| The basis transforms used for FFT and various other derived functions are based |
| on the following unrollings. |
| The functions can be easily adapted to double precision floats as well. |
| |
| # Parity permutation |
| The basis transforms described here all use the following permutation: |
| |
| ``` C |
| void ff_tx_gen_split_radix_parity_revtab(int *revtab, int len, int inv, |
| int basis, int dual_stride); |
| ``` |
| Parity means even and odd complex numbers will be split, e.g. the even |
| coefficients will come first, after which the odd coefficients will be |
| placed. For example, a 4-point transform's coefficients after reordering: |
| `z[0].re, z[0].im, z[2].re, z[2].im, z[1].re, z[1].im, z[3].re, z[3].im` |
| |
| The basis argument is the length of the largest non-composite transform |
| supported, and also implies that the basis/2 transform is supported as well, |
| as the split-radix algorithm requires it to be. |
| |
| The dual_stride argument indicates that both the basis, as well as the |
| basis/2 transforms support doing two transforms at once, and the coefficients |
| will be interleaved between each pair in a split-radix like so (stride == 2): |
| `tx1[0], tx1[2], tx2[0], tx2[2], tx1[1], tx1[3], tx2[1], tx2[3]` |
| A non-zero number switches this on, with the value indicating the stride |
| (how many values of 1 transform to put first before switching to the other). |
| Must be a power of two or 0. Must be less than the basis. |
| Value will be clipped to the transform size, so for a basis of 16 and a |
| dual_stride of 8, dual 8-point transforms will be laid out as if dual_stride |
| was set to 4. |
| Usually you'll set this to half the complex numbers that fit in a single |
| register or 0. This allows to reuse SSE functions as dual-transform |
| functions in AVX mode. |
| If length is smaller than basis/2 this function will not do anything. |
| |
| # 4-point FFT transform |
| The only permutation this transform needs is to swap the `z[1]` and `z[2]` |
| elements when performing an inverse transform, which in the assembly code is |
| hardcoded with the function itself being templated and duplicated for each |
| direction. |
| |
| ``` C |
| static void fft4(FFTComplex *z) |
| { |
| FFTSample r1 = z[0].re - z[2].re; |
| FFTSample r2 = z[0].im - z[2].im; |
| FFTSample r3 = z[1].re - z[3].re; |
| FFTSample r4 = z[1].im - z[3].im; |
| /* r5-r8 second transform */ |
| |
| FFTSample t1 = z[0].re + z[2].re; |
| FFTSample t2 = z[0].im + z[2].im; |
| FFTSample t3 = z[1].re + z[3].re; |
| FFTSample t4 = z[1].im + z[3].im; |
| /* t5-t8 second transform */ |
| |
| /* 1sub + 1add = 2 instructions */ |
| |
| /* 2 shufs */ |
| FFTSample a3 = t1 - t3; |
| FFTSample a4 = t2 - t4; |
| FFTSample b3 = r1 - r4; |
| FFTSample b2 = r2 - r3; |
| |
| FFTSample a1 = t1 + t3; |
| FFTSample a2 = t2 + t4; |
| FFTSample b1 = r1 + r4; |
| FFTSample b4 = r2 + r3; |
| /* 1 add 1 sub 3 shufs */ |
| |
| z[0].re = a1; |
| z[0].im = a2; |
| z[2].re = a3; |
| z[2].im = a4; |
| |
| z[1].re = b1; |
| z[1].im = b2; |
| z[3].re = b3; |
| z[3].im = b4; |
| } |
| ``` |
| |
| # 8-point AVX FFT transform |
| Input must be pre-permuted using the parity lookup table, generated via |
| `ff_tx_gen_split_radix_parity_revtab`. |
| |
| ``` C |
| static void fft8(FFTComplex *z) |
| { |
| FFTSample r1 = z[0].re - z[4].re; |
| FFTSample r2 = z[0].im - z[4].im; |
| FFTSample r3 = z[1].re - z[5].re; |
| FFTSample r4 = z[1].im - z[5].im; |
| |
| FFTSample r5 = z[2].re - z[6].re; |
| FFTSample r6 = z[2].im - z[6].im; |
| FFTSample r7 = z[3].re - z[7].re; |
| FFTSample r8 = z[3].im - z[7].im; |
| |
| FFTSample q1 = z[0].re + z[4].re; |
| FFTSample q2 = z[0].im + z[4].im; |
| FFTSample q3 = z[1].re + z[5].re; |
| FFTSample q4 = z[1].im + z[5].im; |
| |
| FFTSample q5 = z[2].re + z[6].re; |
