blob: cf73d331e0472f20ecbab9c6c873a3a0ac98bef4 [file] [log] [blame]
/*
* UDP prototype streaming system
* Copyright (c) 2000, 2001, 2002 Fabrice Bellard
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* UDP protocol
*/
#define _DEFAULT_SOURCE
#define _BSD_SOURCE /* Needed for using struct ip_mreq with recent glibc */
#include "avformat.h"
#include "avio_internal.h"
#include "libavutil/avassert.h"
#include "libavutil/parseutils.h"
#include "libavutil/fifo.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/avstring.h"
#include "libavutil/opt.h"
#include "libavutil/log.h"
#include "libavutil/time.h"
#include "internal.h"
#include "network.h"
#include "os_support.h"
#include "url.h"
#include "ip.h"
#ifdef __APPLE__
#include "TargetConditionals.h"
#endif
#if HAVE_UDPLITE_H
#include "udplite.h"
#else
/* On many Linux systems, udplite.h is missing but the kernel supports UDP-Lite.
* So, we provide a fallback here.
*/
#define UDPLITE_SEND_CSCOV 10
#define UDPLITE_RECV_CSCOV 11
#endif
#ifndef IPPROTO_UDPLITE
#define IPPROTO_UDPLITE 136
#endif
#if HAVE_PTHREAD_CANCEL
#include <pthread.h>
#endif
#ifndef IPV6_ADD_MEMBERSHIP
#define IPV6_ADD_MEMBERSHIP IPV6_JOIN_GROUP
#define IPV6_DROP_MEMBERSHIP IPV6_LEAVE_GROUP
#endif
#define UDP_TX_BUF_SIZE 32768
#define UDP_MAX_PKT_SIZE 65536
#define UDP_HEADER_SIZE 8
typedef struct UDPContext {
const AVClass *class;
int udp_fd;
int ttl;
int udplite_coverage;
int buffer_size;
int pkt_size;
int is_multicast;
int is_broadcast;
int local_port;
int reuse_socket;
int overrun_nonfatal;
struct sockaddr_storage dest_addr;
int dest_addr_len;
int is_connected;
/* Circular Buffer variables for use in UDP receive code */
int circular_buffer_size;
AVFifoBuffer *fifo;
int circular_buffer_error;
int64_t bitrate; /* number of bits to send per second */
int64_t burst_bits;
int close_req;
#if HAVE_PTHREAD_CANCEL
pthread_t circular_buffer_thread;
pthread_mutex_t mutex;
pthread_cond_t cond;
int thread_started;
#endif
uint8_t tmp[UDP_MAX_PKT_SIZE+4];
int remaining_in_dg;
char *localaddr;
int timeout;
struct sockaddr_storage local_addr_storage;
char *sources;
char *block;
IPSourceFilters filters;
} UDPContext;
#define OFFSET(x) offsetof(UDPContext, x)
#define D AV_OPT_FLAG_DECODING_PARAM
#define E AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "buffer_size", "System data size (in bytes)", OFFSET(buffer_size), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, .flags = D|E },
{ "bitrate", "Bits to send per second", OFFSET(bitrate), AV_OPT_TYPE_INT64, { .i64 = 0 }, 0, INT64_MAX, .flags = E },
{ "burst_bits", "Max length of bursts in bits (when using bitrate)", OFFSET(burst_bits), AV_OPT_TYPE_INT64, { .i64 = 0 }, 0, INT64_MAX, .flags = E },
{ "localport", "Local port", OFFSET(local_port), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, D|E },
{ "local_port", "Local port", OFFSET(local_port), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, .flags = D|E },
{ "localaddr", "Local address", OFFSET(localaddr), AV_OPT_TYPE_STRING, { .str = NULL }, .flags = D|E },
{ "udplite_coverage", "choose UDPLite head size which should be validated by checksum", OFFSET(udplite_coverage), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT_MAX, D|E },
{ "pkt_size", "Maximum UDP packet size", OFFSET(pkt_size), AV_OPT_TYPE_INT, { .i64 = 1472 }, -1, INT_MAX, .flags = D|E },
{ "reuse", "explicitly allow reusing UDP sockets", OFFSET(reuse_socket), AV_OPT_TYPE_BOOL, { .i64 = -1 }, -1, 1, D|E },
{ "reuse_socket", "explicitly allow reusing UDP sockets", OFFSET(reuse_socket), AV_OPT_TYPE_BOOL, { .i64 = -1 }, -1, 1, .flags = D|E },
{ "broadcast", "explicitly allow or disallow broadcast destination", OFFSET(is_broadcast), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, E },
{ "ttl", "Time to live (multicast only)", OFFSET(ttl), AV_OPT_TYPE_INT, { .i64 = 16 }, 0, INT_MAX, E },
{ "connect", "set if connect() should be called on socket", OFFSET(is_connected), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, .flags = D|E },
