blob: 804cc7b17b752a34553d0df11a641cbb3a1dd985 [file] [log] [blame]
/*
* ALAC audio encoder
* Copyright (c) 2008 Jaikrishnan Menon <realityman@gmx.net>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/opt.h"
#include "avcodec.h"
#include "put_bits.h"
#include "internal.h"
#include "lpc.h"
#include "mathops.h"
#include "alac_data.h"
#define DEFAULT_FRAME_SIZE 4096
#define ALAC_EXTRADATA_SIZE 36
#define ALAC_FRAME_HEADER_SIZE 55
#define ALAC_FRAME_FOOTER_SIZE 3
#define ALAC_ESCAPE_CODE 0x1FF
#define ALAC_MAX_LPC_ORDER 30
#define DEFAULT_MAX_PRED_ORDER 6
#define DEFAULT_MIN_PRED_ORDER 4
#define ALAC_MAX_LPC_PRECISION 9
#define ALAC_MIN_LPC_SHIFT 0
#define ALAC_MAX_LPC_SHIFT 9
#define ALAC_CHMODE_LEFT_RIGHT 0
#define ALAC_CHMODE_LEFT_SIDE 1
#define ALAC_CHMODE_RIGHT_SIDE 2
#define ALAC_CHMODE_MID_SIDE 3
typedef struct RiceContext {
int history_mult;
int initial_history;
int k_modifier;
int rice_modifier;
} RiceContext;
typedef struct AlacLPCContext {
int lpc_order;
int lpc_coeff[ALAC_MAX_LPC_ORDER+1];
int lpc_quant;
} AlacLPCContext;
typedef struct AlacEncodeContext {
const AVClass *class;
AVCodecContext *avctx;
int frame_size; /**< current frame size */
int verbatim; /**< current frame verbatim mode flag */
int compression_level;
int min_prediction_order;
int max_prediction_order;
int max_coded_frame_size;
int write_sample_size;
int extra_bits;
int32_t sample_buf[2][DEFAULT_FRAME_SIZE];
int32_t predictor_buf[2][DEFAULT_FRAME_SIZE];
int interlacing_shift;
int interlacing_leftweight;
PutBitContext pbctx;
RiceContext rc;
AlacLPCContext lpc[2];
LPCContext lpc_ctx;
} AlacEncodeContext;
static void init_sample_buffers(AlacEncodeContext *s, int channels,
const uint8_t *samples[2])
{
int ch, i;
int shift = av_get_bytes_per_sample(s->avctx->sample_fmt) * 8 -
s->avctx->bits_per_raw_sample;
#define COPY_SAMPLES(type) do { \
for (ch = 0; ch < channels; ch++) { \
int32_t *bptr = s->sample_buf[ch]; \
const type *sptr = (const type *)samples[ch]; \
for (i = 0; i < s->frame_size; i++) \
bptr[i] = sptr[i] >> shift; \
} \
} while (0)
if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S32P)
COPY_SAMPLES(int32_t);
else
COPY_SAMPLES(int16_t);
}
static void encode_scalar(AlacEncodeContext *s, int x,
int k, int write_sample_size)
{
int divisor, q, r;
k = FFMIN(k, s->rc.k_modifier);
divisor = (1<<k) - 1;
q = x / divisor;
r = x % divisor;
if (q > 8) {
// write escape code and sample value directly
put_bits(&s->pbctx, 9, ALAC_ESCAPE_CODE);
put_bits(&s->pbctx, write_sample_size, x);
} else {
if (q)
put_bits(&s->pbctx, q, (1<<q) - 1);
put_bits(&s->pbctx, 1, 0);
if (k != 1) {
if (r > 0)
put_bits(&s->pbctx, k, r+1);
else
put_bits(&s->pbctx, k-1, 0);
}
}
}
static void write_element_header(AlacEncodeContext *s,
enum AlacRawDataBlockType element,
int instance)
{
int encode_fs = 0;
if (s->frame_size < DEFAULT_FRAME_SIZE)
encode_fs = 1;
put_bits(&s->pbctx, 3, element); // element type
put_bits(&s->pbctx, 4, instance); // element instance
put_bits(&s->pbctx, 12, 0); // unused header bits
put_bits(&s->pbctx, 1, encode_fs); // Sample count is in the header
put_bits(&s->pbctx, 2, s->extra_bits >> 3); // Extra bytes (for 24-bit)
put_bits(&s->pbctx, 1, s->verbatim); // Audio block is verbatim
if (encode_fs)
put_bits32(&s->pbctx, s->frame_size); // No. of samples in the frame
}
static void calc_predictor_params(AlacEncodeContext *s, int ch)
{
int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