| FFTSample q6 = z[2].im + z[6].im; |
| FFTSample q7 = z[3].re + z[7].re; |
| FFTSample q8 = z[3].im + z[7].im; |
| |
| FFTSample s3 = q1 - q3; |
| FFTSample s1 = q1 + q3; |
| FFTSample s4 = q2 - q4; |
| FFTSample s2 = q2 + q4; |
| |
| FFTSample s7 = q5 - q7; |
| FFTSample s5 = q5 + q7; |
| FFTSample s8 = q6 - q8; |
| FFTSample s6 = q6 + q8; |
| |
| FFTSample e1 = s1 * -1; |
| FFTSample e2 = s2 * -1; |
| FFTSample e3 = s3 * -1; |
| FFTSample e4 = s4 * -1; |
| |
| FFTSample e5 = s5 * 1; |
| FFTSample e6 = s6 * 1; |
| FFTSample e7 = s7 * -1; |
| FFTSample e8 = s8 * 1; |
| |
| FFTSample w1 = e5 - e1; |
| FFTSample w2 = e6 - e2; |
| FFTSample w3 = e8 - e3; |
| FFTSample w4 = e7 - e4; |
| |
| FFTSample w5 = s1 - e5; |
| FFTSample w6 = s2 - e6; |
| FFTSample w7 = s3 - e8; |
| FFTSample w8 = s4 - e7; |
| |
| z[0].re = w1; |
| z[0].im = w2; |
| z[2].re = w3; |
| z[2].im = w4; |
| z[4].re = w5; |
| z[4].im = w6; |
| z[6].re = w7; |
| z[6].im = w8; |
| |
| FFTSample z1 = r1 - r4; |
| FFTSample z2 = r1 + r4; |
| FFTSample z3 = r3 - r2; |
| FFTSample z4 = r3 + r2; |
| |
| FFTSample z5 = r5 - r6; |
| FFTSample z6 = r5 + r6; |
| FFTSample z7 = r7 - r8; |
| FFTSample z8 = r7 + r8; |
| |
| z3 *= -1; |
| z5 *= -M_SQRT1_2; |
| z6 *= -M_SQRT1_2; |
| z7 *= M_SQRT1_2; |
| z8 *= M_SQRT1_2; |
| |
| FFTSample t5 = z7 - z6; |
| FFTSample t6 = z8 + z5; |
| FFTSample t7 = z8 - z5; |
| FFTSample t8 = z7 + z6; |
| |
| FFTSample u1 = z2 + t5; |
| FFTSample u2 = z3 + t6; |
| FFTSample u3 = z1 - t7; |
| FFTSample u4 = z4 + t8; |
| |
| FFTSample u5 = z2 - t5; |
| FFTSample u6 = z3 - t6; |
| FFTSample u7 = z1 + t7; |
| FFTSample u8 = z4 - t8; |
| |
| z[1].re = u1; |
| z[1].im = u2; |
| z[3].re = u3; |
| z[3].im = u4; |
| z[5].re = u5; |
| z[5].im = u6; |
| z[7].re = u7; |
| z[7].im = u8; |
| } |
| ``` |
| |
| As you can see, there are 2 independent paths, one for even and one for odd coefficients. |
| This theme continues throughout the document. Note that in the actual assembly code, |
| the paths are interleaved to improve unit saturation and CPU dependency tracking, so |
| to more clearly see them, you'll need to deinterleave the instructions. |
| |
| # 8-point SSE/ARM64 FFT transform |
| Input must be pre-permuted using the parity lookup table, generated via |
| `ff_tx_gen_split_radix_parity_revtab`. |
| |
| ``` C |
| static void fft8(FFTComplex *z) |
| { |
| FFTSample r1 = z[0].re - z[4].re; |
| FFTSample r2 = z[0].im - z[4].im; |
| FFTSample r3 = z[1].re - z[5].re; |
| FFTSample r4 = z[1].im - z[5].im; |
| |
| FFTSample j1 = z[2].re - z[6].re; |
| FFTSample j2 = z[2].im - z[6].im; |
| FFTSample j3 = z[3].re - z[7].re; |
| FFTSample j4 = z[3].im - z[7].im; |
| |
| FFTSample q1 = z[0].re + z[4].re; |
| FFTSample q2 = z[0].im + z[4].im; |
| FFTSample q3 = z[1].re + z[5].re; |
| FFTSample q4 = z[1].im + z[5].im; |
| |
| FFTSample k1 = z[2].re + z[6].re; |
| FFTSample k2 = z[2].im + z[6].im; |
| FFTSample k3 = z[3].re + z[7].re; |
| FFTSample k4 = z[3].im + z[7].im; |
| /* 2 add 2 sub = 4 */ |
| |
| /* 2 shufs, 1 add 1 sub = 4 */ |
| FFTSample s1 = q1 + q3; |
| FFTSample s2 = q2 + q4; |
| FFTSample g1 = k3 + k1; |
| FFTSample g2 = k2 + k4; |
| |
| FFTSample s3 = q1 - q3; |
| FFTSample s4 = q2 - q4; |
| FFTSample g4 = k3 - k1; |
| FFTSample g3 = k2 - k4; |
| |
| /* 1 unpack + 1 shuffle = 2 */ |
| |
| /* 1 add */ |
| FFTSample w1 = s1 + g1; |
| FFTSample w2 = s2 + g2; |
| FFTSample w3 = s3 + g3; |
| FFTSample w4 = s4 + g4; |
| |
| /* 1 sub */ |
| FFTSample h1 = s1 - g1; |
| FFTSample h2 = s2 - g2; |
| FFTSample h3 = s3 - g3; |
| FFTSample h4 = s4 - g4; |
| |
| z[0].re = w1; |
| z[0].im = w2; |
| z[2].re = w3; |
| z[2].im = w4; |
| z[4].re = h1; |
| z[4].im = h2; |
| z[6].re = h3; |
| z[6].im = h4; |
| |
| /* 1 shuf + 1 shuf + 1 xor + 1 addsub */ |
| FFTSample z1 = r1 + r4; |
| FFTSample z2 = r2 - r3; |