{ "fifo_size", "set the UDP receiving circular buffer size, expressed as a number of packets with size of 188 bytes", OFFSET(circular_buffer_size), AV_OPT_TYPE_INT, {.i64 = 7*4096}, 0, INT_MAX, D },
{ "overrun_nonfatal", "survive in case of UDP receiving circular buffer overrun", OFFSET(overrun_nonfatal), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, D },
{ "timeout", "set raise error timeout (only in read mode)", OFFSET(timeout), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, D },
{ "sources", "Source list", OFFSET(sources), AV_OPT_TYPE_STRING, { .str = NULL }, .flags = D|E },
{ "block", "Block list", OFFSET(block), AV_OPT_TYPE_STRING, { .str = NULL }, .flags = D|E },
{ NULL }
};
static const AVClass udp_class = {
.class_name = "udp",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
static const AVClass udplite_context_class = {
.class_name = "udplite",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
static int udp_set_multicast_ttl(int sockfd, int mcastTTL,
struct sockaddr *addr)
{
#ifdef IP_MULTICAST_TTL
if (addr->sa_family == AF_INET) {
if (setsockopt(sockfd, IPPROTO_IP, IP_MULTICAST_TTL, &mcastTTL, sizeof(mcastTTL)) < 0) {
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IP_MULTICAST_TTL)");
return -1;
}
}
#endif
#if defined(IPPROTO_IPV6) && defined(IPV6_MULTICAST_HOPS)
if (addr->sa_family == AF_INET6) {
if (setsockopt(sockfd, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &mcastTTL, sizeof(mcastTTL)) < 0) {
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IPV6_MULTICAST_HOPS)");
return -1;
}
}
#endif
return 0;
}
static int udp_join_multicast_group(int sockfd, struct sockaddr *addr,struct sockaddr *local_addr)
{
#ifdef IP_ADD_MEMBERSHIP
if (addr->sa_family == AF_INET) {
struct ip_mreq mreq;
mreq.imr_multiaddr.s_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
if (local_addr)
mreq.imr_interface= ((struct sockaddr_in *)local_addr)->sin_addr;
else
mreq.imr_interface.s_addr= INADDR_ANY;
if (setsockopt(sockfd, IPPROTO_IP, IP_ADD_MEMBERSHIP, (const void *)&mreq, sizeof(mreq)) < 0) {
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IP_ADD_MEMBERSHIP)");
return -1;
}
}
#endif
#if HAVE_STRUCT_IPV6_MREQ && defined(IPPROTO_IPV6)
if (addr->sa_family == AF_INET6) {
struct ipv6_mreq mreq6;
memcpy(&mreq6.ipv6mr_multiaddr, &(((struct sockaddr_in6 *)addr)->sin6_addr), sizeof(struct in6_addr));
//TODO: Interface index should be looked up from local_addr
mreq6.ipv6mr_interface= 0;
if (setsockopt(sockfd, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, &mreq6, sizeof(mreq6)) < 0) {
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IPV6_ADD_MEMBERSHIP)");
return -1;
}
}
#endif
return 0;
}
static int udp_leave_multicast_group(int sockfd, struct sockaddr *addr,struct sockaddr *local_addr)
{
#ifdef IP_DROP_MEMBERSHIP
if (addr->sa_family == AF_INET) {
struct ip_mreq mreq;
mreq.imr_multiaddr.s_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
if (local_addr)
mreq.imr_interface= ((struct sockaddr_in *)local_addr)->sin_addr;
else
mreq.imr_interface.s_addr= INADDR_ANY;
if (setsockopt(sockfd, IPPROTO_IP, IP_DROP_MEMBERSHIP, (const void *)&mreq, sizeof(mreq)) < 0) {
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IP_DROP_MEMBERSHIP)");
return -1;
}
}
#endif
#if HAVE_STRUCT_IPV6_MREQ && defined(IPPROTO_IPV6)
if (addr->sa_family == AF_INET6) {
struct ipv6_mreq mreq6;
memcpy(&mreq6.ipv6mr_multiaddr, &(((struct sockaddr_in6 *)addr)->sin6_addr), sizeof(struct in6_addr));
//TODO: Interface index should be looked up from local_addr
mreq6.ipv6mr_interface= 0;
if (setsockopt(sockfd, IPPROTO_IPV6, IPV6_DROP_MEMBERSHIP, &mreq6, sizeof(mreq6)) < 0) {
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IPV6_DROP_MEMBERSHIP)");
return -1;
}
}
#endif
return 0;
}
static int udp_set_multicast_sources(URLContext *h,
int sockfd, struct sockaddr *addr,
int addr_len, struct sockaddr_storage *local_addr,
struct sockaddr_storage *sources,
int nb_sources, int include)
{
int i;
if (addr->sa_family != AF_INET) {
#if HAVE_STRUCT_GROUP_SOURCE_REQ && defined(MCAST_BLOCK_SOURCE)
/* For IPv4 prefer the old approach, as that alone works reliably on
