blob: ad3a2ead24ff75dd421b6198f24a932f4a1ce04b [file] [log] [blame]
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "f2fs.h"
namespace f2fs {
Dir::Dir(F2fs *fs) : VnodeF2fs(fs) {}
Dir::Dir(F2fs *fs, ino_t ino) : VnodeF2fs(fs, ino) {}
uint64_t Dir::DirBlocks() { return GetBlockCount(); }
unsigned int Dir::DirBuckets(unsigned int level) {
if (level < kMaxDirHashDepth / 2)
return 1 << level;
else
return 1 << ((kMaxDirHashDepth / 2) - 1);
}
unsigned int Dir::BucketBlocks(unsigned int level) {
if (level < kMaxDirHashDepth / 2)
return 2;
else
return 4;
}
void Dir::SetDeType(DirEntry *de, VnodeF2fs *vnode) {
de->file_type = type_by_mode[(vnode->i_mode_ & S_IFMT) >> kStatShift];
}
uint64_t Dir::DirBlockIndex(unsigned int level, unsigned int idx) {
uint64_t i;
uint64_t bidx = 0;
for (i = 0; i < level; i++)
bidx += DirBuckets(i) * BucketBlocks(i);
bidx += idx * BucketBlocks(level);
return bidx;
}
bool Dir::EarlyMatchName(const char *name, int namelen, f2fs_hash_t namehash, DirEntry *de) {
if (LeToCpu(de->name_len) != namelen)
return false;
if (LeToCpu(de->hash_code) != namehash)
return false;
return true;
}
DirEntry *Dir::FindInBlock(Page *dentry_page, const char *name, int namelen, int *max_slots,
f2fs_hash_t namehash, Page **res_page) {
DirEntry *de;
uint64_t bit_pos, end_pos, next_pos;
#if 0 // porting needed
// f2fs_dentry_block *dentry_blk = kmap(dentry_page);
#else
DentryBlock *dentry_blk = reinterpret_cast<DentryBlock *>(dentry_page);
#endif
int slots;
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, kNrDentryInBlock, 0);
while (bit_pos < kNrDentryInBlock) {
de = &dentry_blk->dentry[bit_pos];
slots = (LeToCpu(de->name_len) + kNameLen - 1) / kNameLen;
if (EarlyMatchName(name, namelen, namehash, de)) {
if (!memcmp(dentry_blk->filename[bit_pos], name, namelen)) {
*res_page = dentry_page;
return de;
}
}
next_pos = bit_pos + slots;
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, kNrDentryInBlock, next_pos);
if (bit_pos >= kNrDentryInBlock)
end_pos = kNrDentryInBlock;
else
end_pos = bit_pos;
if (static_cast<uint64_t>(*max_slots) < end_pos - next_pos)
*max_slots = end_pos - next_pos;
}
de = nullptr;
#if 0 // porting needed
// kunmap(dentry_page);
#endif
return de;
}
DirEntry *Dir::FindInLevel(unsigned int level, std::string_view name, int namelen,
f2fs_hash_t namehash, Page **res_page) {
int s = (namelen + kNameLen - 1) / kNameLen;
unsigned int nbucket, nblock;
unsigned int bidx, end_block;
Page *dentry_page = nullptr;
DirEntry *de = nullptr;
bool room = false;
int max_slots = 0;
ZX_ASSERT(level <= kMaxDirHashDepth);
nbucket = DirBuckets(level);
nblock = BucketBlocks(level);
bidx = DirBlockIndex(level, namehash % nbucket);
end_block = bidx + nblock;
for (; bidx < end_block; bidx++) {
/* no need to allocate new dentry pages to all the indices */
if (FindDataPage(bidx, &dentry_page) != ZX_OK) {
room = true;
continue;
}
if (de = FindInBlock(dentry_page, name.data(), namelen, &max_slots, namehash, res_page);
de != nullptr)
break;
if (max_slots >= s)
room = true;
F2fsPutPage(dentry_page, 0);
}
if (!de && room && fi_.chash != namehash) {
fi_.chash = namehash;
fi_.clevel = level;
}
return de;
}
/*
* Find an entry in the specified directory with the wanted name.
* It returns the page where the entry was found (as a parameter - res_page),
* and the entry itself. Page is returned mapped and unlocked.