| FFTSample z3 = r1 - r4; |
| FFTSample z4 = r2 + r3; |
| |
| /* 1 mult */ |
| j1 *= M_SQRT1_2; |
| j2 *= -M_SQRT1_2; |
| j3 *= -M_SQRT1_2; |
| j4 *= M_SQRT1_2; |
| |
| /* 1 shuf + 1 addsub */ |
| FFTSample l2 = j1 - j2; |
| FFTSample l1 = j2 + j1; |
| FFTSample l4 = j3 - j4; |
| FFTSample l3 = j4 + j3; |
| |
| /* 1 shuf + 1 addsub */ |
| FFTSample t1 = l3 - l2; |
| FFTSample t2 = l4 + l1; |
| FFTSample t3 = l1 - l4; |
| FFTSample t4 = l2 + l3; |
| |
| /* 1 add */ |
| FFTSample u1 = z1 - t1; |
| FFTSample u2 = z2 - t2; |
| FFTSample u3 = z3 - t3; |
| FFTSample u4 = z4 - t4; |
| |
| /* 1 sub */ |
| FFTSample o1 = z1 + t1; |
| FFTSample o2 = z2 + t2; |
| FFTSample o3 = z3 + t3; |
| FFTSample o4 = z4 + t4; |
| |
| z[1].re = u1; |
| z[1].im = u2; |
| z[3].re = u3; |
| z[3].im = u4; |
| z[5].re = o1; |
| z[5].im = o2; |
| z[7].re = o3; |
| z[7].im = o4; |
| } |
| ``` |
| |
| Most functions here are highly tuned to use x86's addsub instruction to save on |
| external sign mask loading. |
| |
| # 16-point AVX FFT transform |
| This version expects the output of the 8 and 4-point transforms to follow the |
| even/odd convention established above. |
| |
| ``` C |
| static void fft16(FFTComplex *z) |
| { |
| FFTSample cos_16_1 = 0.92387950420379638671875f; |
| FFTSample cos_16_3 = 0.3826834261417388916015625f; |
| |
| fft8(z); |
| fft4(z+8); |
| fft4(z+10); |
| |
| FFTSample s[32]; |
| |
| /* |
| xorps m1, m1 - free |
| mulps m0 |
| shufps m1, m1, m0 |
| xorps |
| addsub |
| shufps |
| mulps |
| mulps |
| addps |
| or (fma3) |
| shufps |
| shufps |
| mulps |
| mulps |
| fma |
| fma |
| */ |
| |
| s[0] = z[8].re*( 1) - z[8].im*( 0); |
| s[1] = z[8].im*( 1) + z[8].re*( 0); |
| s[2] = z[9].re*( 1) - z[9].im*(-1); |
| s[3] = z[9].im*( 1) + z[9].re*(-1); |
| |
| s[4] = z[10].re*( 1) - z[10].im*( 0); |
| s[5] = z[10].im*( 1) + z[10].re*( 0); |
| s[6] = z[11].re*( 1) - z[11].im*( 1); |
| s[7] = z[11].im*( 1) + z[11].re*( 1); |
| |
| s[8] = z[12].re*( cos_16_1) - z[12].im*( -cos_16_3); |
| s[9] = z[12].im*( cos_16_1) + z[12].re*( -cos_16_3); |
| s[10] = z[13].re*( cos_16_3) - z[13].im*( -cos_16_1); |
| s[11] = z[13].im*( cos_16_3) + z[13].re*( -cos_16_1); |
| |
| s[12] = z[14].re*( cos_16_1) - z[14].im*( cos_16_3); |
| s[13] = z[14].im*( -cos_16_1) + z[14].re*( -cos_16_3); |
| s[14] = z[15].re*( cos_16_3) - z[15].im*( cos_16_1); |
| s[15] = z[15].im*( -cos_16_3) + z[15].re*( -cos_16_1); |
| |
| s[2] *= M_SQRT1_2; |
| s[3] *= M_SQRT1_2; |
| s[5] *= -1; |
| s[6] *= M_SQRT1_2; |
| s[7] *= -M_SQRT1_2; |
| |
| FFTSample w5 = s[0] + s[4]; |
| FFTSample w6 = s[1] - s[5]; |
| FFTSample x5 = s[2] + s[6]; |
| FFTSample x6 = s[3] - s[7]; |
| |
| FFTSample w3 = s[4] - s[0]; |
| FFTSample w4 = s[5] + s[1]; |
| FFTSample x3 = s[6] - s[2]; |
| FFTSample x4 = s[7] + s[3]; |
| |
| FFTSample y5 = s[8] + s[12]; |
| FFTSample y6 = s[9] - s[13]; |
| FFTSample u5 = s[10] + s[14]; |
| FFTSample u6 = s[11] - s[15]; |
| |
| FFTSample y3 = s[12] - s[8]; |
| FFTSample y4 = s[13] + s[9]; |
| FFTSample u3 = s[14] - s[10]; |
| FFTSample u4 = s[15] + s[11]; |
| |
| /* 2xorps, 2vperm2fs, 2 adds, 2 vpermilps = 8 */ |
| |
| FFTSample o1 = z[0].re + w5; |
| FFTSample o2 = z[0].im + w6; |
| FFTSample o5 = z[1].re + x5; |
| FFTSample o6 = z[1].im + x6; |
| FFTSample o9 = z[2].re + w4; //h |
| FFTSample o10 = z[2].im + w3; |
| FFTSample o13 = z[3].re + x4; |
| FFTSample o14 = z[3].im + x3; |
| |
| FFTSample o17 = z[0].re - w5; |
| FFTSample o18 = z[0].im - w6; |
| FFTSample o21 = z[1].re - x5; |
| FFTSample o22 = z[1].im - x6; |
| FFTSample o25 = z[2].re - w4; //h |
| FFTSample o26 = z[2].im - w3; |
| FFTSample o29 = z[3].re - x4; |
| FFTSample o30 = z[3].im - x3; |
| |
| FFTSample o3 = z[4].re + y5; |
| FFTSample o4 = z[4].im + y6; |
| FFTSample o7 = z[5].re + u5; |
| FFTSample o8 = z[5].im + u6; |