* Windows and it also supports supplying the interface based on its
* address. */
int i;
for (i = 0; i < nb_sources; i++) {
struct group_source_req mreqs;
int level = addr->sa_family == AF_INET ? IPPROTO_IP : IPPROTO_IPV6;
//TODO: Interface index should be looked up from local_addr
mreqs.gsr_interface = 0;
memcpy(&mreqs.gsr_group, addr, addr_len);
memcpy(&mreqs.gsr_source, &sources[i], sizeof(*sources));
if (setsockopt(sockfd, level,
include ? MCAST_JOIN_SOURCE_GROUP : MCAST_BLOCK_SOURCE,
(const void *)&mreqs, sizeof(mreqs)) < 0) {
if (include)
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(MCAST_JOIN_SOURCE_GROUP)");
else
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(MCAST_BLOCK_SOURCE)");
return ff_neterrno();
}
}
return 0;
#else
av_log(NULL, AV_LOG_ERROR,
"Setting multicast sources only supported for IPv4\n");
return AVERROR(EINVAL);
#endif
}
#if HAVE_STRUCT_IP_MREQ_SOURCE && defined(IP_BLOCK_SOURCE)
for (i = 0; i < nb_sources; i++) {
struct ip_mreq_source mreqs;
if (sources[i].ss_family != AF_INET) {
av_log(NULL, AV_LOG_ERROR, "Source/block address %d is of incorrect protocol family\n", i + 1);
return AVERROR(EINVAL);
}
mreqs.imr_multiaddr.s_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
if (local_addr)
mreqs.imr_interface= ((struct sockaddr_in *)local_addr)->sin_addr;
else
mreqs.imr_interface.s_addr= INADDR_ANY;
mreqs.imr_sourceaddr.s_addr = ((struct sockaddr_in *)&sources[i])->sin_addr.s_addr;
if (setsockopt(sockfd, IPPROTO_IP,
include ? IP_ADD_SOURCE_MEMBERSHIP : IP_BLOCK_SOURCE,
(const void *)&mreqs, sizeof(mreqs)) < 0) {
if (include)
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IP_ADD_SOURCE_MEMBERSHIP)");
else
ff_log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IP_BLOCK_SOURCE)");
return ff_neterrno();
}
}
#else
return AVERROR(ENOSYS);
#endif
return 0;
}
static int udp_set_url(URLContext *h,
struct sockaddr_storage *addr,
const char *hostname, int port)
{
struct addrinfo *res0;
int addr_len;
res0 = ff_ip_resolve_host(h, hostname, port, SOCK_DGRAM, AF_UNSPEC, 0);
if (!res0) return AVERROR(EIO);
memcpy(addr, res0->ai_addr, res0->ai_addrlen);
addr_len = res0->ai_addrlen;
freeaddrinfo(res0);
return addr_len;
}
static int udp_socket_create(URLContext *h, struct sockaddr_storage *addr,
socklen_t *addr_len, const char *localaddr)
{
UDPContext *s = h->priv_data;
int udp_fd = -1;
struct addrinfo *res0, *res;
int family = AF_UNSPEC;
if (((struct sockaddr *) &s->dest_addr)->sa_family)
family = ((struct sockaddr *) &s->dest_addr)->sa_family;
res0 = ff_ip_resolve_host(h, (localaddr && localaddr[0]) ? localaddr : NULL,
s->local_port,
SOCK_DGRAM, family, AI_PASSIVE);
if (!res0)
goto fail;
for (res = res0; res; res=res->ai_next) {
if (s->udplite_coverage)
udp_fd = ff_socket(res->ai_family, SOCK_DGRAM, IPPROTO_UDPLITE);
else
udp_fd = ff_socket(res->ai_family, SOCK_DGRAM, 0);
if (udp_fd != -1) break;
ff_log_net_error(NULL, AV_LOG_ERROR, "socket");
}
if (udp_fd < 0)
goto fail;
memcpy(addr, res->ai_addr, res->ai_addrlen);
*addr_len = res->ai_addrlen;
freeaddrinfo(res0);
return udp_fd;
fail:
if (udp_fd >= 0)
closesocket(udp_fd);
if(res0)
freeaddrinfo(res0);
return -1;
}
static int udp_port(struct sockaddr_storage *addr, int addr_len)
{
char sbuf[sizeof(int)*3+1];
int error;
if ((error = getnameinfo((struct sockaddr *)addr, addr_len, NULL, 0, sbuf, sizeof(sbuf), NI_NUMERICSERV)) != 0) {
av_log(NULL, AV_LOG_ERROR, "getnameinfo: %s\n", gai_strerror(error));
return -1;
}
return strtol(sbuf, NULL, 10);
}
/**
* If no filename is given to av_open_input_file because you want to
* get the local port first, then you must call this function to set
* the remote server address.
*
* url syntax: udp://host:port[?option=val...]
* option: 'ttl=n' : set the ttl value (for multicast only)
* 'localport=n' : set the local port
* 'pkt_size=n' : set max packet size
* 'reuse=1' : enable reusing the socket
* 'overrun_nonfatal=1': survive in case of circular buffer overrun
*
* @param h media file context
* @param uri of the remote server
* @return zero if no error.