* Entry is guaranteed to be valid.
*/
DirEntry *Dir::FindEntry(std::string_view name, Page **res_page) {
uint64_t npages = DirBlocks();
DirEntry *de = nullptr;
f2fs_hash_t name_hash;
unsigned int max_depth;
unsigned int level;
if (npages == 0)
return nullptr;
*res_page = nullptr;
name_hash = DentryHash(name.data(), name.length());
max_depth = fi_.i_current_depth;
for (level = 0; level < max_depth; level++) {
if (de = FindInLevel(level, name, name.length(), name_hash, res_page); de != nullptr)
break;
}
if (!de && fi_.chash != name_hash) {
fi_.chash = name_hash;
fi_.clevel = level - 1;
}
return de;
}
DirEntry *Dir::ParentDir(Page **p) {
Page *page = nullptr;
DirEntry *de = nullptr;
DentryBlock *dentry_blk = nullptr;
if (GetLockDataPage(0, &page) != ZX_OK)
return nullptr;
#if 0 // porting needed
// dentry_blk = kmap(page);
#endif
dentry_blk = static_cast<DentryBlock *>(PageAddress(page));
de = &dentry_blk->dentry[1];
*p = page;
#if 0 // porting needed
// unlock_page(page);
#endif
return de;
}
ino_t Dir::InodeByName(std::string_view name) {
ino_t res = 0;
DirEntry *de;
Page *page;
if (de = FindEntry(name, &page); de != nullptr) {
res = LeToCpu(de->ino);
#if 0 // porting needed
// kunmap(page);
#endif
F2fsPutPage(page, 0);
}
return res;
}
void Dir::SetLink(DirEntry *de, Page *page, VnodeF2fs *vnode) {
SbInfo &sbi = Vfs()->GetSbInfo();
fbl::AutoLock lock(&sbi.fs_lock[static_cast<int>(LockType::kDentryOps)]);
#if 0 // porting needed
// lock_page(page);
#endif
WaitOnPageWriteback(page);
de->ino = CpuToLe(vnode->Ino());
SetDeType(de, vnode);
#if 0 // porting needed
// kunmap(page);
// set_page_dirty(page);
#else
FlushDirtyDataPage(Vfs(), page);
#endif
clock_gettime(CLOCK_REALTIME, &i_mtime_);
i_ctime_ = i_mtime_;
MarkInodeDirty(this);
F2fsPutPage(page, 1);
}
void Dir::InitDentInode(VnodeF2fs *vnode, Page *ipage) {
#if 0 // porting needed
// inode *dir = dentry->d_parent->d_inode;
#endif
Node *rn;
if (!ipage)
return;
WaitOnPageWriteback(ipage);
/* copy dentry info. to this inode page */
rn = static_cast<Node *>(PageAddress(ipage));
rn->i.i_pino = CpuToLe(Ino());
rn->i.i_namelen = CpuToLe(vnode->i_name_sp_.GetLen());
memcpy(rn->i.i_name, vnode->i_name_sp_.GetData(), vnode->i_name_sp_.GetLen());
#if 0 // porting needed
// set_page_dirty(ipage);
#else
FlushDirtyNodePage(Vfs(), ipage);
#endif
}
zx_status_t Dir::InitInodeMetadata(VnodeF2fs *vnode) {
#if 0 // porting needed
// inode *dir = dentry->d_parent->d_inode;
#endif
if (IsInodeFlagSet(&vnode->fi_, InodeInfoFlag::kNewInode)) {
if (zx_status_t err = Vfs()->Nodemgr().NewInodePage(this, vnode); err != ZX_OK)
return err;
if (S_ISDIR(vnode->i_mode_)) {
if (zx_status_t err = MakeEmpty(vnode, this); err != ZX_OK) {
Vfs()->Nodemgr().RemoveInodePage(vnode);
return err;
}
// TODO: need to check other points for nlink
vnode->IncNlink();
}
#if 0 // porting needed
// err = f2fs_init_acl(inode, dir);
// if (err) {
// remove_inode_page(inode);
// return err;
// }
#endif
} else {
Page *ipage = nullptr;
if (zx_status_t err = Vfs()->Nodemgr().GetNodePage(vnode->Ino(), &ipage); err != ZX_OK)
return err;
InitDentInode(vnode, ipage);
F2fsPutPage(ipage, 1);
}
if (IsInodeFlagSet(&vnode->fi_, InodeInfoFlag::kIncLink)) {
vnode->IncNlink();
vnode->WriteInode(NULL);
}
return 0;
}
void Dir::UpdateParentMetadata(VnodeF2fs *vnode, unsigned int current_depth) {
bool need_dir_update = false;
if (IsInodeFlagSet(&vnode->fi_, InodeInfoFlag::kNewInode)) {