| FFTSample o11 = z[6].re + y4; //h |
| FFTSample o12 = z[6].im + y3; |
| FFTSample o15 = z[7].re + u4; |
| FFTSample o16 = z[7].im + u3; |
| |
| FFTSample o19 = z[4].re - y5; |
| FFTSample o20 = z[4].im - y6; |
| FFTSample o23 = z[5].re - u5; |
| FFTSample o24 = z[5].im - u6; |
| FFTSample o27 = z[6].re - y4; //h |
| FFTSample o28 = z[6].im - y3; |
| FFTSample o31 = z[7].re - u4; |
| FFTSample o32 = z[7].im - u3; |
| |
| /* This is just deinterleaving, happens separately */ |
| z[0] = (FFTComplex){ o1, o2 }; |
| z[1] = (FFTComplex){ o3, o4 }; |
| z[2] = (FFTComplex){ o5, o6 }; |
| z[3] = (FFTComplex){ o7, o8 }; |
| z[4] = (FFTComplex){ o9, o10 }; |
| z[5] = (FFTComplex){ o11, o12 }; |
| z[6] = (FFTComplex){ o13, o14 }; |
| z[7] = (FFTComplex){ o15, o16 }; |
| |
| z[8] = (FFTComplex){ o17, o18 }; |
| z[9] = (FFTComplex){ o19, o20 }; |
| z[10] = (FFTComplex){ o21, o22 }; |
| z[11] = (FFTComplex){ o23, o24 }; |
| z[12] = (FFTComplex){ o25, o26 }; |
| z[13] = (FFTComplex){ o27, o28 }; |
| z[14] = (FFTComplex){ o29, o30 }; |
| z[15] = (FFTComplex){ o31, o32 }; |
| } |
| ``` |
| |
| # AVX split-radix synthesis |
| To create larger transforms, the following unrolling of the C split-radix |
| function is used. |
| |
| ``` C |
| #define BF(x, y, a, b) \ |
| do { \ |
| x = (a) - (b); \ |
| y = (a) + (b); \ |
| } while (0) |
| |
| #define BUTTERFLIES(a0,a1,a2,a3) \ |
| do { \ |
| r0=a0.re; \ |
| i0=a0.im; \ |
| r1=a1.re; \ |
| i1=a1.im; \ |
| BF(q3, q5, q5, q1); \ |
| BF(a2.re, a0.re, r0, q5); \ |
| BF(a3.im, a1.im, i1, q3); \ |
| BF(q4, q6, q2, q6); \ |
| BF(a3.re, a1.re, r1, q4); \ |
| BF(a2.im, a0.im, i0, q6); \ |
| } while (0) |
| |
| #undef TRANSFORM |
| #define TRANSFORM(a0,a1,a2,a3,wre,wim) \ |
| do { \ |
| CMUL(q1, q2, a2.re, a2.im, wre, -wim); \ |
| CMUL(q5, q6, a3.re, a3.im, wre, wim); \ |
| BUTTERFLIES(a0, a1, a2, a3); \ |
| } while (0) |
| |
| #define CMUL(dre, dim, are, aim, bre, bim) \ |
| do { \ |
| (dre) = (are) * (bre) - (aim) * (bim); \ |
| (dim) = (are) * (bim) + (aim) * (bre); \ |
| } while (0) |
| |
| static void recombine(FFTComplex *z, const FFTSample *cos, |
| unsigned int n) |
| { |
| const int o1 = 2*n; |
| const int o2 = 4*n; |
| const int o3 = 6*n; |
| const FFTSample *wim = cos + o1 - 7; |
| FFTSample q1, q2, q3, q4, q5, q6, r0, i0, r1, i1; |
| |
| #if 0 |
| for (int i = 0; i < n; i += 4) { |
| #endif |
| |
| #if 0 |
| TRANSFORM(z[ 0 + 0], z[ 0 + 4], z[o2 + 0], z[o2 + 2], cos[0], wim[7]); |
| TRANSFORM(z[ 0 + 1], z[ 0 + 5], z[o2 + 1], z[o2 + 3], cos[2], wim[5]); |
| TRANSFORM(z[ 0 + 2], z[ 0 + 6], z[o2 + 4], z[o2 + 6], cos[4], wim[3]); |
| TRANSFORM(z[ 0 + 3], z[ 0 + 7], z[o2 + 5], z[o2 + 7], cos[6], wim[1]); |
| |
| TRANSFORM(z[o1 + 0], z[o1 + 4], z[o3 + 0], z[o3 + 2], cos[1], wim[6]); |
| TRANSFORM(z[o1 + 1], z[o1 + 5], z[o3 + 1], z[o3 + 3], cos[3], wim[4]); |
| TRANSFORM(z[o1 + 2], z[o1 + 6], z[o3 + 4], z[o3 + 6], cos[5], wim[2]); |
| TRANSFORM(z[o1 + 3], z[o1 + 7], z[o3 + 5], z[o3 + 7], cos[7], wim[0]); |
| #else |
| FFTSample h[8], j[8], r[8], w[8]; |
| FFTSample t[8]; |
| FFTComplex *m0 = &z[0]; |
| FFTComplex *m1 = &z[4]; |
| FFTComplex *m2 = &z[o2 + 0]; |
| FFTComplex *m3 = &z[o2 + 4]; |
| |
| const FFTSample *t1 = &cos[0]; |
| const FFTSample *t2 = &wim[0]; |
| |
| /* 2 loads (tabs) */ |
| |
| /* 2 vperm2fs, 2 shufs (im), 2 shufs (tabs) */ |
| /* 1 xor, 1 add, 1 sub, 4 mults OR 2 mults, 2 fmas */ |
| /* 13 OR 10ish (-2 each for second passovers!) */ |
| |
| w[0] = m2[0].im*t1[0] - m2[0].re*t2[7]; |
| w[1] = m2[0].re*t1[0] + m2[0].im*t2[7]; |
| w[2] = m2[1].im*t1[2] - m2[1].re*t2[5]; |
| w[3] = m2[1].re*t1[2] + m2[1].im*t2[5]; |
| w[4] = m3[0].im*t1[4] - m3[0].re*t2[3]; |
| w[5] = m3[0].re*t1[4] + m3[0].im*t2[3]; |
| w[6] = m3[1].im*t1[6] - m3[1].re*t2[1]; |
| w[7] = m3[1].re*t1[6] + m3[1].im*t2[1]; |
| |
| j[0] = m2[2].im*t1[0] + m2[2].re*t2[7]; |