*/
int ff_udp_set_remote_url(URLContext *h, const char *uri)
{
UDPContext *s = h->priv_data;
char hostname[256], buf[10];
int port;
const char *p;
av_url_split(NULL, 0, NULL, 0, hostname, sizeof(hostname), &port, NULL, 0, uri);
/* set the destination address */
s->dest_addr_len = udp_set_url(h, &s->dest_addr, hostname, port);
if (s->dest_addr_len < 0) {
return AVERROR(EIO);
}
s->is_multicast = ff_is_multicast_address((struct sockaddr*) &s->dest_addr);
p = strchr(uri, '?');
if (p) {
if (av_find_info_tag(buf, sizeof(buf), "connect", p)) {
int was_connected = s->is_connected;
s->is_connected = strtol(buf, NULL, 10);
if (s->is_connected && !was_connected) {
if (connect(s->udp_fd, (struct sockaddr *) &s->dest_addr,
s->dest_addr_len)) {
s->is_connected = 0;
ff_log_net_error(h, AV_LOG_ERROR, "connect");
return AVERROR(EIO);
}
}
}
}
return 0;
}
/**
* Return the local port used by the UDP connection
* @param h media file context
* @return the local port number
*/
int ff_udp_get_local_port(URLContext *h)
{
UDPContext *s = h->priv_data;
return s->local_port;
}
/**
* Return the udp file handle for select() usage to wait for several RTP
* streams at the same time.
* @param h media file context
*/
static int udp_get_file_handle(URLContext *h)
{
UDPContext *s = h->priv_data;
return s->udp_fd;
}
#if HAVE_PTHREAD_CANCEL
static void *circular_buffer_task_rx( void *_URLContext)
{
URLContext *h = _URLContext;
UDPContext *s = h->priv_data;
int old_cancelstate;
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old_cancelstate);
pthread_mutex_lock(&s->mutex);
if (ff_socket_nonblock(s->udp_fd, 0) < 0) {
av_log(h, AV_LOG_ERROR, "Failed to set blocking mode");
s->circular_buffer_error = AVERROR(EIO);
goto end;
}
while(1) {
int len;
struct sockaddr_storage addr;
socklen_t addr_len = sizeof(addr);
pthread_mutex_unlock(&s->mutex);
/* Blocking operations are always cancellation points;
see "General Information" / "Thread Cancelation Overview"
in Single Unix. */
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_cancelstate);
len = recvfrom(s->udp_fd, s->tmp+4, sizeof(s->tmp)-4, 0, (struct sockaddr *)&addr, &addr_len);
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old_cancelstate);
pthread_mutex_lock(&s->mutex);
if (len < 0) {
if (ff_neterrno() != AVERROR(EAGAIN) && ff_neterrno() != AVERROR(EINTR)) {
s->circular_buffer_error = ff_neterrno();
goto end;
}
continue;
}
if (ff_ip_check_source_lists(&addr, &s->filters))
continue;
AV_WL32(s->tmp, len);
if(av_fifo_space(s->fifo) < len + 4) {
/* No Space left */
if (s->overrun_nonfatal) {
av_log(h, AV_LOG_WARNING, "Circular buffer overrun. "
"Surviving due to overrun_nonfatal option\n");
continue;
} else {
av_log(h, AV_LOG_ERROR, "Circular buffer overrun. "
"To avoid, increase fifo_size URL option. "
"To survive in such case, use overrun_nonfatal option\n");
s->circular_buffer_error = AVERROR(EIO);
goto end;
}
}
av_fifo_generic_write(s->fifo, s->tmp, len+4, NULL);
pthread_cond_signal(&s->cond);
}
end:
pthread_cond_signal(&s->cond);
pthread_mutex_unlock(&s->mutex);
return NULL;
}
static void *circular_buffer_task_tx( void *_URLContext)
{
URLContext *h = _URLContext;
UDPContext *s = h->priv_data;
int old_cancelstate;
int64_t target_timestamp = av_gettime_relative();
int64_t start_timestamp = av_gettime_relative();
int64_t sent_bits = 0;
int64_t burst_interval = s->bitrate ? (s->burst_bits * 1000000 / s->bitrate) : 0;
int64_t max_delay = s->bitrate ? ((int64_t)h->max_packet_size * 8 * 1000000 / s->bitrate + 1) : 0;
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old_cancelstate);
pthread_mutex_lock(&s->mutex);
if (ff_socket_nonblock(s->udp_fd, 0) < 0) {
av_log(h, AV_LOG_ERROR, "Failed to set blocking mode");
s->circular_buffer_error = AVERROR(EIO);
goto end;
}
for(;;) {
int len;
const uint8_t *p;
uint8_t tmp[4];
int64_t timestamp;
len=av_fifo_size(s->fifo);
while (len<4) {