if (S_ISDIR(vnode->i_mode_)) {
IncNlink();
need_dir_update = true;
}
ClearInodeFlag(&vnode->fi_, InodeInfoFlag::kNewInode);
}
vnode->UpdateParentNid(Ino());
clock_gettime(CLOCK_REALTIME, &i_mtime_);
i_ctime_ = i_mtime_;
if (fi_.i_current_depth != current_depth) {
fi_.i_current_depth = current_depth;
need_dir_update = true;
}
if (need_dir_update)
WriteInode(NULL);
else
MarkInodeDirty(this);
if (IsInodeFlagSet(&vnode->fi_, InodeInfoFlag::kIncLink))
ClearInodeFlag(&vnode->fi_, InodeInfoFlag::kIncLink);
}
int Dir::RoomForFilename(DentryBlock *dentry_blk, int slots) {
int bit_start = 0;
int zero_start, zero_end;
while (true) {
zero_start = find_next_zero_bit_le(&dentry_blk->dentry_bitmap, kNrDentryInBlock, bit_start);
if (zero_start >= kNrDentryInBlock)
return kNrDentryInBlock;
zero_end = find_next_bit_le(&dentry_blk->dentry_bitmap, kNrDentryInBlock, zero_start);
if (zero_end - zero_start >= slots)
return zero_start;
bit_start = zero_end + 1;
if (zero_end + 1 >= kNrDentryInBlock)
return kNrDentryInBlock;
}
}
zx_status_t Dir::AddLink(std::string_view name, VnodeF2fs *vnode) {
unsigned int bit_pos;
unsigned int level;
unsigned int current_depth;
uint64_t bidx, block;
f2fs_hash_t dentry_hash;
DirEntry *de;
unsigned int nbucket, nblock;
SbInfo &sbi = Vfs()->GetSbInfo();
int namelen = name.length();
Page *dentry_page = nullptr;
DentryBlock *dentry_blk = nullptr;
int slots = (namelen + kNameLen - 1) / kNameLen;
zx_status_t err = 0;
int i;
dentry_hash = DentryHash(name.data(), namelen);
level = 0;
current_depth = fi_.i_current_depth;
if (fi_.chash == dentry_hash) {
level = fi_.clevel;
fi_.chash = 0;
}
while (true) {
if (current_depth == kMaxDirHashDepth)
return ZX_ERR_OUT_OF_RANGE;
/* Increase the depth, if required */
if (level == current_depth)
++current_depth;
nbucket = DirBuckets(level);
nblock = BucketBlocks(level);
bidx = DirBlockIndex(level, (dentry_hash % nbucket));
for (block = bidx; block <= (bidx + nblock - 1); block++) {
fbl::AutoLock lock(&sbi.fs_lock[static_cast<int>(LockType::kDentryOps)]);
if (err = GetNewDataPage(block, true, &dentry_page); err != ZX_OK) {
return err;
}
#if 0 // porting needed
// dentry_blk = kmap(dentry_page);
#else
dentry_blk = reinterpret_cast<DentryBlock *>(dentry_page->data);
#endif
bit_pos = RoomForFilename(dentry_blk, slots);
if (bit_pos < kNrDentryInBlock) {
#if 0 // porting needed
// if (err = InitInodeMetadata(vnode, dentry); err == ZX_OK) {
#else
if (err = InitInodeMetadata(vnode); err == ZX_OK) {
#endif
WaitOnPageWriteback(dentry_page);
de = &dentry_blk->dentry[bit_pos];
de->hash_code = CpuToLe(dentry_hash);
de->name_len = CpuToLe(static_cast<uint16_t>(namelen));
memcpy(dentry_blk->filename[bit_pos], name.data(), namelen);
de->ino = CpuToLe(vnode->Ino());
SetDeType(de, vnode);
for (i = 0; i < slots; i++)
test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
#if 0 // porting needed
// set_page_dirty(dentry_page);
#else
FlushDirtyDataPage(Vfs(), dentry_page);
#endif
UpdateParentMetadata(vnode, current_depth);
}
#if 0 // porting needed
// kunmap(dentry_page);
#endif
F2fsPutPage(dentry_page, 1);
return err;
}
#if 0 // porting needed
// kunmap(dentry_page);
#endif
F2fsPutPage(dentry_page, 1);
}
/* Move to next level to find the empty slot for new dentry */
++level;
}
}
/**
* It only removes the dentry from the dentry page,corresponding name
* entry in name page does not need to be touched during deletion.