| j[1] = m2[2].re*t1[0] - m2[2].im*t2[7]; |
| j[2] = m2[3].im*t1[2] + m2[3].re*t2[5]; |
| j[3] = m2[3].re*t1[2] - m2[3].im*t2[5]; |
| j[4] = m3[2].im*t1[4] + m3[2].re*t2[3]; |
| j[5] = m3[2].re*t1[4] - m3[2].im*t2[3]; |
| j[6] = m3[3].im*t1[6] + m3[3].re*t2[1]; |
| j[7] = m3[3].re*t1[6] - m3[3].im*t2[1]; |
| |
| /* 1 add + 1 shuf */ |
| t[1] = j[0] + w[0]; |
| t[0] = j[1] + w[1]; |
| t[3] = j[2] + w[2]; |
| t[2] = j[3] + w[3]; |
| t[5] = j[4] + w[4]; |
| t[4] = j[5] + w[5]; |
| t[7] = j[6] + w[6]; |
| t[6] = j[7] + w[7]; |
| |
| /* 1 sub + 1 xor */ |
| r[0] = (w[0] - j[0]); |
| r[1] = -(w[1] - j[1]); |
| r[2] = (w[2] - j[2]); |
| r[3] = -(w[3] - j[3]); |
| r[4] = (w[4] - j[4]); |
| r[5] = -(w[5] - j[5]); |
| r[6] = (w[6] - j[6]); |
| r[7] = -(w[7] - j[7]); |
| |
| /* Min: 2 subs, 2 adds, 2 vperm2fs (OPTIONAL) */ |
| m2[0].re = m0[0].re - t[0]; |
| m2[0].im = m0[0].im - t[1]; |
| m2[1].re = m0[1].re - t[2]; |
| m2[1].im = m0[1].im - t[3]; |
| m3[0].re = m0[2].re - t[4]; |
| m3[0].im = m0[2].im - t[5]; |
| m3[1].re = m0[3].re - t[6]; |
| m3[1].im = m0[3].im - t[7]; |
| |
| m2[2].re = m1[0].re - r[0]; |
| m2[2].im = m1[0].im - r[1]; |
| m2[3].re = m1[1].re - r[2]; |
| m2[3].im = m1[1].im - r[3]; |
| m3[2].re = m1[2].re - r[4]; |
| m3[2].im = m1[2].im - r[5]; |
| m3[3].re = m1[3].re - r[6]; |
| m3[3].im = m1[3].im - r[7]; |
| |
| m0[0].re = m0[0].re + t[0]; |
| m0[0].im = m0[0].im + t[1]; |
| m0[1].re = m0[1].re + t[2]; |
| m0[1].im = m0[1].im + t[3]; |
| m0[2].re = m0[2].re + t[4]; |
| m0[2].im = m0[2].im + t[5]; |
| m0[3].re = m0[3].re + t[6]; |
| m0[3].im = m0[3].im + t[7]; |
| |
| m1[0].re = m1[0].re + r[0]; |
| m1[0].im = m1[0].im + r[1]; |
| m1[1].re = m1[1].re + r[2]; |
| m1[1].im = m1[1].im + r[3]; |
| m1[2].re = m1[2].re + r[4]; |
| m1[2].im = m1[2].im + r[5]; |
| m1[3].re = m1[3].re + r[6]; |
| m1[3].im = m1[3].im + r[7]; |
| |
| /* Identical for below, but with the following parameters */ |
| m0 = &z[o1]; |
| m1 = &z[o1 + 4]; |
| m2 = &z[o3 + 0]; |
| m3 = &z[o3 + 4]; |
| t1 = &cos[1]; |
| t2 = &wim[-1]; |
| |
| w[0] = m2[0].im*t1[0] - m2[0].re*t2[7]; |
| w[1] = m2[0].re*t1[0] + m2[0].im*t2[7]; |
| w[2] = m2[1].im*t1[2] - m2[1].re*t2[5]; |
| w[3] = m2[1].re*t1[2] + m2[1].im*t2[5]; |
| w[4] = m3[0].im*t1[4] - m3[0].re*t2[3]; |
| w[5] = m3[0].re*t1[4] + m3[0].im*t2[3]; |
| w[6] = m3[1].im*t1[6] - m3[1].re*t2[1]; |
| w[7] = m3[1].re*t1[6] + m3[1].im*t2[1]; |
| |
| j[0] = m2[2].im*t1[0] + m2[2].re*t2[7]; |
| j[1] = m2[2].re*t1[0] - m2[2].im*t2[7]; |
| j[2] = m2[3].im*t1[2] + m2[3].re*t2[5]; |
| j[3] = m2[3].re*t1[2] - m2[3].im*t2[5]; |
| j[4] = m3[2].im*t1[4] + m3[2].re*t2[3]; |
| j[5] = m3[2].re*t1[4] - m3[2].im*t2[3]; |
| j[6] = m3[3].im*t1[6] + m3[3].re*t2[1]; |
| j[7] = m3[3].re*t1[6] - m3[3].im*t2[1]; |
| |
| /* 1 add + 1 shuf */ |
| t[1] = j[0] + w[0]; |
| t[0] = j[1] + w[1]; |
| t[3] = j[2] + w[2]; |
| t[2] = j[3] + w[3]; |
| t[5] = j[4] + w[4]; |
| t[4] = j[5] + w[5]; |
| t[7] = j[6] + w[6]; |
| t[6] = j[7] + w[7]; |
| |
| /* 1 sub + 1 xor */ |
| r[0] = (w[0] - j[0]); |
| r[1] = -(w[1] - j[1]); |
| r[2] = (w[2] - j[2]); |
| r[3] = -(w[3] - j[3]); |
| r[4] = (w[4] - j[4]); |
| r[5] = -(w[5] - j[5]); |
| r[6] = (w[6] - j[6]); |
| r[7] = -(w[7] - j[7]); |
| |
| /* Min: 2 subs, 2 adds, 2 vperm2fs (OPTIONAL) */ |
| m2[0].re = m0[0].re - t[0]; |
| m2[0].im = m0[0].im - t[1]; |
| m2[1].re = m0[1].re - t[2]; |
| m2[1].im = m0[1].im - t[3]; |
| m3[0].re = m0[2].re - t[4]; |
| m3[0].im = m0[2].im - t[5]; |
| m3[1].re = m0[3].re - t[6]; |
| m3[1].im = m0[3].im - t[7]; |
| |
| m2[2].re = m1[0].re - r[0]; |
| m2[2].im = m1[0].im - r[1]; |
| m2[3].re = m1[1].re - r[2]; |
| m2[3].im = m1[1].im - r[3]; |
| m3[2].re = m1[2].re - r[4]; |
| m3[2].im = m1[2].im - r[5]; |
| m3[3].re = m1[3].re - r[6]; |
| m3[3].im = m1[3].im - r[7]; |
| |
| m0[0].re = m0[0].re + t[0]; |