if (s->close_req)
goto end;
if (pthread_cond_wait(&s->cond, &s->mutex) < 0) {
goto end;
}
len=av_fifo_size(s->fifo);
}
av_fifo_generic_read(s->fifo, tmp, 4, NULL);
len=AV_RL32(tmp);
av_assert0(len >= 0);
av_assert0(len <= sizeof(s->tmp));
av_fifo_generic_read(s->fifo, s->tmp, len, NULL);
pthread_mutex_unlock(&s->mutex);
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_cancelstate);
if (s->bitrate) {
timestamp = av_gettime_relative();
if (timestamp < target_timestamp) {
int64_t delay = target_timestamp - timestamp;
if (delay > max_delay) {
delay = max_delay;
start_timestamp = timestamp + delay;
sent_bits = 0;
}
av_usleep(delay);
} else {
if (timestamp - burst_interval > target_timestamp) {
start_timestamp = timestamp - burst_interval;
sent_bits = 0;
}
}
sent_bits += len * 8;
target_timestamp = start_timestamp + sent_bits * 1000000 / s->bitrate;
}
p = s->tmp;
while (len) {
int ret;
av_assert0(len > 0);
if (!s->is_connected) {
ret = sendto (s->udp_fd, p, len, 0,
(struct sockaddr *) &s->dest_addr,
s->dest_addr_len);
} else
ret = send(s->udp_fd, p, len, 0);
if (ret >= 0) {
len -= ret;
p += ret;
} else {
ret = ff_neterrno();
if (ret != AVERROR(EAGAIN) && ret != AVERROR(EINTR)) {
pthread_mutex_lock(&s->mutex);
s->circular_buffer_error = ret;
pthread_mutex_unlock(&s->mutex);
return NULL;
}
}
}
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old_cancelstate);
pthread_mutex_lock(&s->mutex);
}
end:
pthread_mutex_unlock(&s->mutex);
return NULL;
}
#endif
/* put it in UDP context */
/* return non zero if error */
static int udp_open(URLContext *h, const char *uri, int flags)
{
char hostname[1024], localaddr[1024] = "";
int port, udp_fd = -1, tmp, bind_ret = -1, dscp = -1;
UDPContext *s = h->priv_data;
int is_output;
const char *p;
char buf[256];
struct sockaddr_storage my_addr;
socklen_t len;
h->is_streamed = 1;
is_output = !(flags & AVIO_FLAG_READ);
if (s->buffer_size < 0)
s->buffer_size = is_output ? UDP_TX_BUF_SIZE : UDP_MAX_PKT_SIZE;
if (s->sources) {
if (ff_ip_parse_sources(h, s->sources, &s->filters) < 0)
goto fail;
}
if (s->block) {
if (ff_ip_parse_blocks(h, s->block, &s->filters) < 0)
goto fail;
}
if (s->pkt_size > 0)
h->max_packet_size = s->pkt_size;
p = strchr(uri, '?');
if (p) {
if (av_find_info_tag(buf, sizeof(buf), "reuse", p)) {
char *endptr = NULL;
s->reuse_socket = strtol(buf, &endptr, 10);
/* assume if no digits were found it is a request to enable it */
if (buf == endptr)
s->reuse_socket = 1;
}
if (av_find_info_tag(buf, sizeof(buf), "overrun_nonfatal", p)) {
char *endptr = NULL;
s->overrun_nonfatal = strtol(buf, &endptr, 10);
/* assume if no digits were found it is a request to enable it */
if (buf == endptr)
s->overrun_nonfatal = 1;
if (!HAVE_PTHREAD_CANCEL)
av_log(h, AV_LOG_WARNING,
"'overrun_nonfatal' option was set but it is not supported "
"on this build (pthread support is required)\n");
}
if (av_find_info_tag(buf, sizeof(buf), "ttl", p)) {
s->ttl = strtol(buf, NULL, 10);
}
if (av_find_info_tag(buf, sizeof(buf), "udplite_coverage", p)) {
s->udplite_coverage = strtol(buf, NULL, 10);
}
if (av_find_info_tag(buf, sizeof(buf), "localport", p)) {
s->local_port = strtol(buf, NULL, 10);
}
if (av_find_info_tag(buf, sizeof(buf), "pkt_size", p)) {
s->pkt_size = strtol(buf, NULL, 10);
}
if (av_find_info_tag(buf, sizeof(buf), "buffer_size", p)) {
s->buffer_size = strtol(buf, NULL, 10);
}
if (av_find_info_tag(buf, sizeof(buf), "connect", p)) {
s->is_connected = strtol(buf, NULL, 10);
}
if (av_find_info_tag(buf, sizeof(buf), "dscp", p)) {
dscp = strtol(buf, NULL, 10);
}
if (av_find_info_tag(buf, sizeof(buf), "fifo_size", p)) {
s->circular_buffer_size = strtol(buf, NULL, 10);
if (!HAVE_PTHREAD_CANCEL)
av_log(h, AV_LOG_WARNING,
"'circular_buffer_size' option was set but it is not supported "
"on this build (pthread support is required)\n");
}
if (av_find_info_tag(buf, sizeof(buf), "bitrate", p)) {