int shift[MAX_LPC_ORDER];
int opt_order;
if (s->compression_level == 1) {
s->lpc[ch].lpc_order = 6;
s->lpc[ch].lpc_quant = 6;
s->lpc[ch].lpc_coeff[0] = 160;
s->lpc[ch].lpc_coeff[1] = -190;
s->lpc[ch].lpc_coeff[2] = 170;
s->lpc[ch].lpc_coeff[3] = -130;
s->lpc[ch].lpc_coeff[4] = 80;
s->lpc[ch].lpc_coeff[5] = -25;
} else {
opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, s->sample_buf[ch],
s->frame_size,
s->min_prediction_order,
s->max_prediction_order,
ALAC_MAX_LPC_PRECISION, coefs, shift,
FF_LPC_TYPE_LEVINSON, 0,
ORDER_METHOD_EST, ALAC_MIN_LPC_SHIFT,
ALAC_MAX_LPC_SHIFT, 1);
s->lpc[ch].lpc_order = opt_order;
s->lpc[ch].lpc_quant = shift[opt_order-1];
memcpy(s->lpc[ch].lpc_coeff, coefs[opt_order-1], opt_order*sizeof(int));
}
}
static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
{
int i, best;
int32_t lt, rt;
uint64_t sum[4];
uint64_t score[4];
/* calculate sum of 2nd order residual for each channel */
sum[0] = sum[1] = sum[2] = sum[3] = 0;
for (i = 2; i < n; i++) {
lt = left_ch[i] - 2 * left_ch[i - 1] + left_ch[i - 2];
rt = right_ch[i] - 2 * right_ch[i - 1] + right_ch[i - 2];
sum[2] += FFABS((lt + rt) >> 1);
sum[3] += FFABS(lt - rt);
sum[0] += FFABS(lt);
sum[1] += FFABS(rt);
}
/* calculate score for each mode */
score[0] = sum[0] + sum[1];
score[1] = sum[0] + sum[3];
score[2] = sum[1] + sum[3];
score[3] = sum[2] + sum[3];
/* return mode with lowest score */
best = 0;
for (i = 1; i < 4; i++) {
if (score[i] < score[best])
best = i;
}
return best;
}
static void alac_stereo_decorrelation(AlacEncodeContext *s)
{
int32_t *left = s->sample_buf[0], *right = s->sample_buf[1];
int i, mode, n = s->frame_size;
int32_t tmp;
mode = estimate_stereo_mode(left, right, n);
switch (mode) {
case ALAC_CHMODE_LEFT_RIGHT:
s->interlacing_leftweight = 0;
s->interlacing_shift = 0;
break;
case ALAC_CHMODE_LEFT_SIDE:
for (i = 0; i < n; i++)
right[i] = left[i] - right[i];
s->interlacing_leftweight = 1;
s->interlacing_shift = 0;
break;
case ALAC_CHMODE_RIGHT_SIDE:
for (i = 0; i < n; i++) {
tmp = right[i];
right[i] = left[i] - right[i];
left[i] = tmp + (right[i] >> 31);
}
s->interlacing_leftweight = 1;
s->interlacing_shift = 31;
break;
default:
for (i = 0; i < n; i++) {
tmp = left[i];
left[i] = (tmp + right[i]) >> 1;
right[i] = tmp - right[i];
}
s->interlacing_leftweight = 1;
s->interlacing_shift = 1;
break;
}
}
static void alac_linear_predictor(AlacEncodeContext *s, int ch)
{
int i;
AlacLPCContext lpc = s->lpc[ch];
int32_t *residual = s->predictor_buf[ch];
if (lpc.lpc_order == 31) {
residual[0] = s->sample_buf[ch][0];
for (i = 1; i < s->frame_size; i++) {
residual[i] = s->sample_buf[ch][i ] -
s->sample_buf[ch][i - 1];
}
return;
}
// generalised linear predictor
if (lpc.lpc_order > 0) {
int32_t *samples = s->sample_buf[ch];
// generate warm-up samples
residual[0] = samples[0];
for (i = 1; i <= lpc.lpc_order; i++)
residual[i] = sign_extend(samples[i] - samples[i-1], s->write_sample_size);
// perform lpc on remaining samples
for (i = lpc.lpc_order + 1; i < s->frame_size; i++) {
int sum = 1 << (lpc.lpc_quant - 1), res_val, j;
for (j = 0; j < lpc.lpc_order; j++) {
sum += (samples[lpc.lpc_order-j] - samples[0]) *
lpc.lpc_coeff[j];
}
sum >>= lpc.lpc_quant;
sum += samples[0];
residual[i] = sign_extend(samples[lpc.lpc_order+1] - sum,
s->write_sample_size);
res_val = residual[i];
if (res_val) {
int index = lpc.lpc_order - 1;
int neg = (res_val < 0);
while (index >= 0 && (neg ? (res_val < 0) : (res_val > 0))) {