| m0[0].im = m0[0].im + t[1]; |
| m0[1].re = m0[1].re + t[2]; |
| m0[1].im = m0[1].im + t[3]; |
| m0[2].re = m0[2].re + t[4]; |
| m0[2].im = m0[2].im + t[5]; |
| m0[3].re = m0[3].re + t[6]; |
| m0[3].im = m0[3].im + t[7]; |
| |
| m1[0].re = m1[0].re + r[0]; |
| m1[0].im = m1[0].im + r[1]; |
| m1[1].re = m1[1].re + r[2]; |
| m1[1].im = m1[1].im + r[3]; |
| m1[2].re = m1[2].re + r[4]; |
| m1[2].im = m1[2].im + r[5]; |
| m1[3].re = m1[3].re + r[6]; |
| m1[3].im = m1[3].im + r[7]; |
| #endif |
| |
| #if 0 |
| z += 4; // !!! |
| cos += 2*4; |
| wim -= 2*4; |
| } |
| #endif |
| } |
| ``` |
| |
| The macros used are identical to those in the generic C version, only with all |
| variable declarations exported to the function body. |
| An important point here is that the high frequency registers (m2 and m3) have |
| their high and low halves swapped in the output. This is intentional, as the |
| inputs must also have the same layout, and therefore, the input swapping is only |
| performed once for the bottom-most basis transform, with all subsequent combinations |
| using the already swapped halves. |
| |
| Also note that this function requires a special iteration way, due to coefficients |
| beginning to overlap, particularly `[o1]` with `[0]` after the second iteration. |
| To iterate further, set `z = &z[16]` via `z += 8` for the second iteration. After |
| the 4th iteration, the layout resets, so repeat the same. |
| |
| |
| # 15-point AVX FFT transform |
| The 15-point transform is based on the following unrolling. The input |
| must be permuted via the following loop: |
| |
| ``` C |
| for (int k = 0; k < s->sub[0].len; k++) { |
| int cnt = 0; |
| int tmp[15]; |
| memcpy(tmp, &s->map[k*15], 15*sizeof(*tmp)); |
| for (int i = 1; i < 15; i += 3) { |
| s->map[k*15 + cnt] = tmp[i]; |
| cnt++; |
| } |
| for (int i = 2; i < 15; i += 3) { |
| s->map[k*15 + cnt] = tmp[i]; |
| cnt++; |
| } |
| for (int i = 0; i < 15; i += 3) { |
| s->map[k*15 + cnt] = tmp[i]; |
| cnt++; |
| } |
| memmove(&s->map[k*15 + 7], &s->map[k*15 + 6], 4*sizeof(int)); |
| memmove(&s->map[k*15 + 3], &s->map[k*15 + 1], 4*sizeof(int)); |
| s->map[k*15 + 1] = tmp[2]; |
| s->map[k*15 + 2] = tmp[0]; |
| } |
| |
| ``` |
| |
| This separates the ACs from the DCs and flips the SIMD direction to |
| performing 5x3pt transforms at once, followed by 3x5pt transforms. |
| |
| ``` C |
| static av_always_inline void fft15(TXComplex *out, TXComplex *in, |
| ptrdiff_t stride) |
| { |
| const TXSample *tab = TX_TAB(ff_tx_tab_53); |
| TXComplex q[20]; |
| TXComplex dc[3], pc[32]; |
| TXComplex y[32], k[32]; |
| TXComplex t[32]; |
| TXComplex r[32]; |
| TXComplex z0[32]; |
| |
| /* DC */ |
| pc[0].re = in[ 1].im - in[ 0].im; |
| pc[0].im = in[ 1].re - in[ 0].re; |
| pc[1].re = in[ 1].re + in[ 0].re; |
| pc[1].im = in[ 1].im + in[ 0].im; |
| |
| dc[0].re = in[2].re + pc[1].re; |
| dc[0].im = in[2].im + pc[1].im; |
| |
| pc[0].re = tab[ 8] * pc[0].re; |
| pc[0].im = tab[ 9] * pc[0].im; |
| pc[1].re = tab[10] * pc[1].re; |
| pc[1].im = tab[11] * pc[1].im; |
| |
| dc[1].re = pc[0].re + pc[1].re; |
| dc[1].im = pc[0].im + pc[1].im; |
| dc[2].re = pc[1].re - pc[0].re; |
| dc[2].im = pc[1].im - pc[0].im; |
| |
| dc[1].re = in[2].re - dc[1].re; |
| dc[1].im = in[2].im + dc[1].im; |
| dc[2].re = in[2].re - dc[2].re; |
| dc[2].im = in[2].im + dc[2].im; |
| |
| /* ACs */ |
| q[0].im = in[ 3].re - in[ 7].re; // NOTE THE ORDER |
| q[0].re = in[ 3].im - in[ 7].im; |
| q[1].im = in[ 4].re - in[ 8].re; |
| q[1].re = in[ 4].im - in[ 8].im; |
| q[2].im = in[ 5].re - in[ 9].re; |
| q[2].re = in[ 5].im - in[ 9].im; |
| q[3].re = in[ 6].im - in[10].im; |
| q[3].im = in[ 6].re - in[10].re; |
| |
| q[4].re = in[ 3].re + in[ 7].re; |
| q[4].im = in[ 3].im + in[ 7].im; |
| q[5].re = in[ 4].re + in[ 8].re; |
| q[5].im = in[ 4].im + in[ 8].im; |
