other = other._a
a = self._a
assert len(a) == len(other)
for i in range(len(a) // 2):
self[i] = (a[2*i] - other[2*i], a[2*i+1] - other[2*i+1])
return self
return NotImplemented
def __imul__(self, other):
"""
>>> g = GlyphCoordinates([(1,2)])
>>> g *= (2,.5)
>>> g *= 2
>>> g
GlyphCoordinates([(4.0, 2.0)])
>>> g = GlyphCoordinates([(1,2)])
>>> g *= 2
>>> g
GlyphCoordinates([(2, 4)])
"""
if isinstance(other, Number):
other = (other, other)
if isinstance(other, tuple):
if other == (1,1):
return self
assert len(other) == 2
self.scale(other)
return self
return NotImplemented
def __itruediv__(self, other):
"""
>>> g = GlyphCoordinates([(1,3)])
>>> g /= (.5,1.5)
>>> g /= 2
>>> g
GlyphCoordinates([(1.0, 1.0)])
"""
if isinstance(other, Number):
other = (other, other)
if isinstance(other, tuple):
if other == (1,1):
return self
assert len(other) == 2
self.scale((1./other[0],1./other[1]))
return self
return NotImplemented
def __bool__(self):
"""
>>> g = GlyphCoordinates([])
>>> bool(g)
False
>>> g = GlyphCoordinates([(0,0), (0.,0)])
>>> bool(g)
True
>>> g = GlyphCoordinates([(0,0), (1,0)])
>>> bool(g)
True
>>> g = GlyphCoordinates([(0,.5), (0,0)])
>>> bool(g)
True
"""
return bool(self._a)
__nonzero__ = __bool__
def reprflag(flag):
bin = ""
if isinstance(flag, str):
flag = byteord(flag)
while flag:
if flag & 0x01:
bin = "1" + bin
else:
bin = "0" + bin
flag = flag >> 1
bin = (14 - len(bin)) * "0" + bin
return bin
if __name__ == "__main__":
import doctest, sys
sys.exit(doctest.testmod().failed)