s->bitrate = strtoll(buf, NULL, 10);
if (!HAVE_PTHREAD_CANCEL)
av_log(h, AV_LOG_WARNING,
"'bitrate' option was set but it is not supported "
"on this build (pthread support is required)\n");
}
if (av_find_info_tag(buf, sizeof(buf), "burst_bits", p)) {
s->burst_bits = strtoll(buf, NULL, 10);
}
if (av_find_info_tag(buf, sizeof(buf), "localaddr", p)) {
av_strlcpy(localaddr, buf, sizeof(localaddr));
}
if (av_find_info_tag(buf, sizeof(buf), "sources", p)) {
if (ff_ip_parse_sources(h, buf, &s->filters) < 0)
goto fail;
}
if (av_find_info_tag(buf, sizeof(buf), "block", p)) {
if (ff_ip_parse_blocks(h, buf, &s->filters) < 0)
goto fail;
}
if (!is_output && av_find_info_tag(buf, sizeof(buf), "timeout", p))
s->timeout = strtol(buf, NULL, 10);
if (is_output && av_find_info_tag(buf, sizeof(buf), "broadcast", p))
s->is_broadcast = strtol(buf, NULL, 10);
}
/* handling needed to support options picking from both AVOption and URL */
s->circular_buffer_size *= 188;
if (flags & AVIO_FLAG_WRITE) {
h->max_packet_size = s->pkt_size;
} else {
h->max_packet_size = UDP_MAX_PKT_SIZE;
}
h->rw_timeout = s->timeout;
/* fill the dest addr */
av_url_split(NULL, 0, NULL, 0, hostname, sizeof(hostname), &port, NULL, 0, uri);
/* XXX: fix av_url_split */
if (hostname[0] == '\0' || hostname[0] == '?') {
/* only accepts null hostname if input */
if (!(flags & AVIO_FLAG_READ))
goto fail;
} else {
if (ff_udp_set_remote_url(h, uri) < 0)
goto fail;
}
if ((s->is_multicast || s->local_port <= 0) && (h->flags & AVIO_FLAG_READ))
s->local_port = port;
if (localaddr[0])
udp_fd = udp_socket_create(h, &my_addr, &len, localaddr);
else
udp_fd = udp_socket_create(h, &my_addr, &len, s->localaddr);
if (udp_fd < 0)
goto fail;
s->local_addr_storage=my_addr; //store for future multicast join
/* Follow the requested reuse option, unless it's multicast in which
* case enable reuse unless explicitly disabled.
*/
if (s->reuse_socket > 0 || (s->is_multicast && s->reuse_socket < 0)) {
s->reuse_socket = 1;
if (setsockopt (udp_fd, SOL_SOCKET, SO_REUSEADDR, &(s->reuse_socket), sizeof(s->reuse_socket)) != 0)
goto fail;
}
if (s->is_broadcast) {
#ifdef SO_BROADCAST
if (setsockopt (udp_fd, SOL_SOCKET, SO_BROADCAST, &(s->is_broadcast), sizeof(s->is_broadcast)) != 0)
#endif
goto fail;
}
/* Set the checksum coverage for UDP-Lite (RFC 3828) for sending and receiving.
* The receiver coverage has to be less than or equal to the sender coverage.
* Otherwise, the receiver will drop all packets.
*/
if (s->udplite_coverage) {
if (setsockopt (udp_fd, IPPROTO_UDPLITE, UDPLITE_SEND_CSCOV, &(s->udplite_coverage), sizeof(s->udplite_coverage)) != 0)
av_log(h, AV_LOG_WARNING, "socket option UDPLITE_SEND_CSCOV not available");
if (setsockopt (udp_fd, IPPROTO_UDPLITE, UDPLITE_RECV_CSCOV, &(s->udplite_coverage), sizeof(s->udplite_coverage)) != 0)
av_log(h, AV_LOG_WARNING, "socket option UDPLITE_RECV_CSCOV not available");
}
if (dscp >= 0) {
dscp <<= 2;
if (setsockopt (udp_fd, IPPROTO_IP, IP_TOS, &dscp, sizeof(dscp)) != 0)
goto fail;
}
/* If multicast, try binding the multicast address first, to avoid
* receiving UDP packets from other sources aimed at the same UDP
* port. This fails on windows. This makes sending to the same address
* using sendto() fail, so only do it if we're opened in read-only mode. */
if (s->is_multicast && !(h->flags & AVIO_FLAG_WRITE)) {
bind_ret = bind(udp_fd,(struct sockaddr *)&s->dest_addr, len);
}
/* bind to the local address if not multicast or if the multicast
* bind failed */
/* the bind is needed to give a port to the socket now */
if (bind_ret < 0 && bind(udp_fd,(struct sockaddr *)&my_addr, len) < 0) {
ff_log_net_error(h, AV_LOG_ERROR, "bind failed");
goto fail;
}
len = sizeof(my_addr);
getsockname(udp_fd, (struct sockaddr *)&my_addr, &len);
s->local_port = udp_port(&my_addr, len);
if (s->is_multicast) {
if (h->flags & AVIO_FLAG_WRITE) {
/* output */