int val = samples[0] - samples[lpc.lpc_order - index];
int sign = (val ? FFSIGN(val) : 0);
if (neg)
sign *= -1;
lpc.lpc_coeff[index] -= sign;
val *= sign;
res_val -= (val >> lpc.lpc_quant) * (lpc.lpc_order - index);
index--;
}
}
samples++;
}
}
}
static void alac_entropy_coder(AlacEncodeContext *s, int ch)
{
unsigned int history = s->rc.initial_history;
int sign_modifier = 0, i, k;
int32_t *samples = s->predictor_buf[ch];
for (i = 0; i < s->frame_size;) {
int x;
k = av_log2((history >> 9) + 3);
x = -2 * (*samples) -1;
x ^= x >> 31;
samples++;
i++;
encode_scalar(s, x - sign_modifier, k, s->write_sample_size);
history += x * s->rc.history_mult -
((history * s->rc.history_mult) >> 9);
sign_modifier = 0;
if (x > 0xFFFF)
history = 0xFFFF;
if (history < 128 && i < s->frame_size) {
unsigned int block_size = 0;
k = 7 - av_log2(history) + ((history + 16) >> 6);
while (*samples == 0 && i < s->frame_size) {
samples++;
i++;
block_size++;
}
encode_scalar(s, block_size, k, 16);
sign_modifier = (block_size <= 0xFFFF);
history = 0;
}
}
}
static void write_element(AlacEncodeContext *s,
enum AlacRawDataBlockType element, int instance,
const uint8_t *samples0, const uint8_t *samples1)
{
const uint8_t *samples[2] = { samples0, samples1 };
int i, j, channels;
int prediction_type = 0;
PutBitContext *pb = &s->pbctx;
channels = element == TYPE_CPE ? 2 : 1;
if (s->verbatim) {
write_element_header(s, element, instance);
/* samples are channel-interleaved in verbatim mode */
if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S32P) {
int shift = 32 - s->avctx->bits_per_raw_sample;
const int32_t *samples_s32[2] = { (const int32_t *)samples0,
(const int32_t *)samples1 };
for (i = 0; i < s->frame_size; i++)
for (j = 0; j < channels; j++)
put_sbits(pb, s->avctx->bits_per_raw_sample,
samples_s32[j][i] >> shift);
} else {
const int16_t *samples_s16[2] = { (const int16_t *)samples0,
(const int16_t *)samples1 };
for (i = 0; i < s->frame_size; i++)
for (j = 0; j < channels; j++)
put_sbits(pb, s->avctx->bits_per_raw_sample,
samples_s16[j][i]);
}
} else {
s->write_sample_size = s->avctx->bits_per_raw_sample - s->extra_bits +
channels - 1;
init_sample_buffers(s, channels, samples);
write_element_header(s, element, instance);
// extract extra bits if needed
if (s->extra_bits) {
uint32_t mask = (1 << s->extra_bits) - 1;
for (j = 0; j < channels; j++) {
int32_t *extra = s->predictor_buf[j];
int32_t *smp = s->sample_buf[j];
for (i = 0; i < s->frame_size; i++) {
extra[i] = smp[i] & mask;
smp[i] >>= s->extra_bits;
}
}
}
if (channels == 2)
alac_stereo_decorrelation(s);
else
s->interlacing_shift = s->interlacing_leftweight = 0;
put_bits(pb, 8, s->interlacing_shift);
put_bits(pb, 8, s->interlacing_leftweight);
for (i = 0; i < channels; i++) {
calc_predictor_params(s, i);
put_bits(pb, 4, prediction_type);
put_bits(pb, 4, s->lpc[i].lpc_quant);
put_bits(pb, 3, s->rc.rice_modifier);
put_bits(pb, 5, s->lpc[i].lpc_order);
// predictor coeff. table
for (j = 0; j < s->lpc[i].lpc_order; j++)
put_sbits(pb, 16, s->lpc[i].lpc_coeff[j]);
}
// write extra bits if needed
if (s->extra_bits) {
for (i = 0; i < s->frame_size; i++) {
for (j = 0; j < channels; j++) {
put_bits(pb, s->extra_bits, s->predictor_buf[j][i]);
}
}
}
// apply lpc and entropy coding to audio samples
for (i = 0; i < channels; i++) {
alac_linear_predictor(s, i);
// TODO: determine when this will actually help. for now it's not used.