*/
void Dir::DeleteEntry(DirEntry *dentry, Page *page, VnodeF2fs *vnode) {
DentryBlock *dentry_blk;
unsigned int bit_pos;
#if 0 // porting needed
// address_space *mapping = page->mapping;
#endif
SbInfo &sbi = Vfs()->GetSbInfo();
int slots = (LeToCpu(dentry->name_len) + kNameLen - 1) / kNameLen;
void *kaddr = PageAddress(page);
int i;
fbl::AutoLock lock(&sbi.fs_lock[static_cast<int>(LockType::kDentryOps)]);
#if 0 // porting needed
// lock_page(page);
#endif
WaitOnPageWriteback(page);
dentry_blk = static_cast<DentryBlock *>(kaddr);
bit_pos = dentry - dentry_blk->dentry;
for (i = 0; i < slots; i++)
test_and_clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
/* Let's check and deallocate this dentry page */
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, kNrDentryInBlock, 0);
#if 0 // porting needed
// kunmap(page); /* kunmap - pair of f2fs_find_entry */
// set_page_dirty(page);
#else
FlushDirtyDataPage(Vfs(), page);
#endif
clock_gettime(CLOCK_REALTIME, &i_mtime_);
i_ctime_ = i_mtime_;
if (vnode && S_ISDIR(vnode->i_mode_)) {
DropNlink();
WriteInode(NULL);
} else {
MarkInodeDirty(this);
}
if (vnode) {
clock_gettime(CLOCK_REALTIME, &i_mtime_);
i_ctime_ = vnode->i_ctime_ = i_mtime_;
vnode->DropNlink();
if (S_ISDIR(vnode->i_mode_)) {
vnode->DropNlink();
vnode->i_size_ = 0;
}
vnode->WriteInode(NULL);
if (vnode->i_nlink_ == 0)
Vfs()->AddOrphanInode(vnode->Ino());
}
if (bit_pos == kNrDentryInBlock) {
loff_t page_offset;
TruncateHole(page->index, page->index + 1);
ClearPageDirtyForIo(page);
#if 0 // porting needed
// ClearPageUptodate(page);
#endif
DecPageCount(&sbi, CountType::kDirtyDents);
InodeDecDirtyDents(this);
page_offset = page->index << kPageCacheShift;
F2fsPutPage(page, 1);
} else {
F2fsPutPage(page, 1);
}
}
zx_status_t Dir::MakeEmpty(VnodeF2fs *vnode, VnodeF2fs *parent) {
Page *dentry_page = nullptr;
DentryBlock *dentry_blk;
DirEntry *de;
void *kaddr;
if (zx_status_t err = vnode->GetNewDataPage(0, true, &dentry_page); err != ZX_OK)
return err;
#if 0 // porting needed
// kaddr = kmap_atomic(dentry_page);
#else
kaddr = dentry_page->data;
#endif
dentry_blk = static_cast<DentryBlock *>(kaddr);
de = &dentry_blk->dentry[0];
de->name_len = CpuToLe(static_cast<uint16_t>(1));
de->hash_code = 0;
de->ino = CpuToLe(vnode->Ino());
memcpy(dentry_blk->filename[0], ".", 1);
SetDeType(de, vnode);
de = &dentry_blk->dentry[1];
de->hash_code = 0;
de->name_len = CpuToLe(static_cast<uint16_t>(2));
de->ino = CpuToLe(parent->Ino());
memcpy(dentry_blk->filename[1], "..", 2);
SetDeType(de, vnode);
test_and_set_bit_le(0, &dentry_blk->dentry_bitmap);
test_and_set_bit_le(1, &dentry_blk->dentry_bitmap);
#if 0 // porting needed
// kunmap_atomic(kaddr);
// set_page_dirty(dentry_page);
#else
FlushDirtyDataPage(Vfs(), dentry_page);
#endif
F2fsPutPage(dentry_page, 1);
return 0;
}
bool Dir::IsEmptyDir() {
uint64_t bidx;