if (udp_set_multicast_ttl(udp_fd, s->ttl, (struct sockaddr *)&s->dest_addr) < 0)
goto fail;
}
if (h->flags & AVIO_FLAG_READ) {
/* input */
if (s->filters.nb_include_addrs) {
if (udp_set_multicast_sources(h, udp_fd,
(struct sockaddr *)&s->dest_addr,
s->dest_addr_len, &s->local_addr_storage,
s->filters.include_addrs,
s->filters.nb_include_addrs, 1) < 0)
goto fail;
} else {
if (udp_join_multicast_group(udp_fd, (struct sockaddr *)&s->dest_addr,(struct sockaddr *)&s->local_addr_storage) < 0)
goto fail;
}
if (s->filters.nb_exclude_addrs) {
if (udp_set_multicast_sources(h, udp_fd,
(struct sockaddr *)&s->dest_addr,
s->dest_addr_len, &s->local_addr_storage,
s->filters.exclude_addrs,
s->filters.nb_exclude_addrs, 0) < 0)
goto fail;
}
}
}
if (is_output) {
/* limit the tx buf size to limit latency */
tmp = s->buffer_size;
if (setsockopt(udp_fd, SOL_SOCKET, SO_SNDBUF, &tmp, sizeof(tmp)) < 0) {
ff_log_net_error(h, AV_LOG_ERROR, "setsockopt(SO_SNDBUF)");
goto fail;
}
} else {
/* set udp recv buffer size to the requested value (default 64K) */
tmp = s->buffer_size;
if (setsockopt(udp_fd, SOL_SOCKET, SO_RCVBUF, &tmp, sizeof(tmp)) < 0) {
ff_log_net_error(h, AV_LOG_WARNING, "setsockopt(SO_RECVBUF)");
}
len = sizeof(tmp);
if (getsockopt(udp_fd, SOL_SOCKET, SO_RCVBUF, &tmp, &len) < 0) {
ff_log_net_error(h, AV_LOG_WARNING, "getsockopt(SO_RCVBUF)");
} else {
av_log(h, AV_LOG_DEBUG, "end receive buffer size reported is %d\n", tmp);
if(tmp < s->buffer_size)
av_log(h, AV_LOG_WARNING, "attempted to set receive buffer to size %d but it only ended up set as %d", s->buffer_size, tmp);
}
/* make the socket non-blocking */
ff_socket_nonblock(udp_fd, 1);
}
if (s->is_connected) {
if (connect(udp_fd, (struct sockaddr *) &s->dest_addr, s->dest_addr_len)) {
ff_log_net_error(h, AV_LOG_ERROR, "connect");
goto fail;
}
}
s->udp_fd = udp_fd;
#if HAVE_PTHREAD_CANCEL
/*
Create thread in case of:
1. Input and circular_buffer_size is set
2. Output and bitrate and circular_buffer_size is set
*/
if (is_output && s->bitrate && !s->circular_buffer_size) {
/* Warn user in case of 'circular_buffer_size' is not set */
av_log(h, AV_LOG_WARNING,"'bitrate' option was set but 'circular_buffer_size' is not, but required\n");
}
if ((!is_output && s->circular_buffer_size) || (is_output && s->bitrate && s->circular_buffer_size)) {
int ret;
/* start the task going */
s->fifo = av_fifo_alloc(s->circular_buffer_size);
ret = pthread_mutex_init(&s->mutex, NULL);
if (ret != 0) {
av_log(h, AV_LOG_ERROR, "pthread_mutex_init failed : %s\n", strerror(ret));
goto fail;
}
ret = pthread_cond_init(&s->cond, NULL);
if (ret != 0) {
av_log(h, AV_LOG_ERROR, "pthread_cond_init failed : %s\n", strerror(ret));
goto cond_fail;
}
ret = pthread_create(&s->circular_buffer_thread, NULL, is_output?circular_buffer_task_tx:circular_buffer_task_rx, h);
if (ret != 0) {
av_log(h, AV_LOG_ERROR, "pthread_create failed : %s\n", strerror(ret));
goto thread_fail;
}
s->thread_started = 1;
}
#endif
return 0;
#if HAVE_PTHREAD_CANCEL
thread_fail:
pthread_cond_destroy(&s->cond);
cond_fail:
pthread_mutex_destroy(&s->mutex);
#endif
fail:
if (udp_fd >= 0)
closesocket(udp_fd);
av_fifo_freep(&s->fifo);
ff_ip_reset_filters(&s->filters);
return AVERROR(EIO);
}
static int udplite_open(URLContext *h, const char *uri, int flags)
{
UDPContext *s = h->priv_data;
// set default checksum coverage
s->udplite_coverage = UDP_HEADER_SIZE;
return udp_open(h, uri, flags);
}
static int udp_read(URLContext *h, uint8_t *buf, int size)
{
UDPContext *s = h->priv_data;
int ret;
struct sockaddr_storage addr;
socklen_t addr_len = sizeof(addr);
#if HAVE_PTHREAD_CANCEL
int avail, nonblock = h->flags & AVIO_FLAG_NONBLOCK;
if (s->fifo) {
pthread_mutex_lock(&s->mutex);
do {
avail = av_fifo_size(s->fifo);
if (avail) { // >=size) {
uint8_t tmp[4];
av_fifo_generic_read(s->fifo, tmp, 4, NULL);
avail= AV_RL32(tmp);
if(avail > size){