if (prediction_type == 15) {
// 2nd pass 1st order filter
int32_t *residual = s->predictor_buf[i];
for (j = s->frame_size - 1; j > 0; j--)
residual[j] -= residual[j - 1];
}
alac_entropy_coder(s, i);
}
}
}
static int write_frame(AlacEncodeContext *s, AVPacket *avpkt,
uint8_t * const *samples)
{
PutBitContext *pb = &s->pbctx;
const enum AlacRawDataBlockType *ch_elements = ff_alac_channel_elements[s->avctx->channels - 1];
const uint8_t *ch_map = ff_alac_channel_layout_offsets[s->avctx->channels - 1];
int ch, element, sce, cpe;
init_put_bits(pb, avpkt->data, avpkt->size);
ch = element = sce = cpe = 0;
while (ch < s->avctx->channels) {
if (ch_elements[element] == TYPE_CPE) {
write_element(s, TYPE_CPE, cpe, samples[ch_map[ch]],
samples[ch_map[ch + 1]]);
cpe++;
ch += 2;
} else {
write_element(s, TYPE_SCE, sce, samples[ch_map[ch]], NULL);
sce++;
ch++;
}
element++;
}
put_bits(pb, 3, TYPE_END);
flush_put_bits(pb);
return put_bits_count(pb) >> 3;
}
static av_always_inline int get_max_frame_size(int frame_size, int ch, int bps)
{
int header_bits = 23 + 32 * (frame_size < DEFAULT_FRAME_SIZE);
return FFALIGN(header_bits + bps * ch * frame_size + 3, 8) / 8;
}
static av_cold int alac_encode_close(AVCodecContext *avctx)
{
AlacEncodeContext *s = avctx->priv_data;
ff_lpc_end(&s->lpc_ctx);
av_freep(&avctx->extradata);
avctx->extradata_size = 0;
return 0;
}
static av_cold int alac_encode_init(AVCodecContext *avctx)
{
AlacEncodeContext *s = avctx->priv_data;
int ret;
uint8_t *alac_extradata;
avctx->frame_size = s->frame_size = DEFAULT_FRAME_SIZE;
if (avctx->sample_fmt == AV_SAMPLE_FMT_S32P) {
if (avctx->bits_per_raw_sample != 24)
av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n");
avctx->bits_per_raw_sample = 24;
} else {
avctx->bits_per_raw_sample = 16;
s->extra_bits = 0;
}
// Set default compression level
if (avctx->compression_level == FF_COMPRESSION_DEFAULT)
s->compression_level = 2;
else
s->compression_level = av_clip(avctx->compression_level, 0, 2);
// Initialize default Rice parameters
s->rc.history_mult = 40;
s->rc.initial_history = 10;
s->rc.k_modifier = 14;
s->rc.rice_modifier = 4;
s->max_coded_frame_size = get_max_frame_size(avctx->frame_size,
avctx->channels,
avctx->bits_per_raw_sample);
avctx->extradata = av_mallocz(ALAC_EXTRADATA_SIZE + AV_INPUT_BUFFER_PADDING_SIZE);
if (!avctx->extradata) {
ret = AVERROR(ENOMEM);
goto error;
}
avctx->extradata_size = ALAC_EXTRADATA_SIZE;
alac_extradata = avctx->extradata;
AV_WB32(alac_extradata, ALAC_EXTRADATA_SIZE);
AV_WB32(alac_extradata+4, MKBETAG('a','l','a','c'));
AV_WB32(alac_extradata+12, avctx->frame_size);
AV_WB8 (alac_extradata+17, avctx->bits_per_raw_sample);
AV_WB8 (alac_extradata+21, avctx->channels);
AV_WB32(alac_extradata+24, s->max_coded_frame_size);
AV_WB32(alac_extradata+28,
avctx->sample_rate * avctx->channels * avctx->bits_per_raw_sample); // average bitrate
AV_WB32(alac_extradata+32, avctx->sample_rate);
// Set relevant extradata fields
if (s->compression_level > 0) {
AV_WB8(alac_extradata+18, s->rc.history_mult);
AV_WB8(alac_extradata+19, s->rc.initial_history);
AV_WB8(alac_extradata+20, s->rc.k_modifier);
}
#if FF_API_PRIVATE_OPT
FF_DISABLE_DEPRECATION_WARNINGS