Page *dentry_page = nullptr;
unsigned int bit_pos;
DentryBlock *dentry_blk;
uint64_t nblock = DirBlocks();
for (bidx = 0; bidx < nblock; bidx++) {
void *kaddr;
if (zx_status_t ret = GetLockDataPage(bidx, &dentry_page); ret != ZX_OK) {
if (ret == ZX_ERR_NOT_FOUND)
continue;
else
return false;
}
#if 0 // porting needed
// kaddr = kmap_atomic(dentry_page);
#else
kaddr = dentry_page->data;
#endif
dentry_blk = static_cast<DentryBlock *>(kaddr);
if (bidx == 0)
bit_pos = 2;
else
bit_pos = 0;
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, kNrDentryInBlock, bit_pos);
#if 0 // porting needed
// kunmap_atomic(kaddr);
#endif
F2fsPutPage(dentry_page, 1);
if (bit_pos < kNrDentryInBlock)
return false;
}
return true;
}
zx_status_t Dir::Readdir(fs::VdirCookie *cookie, void *dirents, size_t len, size_t *out_actual) {
fs::DirentFiller df(dirents, len);
uint64_t *pos_cookie = reinterpret_cast<uint64_t *>(cookie);
uint64_t pos = *pos_cookie;
uint64_t npages = DirBlocks();
unsigned char *types = nullptr;
unsigned int bit_pos = 0, start_bit_pos = 0;
DentryBlock *dentry_blk = nullptr;
DirEntry *de = nullptr;
Page *dentry_page = nullptr;
unsigned int n = 0;
unsigned char d_type = DT_UNKNOWN;
int slots;
zx_status_t ret = ZX_OK;
bool done = false;
fbl::AutoLock lock(&i_mutex_);
types = filetype_table;
bit_pos = (pos % kNrDentryInBlock);
n = (pos / kNrDentryInBlock);
for (; n < npages; n++) {
if (ret = GetLockDataPage(n, &dentry_page); ret != ZX_OK)
continue;
start_bit_pos = bit_pos;
#if 0 // porting needed
// dentry_blk = kmap(dentry_page);
#else
dentry_blk = reinterpret_cast<DentryBlock *>(dentry_page);
#endif
while (bit_pos < kNrDentryInBlock) {
d_type = DT_UNKNOWN;
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, kNrDentryInBlock, bit_pos);
if (bit_pos >= kNrDentryInBlock)
break;
de = &dentry_blk->dentry[bit_pos];
if (types && de->file_type < static_cast<uint8_t>(FileType::kFtMax))
d_type = types[de->file_type];
std::string_view name(reinterpret_cast<char *>(dentry_blk->filename[bit_pos]),
LeToCpu(de->name_len));
if (de->ino && name != "..") {
if ((ret = df.Next(name, d_type, LeToCpu(de->ino))) != ZX_OK) {
*pos_cookie += bit_pos - start_bit_pos;
done = true;
ret = ZX_OK;
break;
}
}
slots = (LeToCpu(de->name_len) + kNameLen - 1) / kNameLen;
bit_pos += slots;
}
if (done)
break;
bit_pos = 0;
*pos_cookie = (n + 1) * kNrDentryInBlock;
#if 0 // porting needed
// kunmap(dentry_page);
#endif
F2fsPutPage(dentry_page, 1);
dentry_page = nullptr;
}
if (dentry_page && ret == ZX_OK) {
#if 0 // porting needed
// kunmap(dentry_page);
#endif
F2fsPutPage(dentry_page, 1);
}
*out_actual = df.BytesFilled();
return ret;
}
#if 0 // porting needed
// const file_operations f2fs_dir_operations = {
// .llseek = generic_file_llseek,
// .read = generic_read_dir,
// .readdir = f2fs_readdir,
// };
#endif
} // namespace f2fs