av_log(h, AV_LOG_WARNING, "Part of datagram lost due to insufficient buffer size\n");
avail= size;
}
av_fifo_generic_read(s->fifo, buf, avail, NULL);
av_fifo_drain(s->fifo, AV_RL32(tmp) - avail);
pthread_mutex_unlock(&s->mutex);
return avail;
} else if(s->circular_buffer_error){
int err = s->circular_buffer_error;
pthread_mutex_unlock(&s->mutex);
return err;
} else if(nonblock) {
pthread_mutex_unlock(&s->mutex);
return AVERROR(EAGAIN);
}
else {
/* FIXME: using the monotonic clock would be better,
but it does not exist on all supported platforms. */
int64_t t = av_gettime() + 100000;
struct timespec tv = { .tv_sec = t / 1000000,
.tv_nsec = (t % 1000000) * 1000 };
if (pthread_cond_timedwait(&s->cond, &s->mutex, &tv) < 0) {
pthread_mutex_unlock(&s->mutex);
return AVERROR(errno == ETIMEDOUT ? EAGAIN : errno);
}
nonblock = 1;
}
} while( 1);
}
#endif
if (!(h->flags & AVIO_FLAG_NONBLOCK)) {
ret = ff_network_wait_fd(s->udp_fd, 0);
if (ret < 0)
return ret;
}
ret = recvfrom(s->udp_fd, buf, size, 0, (struct sockaddr *)&addr, &addr_len);
if (ret < 0)
return ff_neterrno();
if (ff_ip_check_source_lists(&addr, &s->filters))
return AVERROR(EINTR);
return ret;
}
static int udp_write(URLContext *h, const uint8_t *buf, int size)
{
UDPContext *s = h->priv_data;
int ret;
#if HAVE_PTHREAD_CANCEL
if (s->fifo) {
uint8_t tmp[4];
pthread_mutex_lock(&s->mutex);
/*
Return error if last tx failed.
Here we can't know on which packet error was, but it needs to know that error exists.
*/
if (s->circular_buffer_error<0) {
int err=s->circular_buffer_error;
pthread_mutex_unlock(&s->mutex);
return err;
}
if(av_fifo_space(s->fifo) < size + 4) {
/* What about a partial packet tx ? */
pthread_mutex_unlock(&s->mutex);
return AVERROR(ENOMEM);
}
AV_WL32(tmp, size);
av_fifo_generic_write(s->fifo, tmp, 4, NULL); /* size of packet */
av_fifo_generic_write(s->fifo, (uint8_t *)buf, size, NULL); /* the data */
pthread_cond_signal(&s->cond);
pthread_mutex_unlock(&s->mutex);
return size;
}
#endif
if (!(h->flags & AVIO_FLAG_NONBLOCK)) {
ret = ff_network_wait_fd(s->udp_fd, 1);
if (ret < 0)
return ret;
}
if (!s->is_connected) {
ret = sendto (s->udp_fd, buf, size, 0,
(struct sockaddr *) &s->dest_addr,
s->dest_addr_len);
} else
ret = send(s->udp_fd, buf, size, 0);
return ret < 0 ? ff_neterrno() : ret;
}
static int udp_close(URLContext *h)
{
UDPContext *s = h->priv_data;
#if HAVE_PTHREAD_CANCEL
// Request close once writing is finished
if (s->thread_started && !(h->flags & AVIO_FLAG_READ)) {
pthread_mutex_lock(&s->mutex);
s->close_req = 1;
pthread_cond_signal(&s->cond);
pthread_mutex_unlock(&s->mutex);
}
#endif
if (s->is_multicast && (h->flags & AVIO_FLAG_READ))
udp_leave_multicast_group(s->udp_fd, (struct sockaddr *)&s->dest_addr,(struct sockaddr *)&s->local_addr_storage);
#if HAVE_PTHREAD_CANCEL
if (s->thread_started) {
int ret;
// Cancel only read, as write has been signaled as success to the user
if (h->flags & AVIO_FLAG_READ)
pthread_cancel(s->circular_buffer_thread);
ret = pthread_join(s->circular_buffer_thread, NULL);
if (ret != 0)
av_log(h, AV_LOG_ERROR, "pthread_join(): %s\n", strerror(ret));
pthread_mutex_destroy(&s->mutex);
pthread_cond_destroy(&s->cond);
}
#endif
closesocket(s->udp_fd);
av_fifo_freep(&s->fifo);
ff_ip_reset_filters(&s->filters);
return 0;
}
const URLProtocol ff_udp_protocol = {
.name = "udp",
.url_open = udp_open,
.url_read = udp_read,
.url_write = udp_write,
.url_close = udp_close,
.url_get_file_handle = udp_get_file_handle,
.priv_data_size = sizeof(UDPContext),
.priv_data_class = &udp_class,
.flags = URL_PROTOCOL_FLAG_NETWORK,
};
const URLProtocol ff_udplite_protocol = {
.name = "udplite",
.url_open = udplite_open,
.url_read = udp_read,
.url_write = udp_write,
.url_close = udp_close,
.url_get_file_handle = udp_get_file_handle,
.priv_data_size = sizeof(UDPContext),
.priv_data_class = &udplite_context_class,
.flags = URL_PROTOCOL_FLAG_NETWORK,
};