| q[6].re = in[ 5].re + in[ 9].re; |
| q[6].im = in[ 5].im + in[ 9].im; |
| q[7].re = in[ 6].re + in[10].re; |
| q[7].im = in[ 6].im + in[10].im; |
| |
| y[0].re = in[11].re + q[4].re; |
| y[0].im = in[11].im + q[4].im; |
| y[1].re = in[12].re + q[5].re; |
| y[1].im = in[12].im + q[5].im; |
| y[2].re = in[13].re + q[6].re; |
| y[2].im = in[13].im + q[6].im; |
| y[3].re = in[14].re + q[7].re; |
| y[3].im = in[14].im + q[7].im; |
| |
| q[0].re = tab[ 8] * q[0].re; |
| q[0].im = tab[ 9] * q[0].im; |
| q[1].re = tab[ 8] * q[1].re; |
| q[1].im = tab[ 9] * q[1].im; |
| q[2].re = tab[ 8] * q[2].re; |
| q[2].im = tab[ 9] * q[2].im; |
| q[3].re = tab[ 8] * q[3].re; |
| q[3].im = tab[ 9] * q[3].im; |
| |
| q[4].re = tab[10] * q[4].re; |
| q[4].im = tab[11] * q[4].im; |
| q[5].re = tab[10] * q[5].re; |
| q[5].im = tab[11] * q[5].im; |
| q[6].re = tab[10] * q[6].re; |
| q[6].im = tab[11] * q[6].im; |
| q[7].re = tab[10] * q[7].re; |
| q[7].im = tab[11] * q[7].im; |
| |
| k[0].re = q[4].re - q[0].re; |
| k[0].im = q[4].im - q[0].im; |
| k[1].re = q[5].re - q[1].re; |
| k[1].im = q[5].im - q[1].im; |
| k[2].re = q[6].re - q[2].re; |
| k[2].im = q[6].im - q[2].im; |
| k[3].re = q[7].re - q[3].re; |
| k[3].im = q[7].im - q[3].im; |
| |
| k[4].re = q[4].re + q[0].re; |
| k[4].im = q[4].im + q[0].im; |
| k[5].re = q[5].re + q[1].re; |
| k[5].im = q[5].im + q[1].im; |
| k[6].re = q[6].re + q[2].re; |
| k[6].im = q[6].im + q[2].im; |
| k[7].re = q[7].re + q[3].re; |
| k[7].im = q[7].im + q[3].im; |
| |
| k[0].re = in[11].re - k[0].re; |
| k[0].im = in[11].im + k[0].im; |
| k[1].re = in[12].re - k[1].re; |
| k[1].im = in[12].im + k[1].im; |
| k[2].re = in[13].re - k[2].re; |
| k[2].im = in[13].im + k[2].im; |
| k[3].re = in[14].re - k[3].re; |
| k[3].im = in[14].im + k[3].im; |
| |
| k[4].re = in[11].re - k[4].re; |
| k[4].im = in[11].im + k[4].im; |
| k[5].re = in[12].re - k[5].re; |
| k[5].im = in[12].im + k[5].im; |
| k[6].re = in[13].re - k[6].re; |
| k[6].im = in[13].im + k[6].im; |
| k[7].re = in[14].re - k[7].re; |
| k[7].im = in[14].im + k[7].im; |
| |
| /* 15pt start here */ |
| t[0].re = y[3].re + y[0].re; |
| t[0].im = y[3].im + y[0].im; |
| t[1].re = y[2].re + y[1].re; |
| t[1].im = y[2].im + y[1].im; |
| t[2].re = y[1].re - y[2].re; |
| t[2].im = y[1].im - y[2].im; |
| t[3].re = y[0].re - y[3].re; |
| t[3].im = y[0].im - y[3].im; |
| |
| t[4].re = k[3].re + k[0].re; |
| t[4].im = k[3].im + k[0].im; |
| t[5].re = k[2].re + k[1].re; |
| t[5].im = k[2].im + k[1].im; |
| t[6].re = k[1].re - k[2].re; |
| t[6].im = k[1].im - k[2].im; |
| t[7].re = k[0].re - k[3].re; |
| t[7].im = k[0].im - k[3].im; |
| |
| t[ 8].re = k[7].re + k[4].re; |
| t[ 8].im = k[7].im + k[4].im; |
| t[ 9].re = k[6].re + k[5].re; |
| t[ 9].im = k[6].im + k[5].im; |
| t[10].re = k[5].re - k[6].re; |
| t[10].im = k[5].im - k[6].im; |
| t[11].re = k[4].re - k[7].re; |
| t[11].im = k[4].im - k[7].im; |
| |
| out[ 0*stride].re = dc[0].re + t[0].re + t[ 1].re; |
| out[ 0*stride].im = dc[0].im + t[0].im + t[ 1].im; |
| out[10*stride].re = dc[1].re + t[4].re + t[ 5].re; |
| out[10*stride].im = dc[1].im + t[4].im + t[ 5].im; |
| out[ 5*stride].re = dc[2].re + t[8].re + t[ 9].re; |
| out[ 5*stride].im = dc[2].im + t[8].im + t[ 9].im; |
| |
| r[0].re = t[0].re * tab[0]; |
| r[0].im = t[0].im * tab[1]; |
| r[1].re = t[1].re * tab[0]; |
| r[1].im = t[1].im * tab[1]; |
| r[2].re = t[2].re * tab[4]; |
| r[2].im = t[2].im * tab[5]; |
| r[3].re = t[3].re * tab[4]; |
| r[3].im = t[3].im * tab[5]; |
| |
| r[4].re = t[4].re * tab[0]; |
| r[4].im = t[4].im * tab[1]; |
| r[5].re = t[5].re * tab[0]; |
| r[5].im = t[5].im * tab[1]; |
| r[6].re = t[6].re * tab[4]; |
| r[6].im = t[6].im * tab[5]; |
| r[7].re = t[7].re * tab[4]; |
| r[7].im = t[7].im * tab[5]; |
| |
| r[ 8].re = t[ 8].re * tab[0]; |
| r[ 8].im = t[ 8].im * tab[1]; |