if (avctx->min_prediction_order >= 0) {
if (avctx->min_prediction_order < MIN_LPC_ORDER ||
avctx->min_prediction_order > ALAC_MAX_LPC_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
avctx->min_prediction_order);
ret = AVERROR(EINVAL);
goto error;
}
s->min_prediction_order = avctx->min_prediction_order;
}
if (avctx->max_prediction_order >= 0) {
if (avctx->max_prediction_order < MIN_LPC_ORDER ||
avctx->max_prediction_order > ALAC_MAX_LPC_ORDER) {
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
avctx->max_prediction_order);
ret = AVERROR(EINVAL);
goto error;
}
s->max_prediction_order = avctx->max_prediction_order;
}
FF_ENABLE_DEPRECATION_WARNINGS
#endif
if (s->max_prediction_order < s->min_prediction_order) {
av_log(avctx, AV_LOG_ERROR,
"invalid prediction orders: min=%d max=%d\n",
s->min_prediction_order, s->max_prediction_order);
ret = AVERROR(EINVAL);
goto error;
}
s->avctx = avctx;
if ((ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
s->max_prediction_order,
FF_LPC_TYPE_LEVINSON)) < 0) {
goto error;
}
return 0;
error:
alac_encode_close(avctx);
return ret;
}
static int alac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
const AVFrame *frame, int *got_packet_ptr)
{
AlacEncodeContext *s = avctx->priv_data;
int out_bytes, max_frame_size, ret;
s->frame_size = frame->nb_samples;
if (frame->nb_samples < DEFAULT_FRAME_SIZE)
max_frame_size = get_max_frame_size(s->frame_size, avctx->channels,
avctx->bits_per_raw_sample);
else
max_frame_size = s->max_coded_frame_size;
if ((ret = ff_alloc_packet2(avctx, avpkt, 4 * max_frame_size, 0)) < 0)
return ret;
/* use verbatim mode for compression_level 0 */
if (s->compression_level) {
s->verbatim = 0;
s->extra_bits = avctx->bits_per_raw_sample - 16;
} else {
s->verbatim = 1;
s->extra_bits = 0;
}
out_bytes = write_frame(s, avpkt, frame->extended_data);
if (out_bytes > max_frame_size) {
/* frame too large. use verbatim mode */
s->verbatim = 1;
s->extra_bits = 0;
out_bytes = write_frame(s, avpkt, frame->extended_data);
}
avpkt->size = out_bytes;
*got_packet_ptr = 1;
return 0;
}
#define OFFSET(x) offsetof(AlacEncodeContext, x)
#define AE AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "min_prediction_order", NULL, OFFSET(min_prediction_order), AV_OPT_TYPE_INT, { .i64 = DEFAULT_MIN_PRED_ORDER }, MIN_LPC_ORDER, ALAC_MAX_LPC_ORDER, AE },
{ "max_prediction_order", NULL, OFFSET(max_prediction_order), AV_OPT_TYPE_INT, { .i64 = DEFAULT_MAX_PRED_ORDER }, MIN_LPC_ORDER, ALAC_MAX_LPC_ORDER, AE },
{ NULL },
};
static const AVClass alacenc_class = {
.class_name = "alacenc",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
AVCodec ff_alac_encoder = {
.name = "alac",
.long_name = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"),
.type = AVMEDIA_TYPE_AUDIO,
.id = AV_CODEC_ID_ALAC,
.priv_data_size = sizeof(AlacEncodeContext),
.priv_class = &alacenc_class,
.init = alac_encode_init,
.encode2 = alac_encode_frame,
.close = alac_encode_close,
.capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME,
.channel_layouts = ff_alac_channel_layouts,
.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32P,
AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_NONE },
};