| r[ 9].re = t[ 9].re * tab[0]; |
| r[ 9].im = t[ 9].im * tab[1]; |
| r[10].re = t[10].re * tab[4]; |
| r[10].im = t[10].im * tab[5]; |
| r[11].re = t[11].re * tab[4]; |
| r[11].im = t[11].im * tab[5]; |
| |
| t[0].re = t[0].re * tab[2]; |
| t[0].im = t[0].im * tab[3]; |
| t[1].re = t[1].re * tab[2]; |
| t[1].im = t[1].im * tab[3]; |
| t[2].re = t[2].re * tab[6]; |
| t[2].im = t[2].im * tab[7]; |
| t[3].re = t[3].re * tab[6]; |
| t[3].im = t[3].im * tab[7]; |
| |
| t[4].re = t[4].re * tab[2]; |
| t[4].im = t[4].im * tab[3]; |
| t[5].re = t[5].re * tab[2]; |
| t[5].im = t[5].im * tab[3]; |
| t[6].re = t[6].re * tab[6]; |
| t[6].im = t[6].im * tab[7]; |
| t[7].re = t[7].re * tab[6]; |
| t[7].im = t[7].im * tab[7]; |
| |
| t[ 8].re = t[ 8].re * tab[2]; |
| t[ 8].im = t[ 8].im * tab[3]; |
| t[ 9].re = t[ 9].re * tab[2]; |
| t[ 9].im = t[ 9].im * tab[3]; |
| t[10].re = t[10].re * tab[6]; |
| t[10].im = t[10].im * tab[7]; |
| t[11].re = t[11].re * tab[6]; |
| t[11].im = t[11].im * tab[7]; |
| |
| r[0].re = r[0].re - t[1].re; |
| r[0].im = r[0].im - t[1].im; |
| r[1].re = r[1].re - t[0].re; |
| r[1].im = r[1].im - t[0].im; |
| r[2].re = r[2].re - t[3].re; |
| r[2].im = r[2].im - t[3].im; |
| r[3].re = r[3].re + t[2].re; |
| r[3].im = r[3].im + t[2].im; |
| |
| r[4].re = r[4].re - t[5].re; |
| r[4].im = r[4].im - t[5].im; |
| r[5].re = r[5].re - t[4].re; |
| r[5].im = r[5].im - t[4].im; |
| r[6].re = r[6].re - t[7].re; |
| r[6].im = r[6].im - t[7].im; |
| r[7].re = r[7].re + t[6].re; |
| r[7].im = r[7].im + t[6].im; |
| |
| r[ 8].re = r[ 8].re - t[ 9].re; |
| r[ 8].im = r[ 8].im - t[ 9].im; |
| r[ 9].re = r[ 9].re - t[ 8].re; |
| r[ 9].im = r[ 9].im - t[ 8].im; |
| r[10].re = r[10].re - t[11].re; |
| r[10].im = r[10].im - t[11].im; |
| r[11].re = r[11].re + t[10].re; |
| r[11].im = r[11].im + t[10].im; |
| |
| z0[ 0].re = r[ 3].im + r[ 0].re; |
| z0[ 0].im = r[ 3].re + r[ 0].im; |
| z0[ 1].re = r[ 2].im + r[ 1].re; |
| z0[ 1].im = r[ 2].re + r[ 1].im; |
| z0[ 2].re = r[ 1].im - r[ 2].re; |
| z0[ 2].im = r[ 1].re - r[ 2].im; |
| z0[ 3].re = r[ 0].im - r[ 3].re; |
| z0[ 3].im = r[ 0].re - r[ 3].im; |
| |
| z0[ 4].re = r[ 7].im + r[ 4].re; |
| z0[ 4].im = r[ 7].re + r[ 4].im; |
| z0[ 5].re = r[ 6].im + r[ 5].re; |
| z0[ 5].im = r[ 6].re + r[ 5].im; |
| z0[ 6].re = r[ 5].im - r[ 6].re; |
| z0[ 6].im = r[ 5].re - r[ 6].im; |
| z0[ 7].re = r[ 4].im - r[ 7].re; |
| z0[ 7].im = r[ 4].re - r[ 7].im; |
| |
| z0[ 8].re = r[11].im + r[ 8].re; |
| z0[ 8].im = r[11].re + r[ 8].im; |
| z0[ 9].re = r[10].im + r[ 9].re; |
| z0[ 9].im = r[10].re + r[ 9].im; |
| z0[10].re = r[ 9].im - r[10].re; |
| z0[10].im = r[ 9].re - r[10].im; |
| z0[11].re = r[ 8].im - r[11].re; |
| z0[11].im = r[ 8].re - r[11].im; |
| |
| out[ 6*stride].re = dc[0].re + z0[0].re; |
| out[ 6*stride].im = dc[0].im + z0[3].re; |
| out[12*stride].re = dc[0].re + z0[2].im; |
| out[12*stride].im = dc[0].im + z0[1].im; |
| out[ 3*stride].re = dc[0].re + z0[1].re; |
| out[ 3*stride].im = dc[0].im + z0[2].re; |
| out[ 9*stride].re = dc[0].re + z0[3].im; |
| out[ 9*stride].im = dc[0].im + z0[0].im; |
| |
| out[ 1*stride].re = dc[1].re + z0[4].re; |
| out[ 1*stride].im = dc[1].im + z0[7].re; |
| out[ 7*stride].re = dc[1].re + z0[6].im; |
| out[ 7*stride].im = dc[1].im + z0[5].im; |
| out[13*stride].re = dc[1].re + z0[5].re; |
| out[13*stride].im = dc[1].im + z0[6].re; |
| out[ 4*stride].re = dc[1].re + z0[7].im; |
| out[ 4*stride].im = dc[1].im + z0[4].im; |
| |
| out[11*stride].re = dc[2].re + z0[8].re; |
| out[11*stride].im = dc[2].im + z0[11].re; |
| out[ 2*stride].re = dc[2].re + z0[10].im; |
| out[ 2*stride].im = dc[2].im + z0[9].im; |
| out[ 8*stride].re = dc[2].re + z0[9].re; |
| out[ 8*stride].im = dc[2].im + z0[10].re; |
| out[14*stride].re = dc[2].re + z0[11].im; |
| out[14*stride].im = dc[2].im + z0[8].im; |
| } |
| ``` |