blob: ad0e59523a2dd9f9cabb4766b1c7e67868afc9be [file] [log] [blame]
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "f2fs.h"
#include "dir.h"
#include "file.h"
namespace f2fs {
Dir::Dir(F2fs *fs) : VnodeF2fs(fs) {}
Dir::Dir(F2fs *fs, ino_t ino) : VnodeF2fs(fs, ino) {}
Dir::~Dir() {}
unsigned long Dir::DirBlocks() {
// return ((unsigned long long) (i_size_read(inode) + PAGE_CACHE_SIZE - 1))
// >> PAGE_CACHE_SHIFT;
// return 0;
// return Inode().i_blocks - 1;
return (i_size + kF2fsBlockSize - 1) / kF2fsBlockSize;
}
unsigned int Dir::DirBuckets(unsigned int level) {
if (level < MAX_DIR_HASH_DEPTH / 2)
return 1 << level;
else
return 1 << ((MAX_DIR_HASH_DEPTH / 2) - 1);
}
unsigned int Dir::BucketBlocks(unsigned int level) {
if (level < MAX_DIR_HASH_DEPTH / 2)
return 2;
else
return 4;
}
void Dir::SetDeType(struct f2fs_dir_entry *de, VnodeF2fs *vnode) {
de->file_type = f2fs_type_by_mode[(vnode->i_mode & S_IFMT) >> S_SHIFT];
}
unsigned long Dir::DirBlockIndex(unsigned int level, unsigned int idx) {
unsigned long i;
unsigned long bidx = 0;
for (i = 0; i < level; i++)
bidx += DirBuckets(i) * BucketBlocks(i);
bidx += idx * BucketBlocks(level);
return bidx;
}
bool Dir::EarlyMatchName(const char *name, int namelen, f2fs_hash_t namehash,
struct f2fs_dir_entry *de) {
if (le16_to_cpu(de->name_len) != namelen)
return false;
if (le32_to_cpu(de->hash_code) != namehash)
return false;
return true;
}
// TODO: replace from some lib
typedef uint8_t BITARR_TYPE;
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#define MIN_T(t, a, b) (((t)(a) < (t)(b)) ? (t)(a) : (t)(b))
#define DIV_ROUNDUP(n, m) (((n) + ((m)-1)) / (m))
#define BITARR_TYPE_NUM_BITS (sizeof(BITARR_TYPE) * 8)
#define BITARR_SIZE(num_bits) (DIV_ROUNDUP((num_bits), BITARR_TYPE_NUM_BITS))
#define BITARR(name, num_bits) BITARR_TYPE name[BITARR_SIZE(num_bits)]
#define BITARR_SET(name, bit) \
(name)[(bit) / BITARR_TYPE_NUM_BITS] |= ((BITARR_TYPE)1 << ((bit) % BITARR_TYPE_NUM_BITS))
#define BITARR_CLEAR(name, bit) \
(name)[(bit) / BITARR_TYPE_NUM_BITS] &= ~((BITARR_TYPE)1 << ((bit) % BITARR_TYPE_NUM_BITS))
#define BITARR_TEST(name, bit) \
(((name)[(bit) / BITARR_TYPE_NUM_BITS] & ((BITARR_TYPE)1 << ((bit) % BITARR_TYPE_NUM_BITS))) != 0)
size_t find_first_bit(const BITARR_TYPE *bitarr, size_t num_bits) {
size_t n = BITARR_SIZE(num_bits);
for (size_t i = 0; i < n; ++i) {
if (bitarr[i] != 0) {
int bit = __builtin_ffsll(bitarr[i]) - 1;
return MIN(i * BITARR_TYPE_NUM_BITS + bit, num_bits);
}
}
return num_bits;
}
size_t find_next_bit_le(const BITARR_TYPE *bitarr, size_t num_bits, size_t bit_offset) {
if (bit_offset >= num_bits) {
return num_bits;
}
size_t word_offset = bit_offset / BITARR_TYPE_NUM_BITS;
size_t offset_within_word = bit_offset % BITARR_TYPE_NUM_BITS;
size_t rest = bitarr[word_offset] & (~0ULL << offset_within_word);
if (rest != 0) {
int bit = __builtin_ffsll(rest) - 1;
return MIN(word_offset * BITARR_TYPE_NUM_BITS + bit, num_bits);
}
size_t skipped_bits = (word_offset + 1) * BITARR_TYPE_NUM_BITS;
if (skipped_bits >= num_bits) {
return num_bits;
}
return skipped_bits + find_first_bit(bitarr + word_offset + 1, num_bits - skipped_bits);
}
struct f2fs_dir_entry *Dir::FindInBlock(Page *dentry_page, const char *name, int namelen,
int *max_slots, f2fs_hash_t namehash, Page **res_page) {
struct f2fs_dir_entry *de;
unsigned long bit_pos, end_pos, next_pos;
#if 0 // porting needed
// struct f2fs_dentry_block *dentry_blk = kmap(dentry_page);
#else
struct f2fs_dentry_block *dentry_blk = (struct f2fs_dentry_block *)dentry_page;
#endif
int slots;
bit_pos =
find_next_bit_le((const BITARR_TYPE *)&dentry_blk->dentry_bitmap, NR_DENTRY_IN_BLOCK, 0);
while (bit_pos < NR_DENTRY_IN_BLOCK) {
de = &dentry_blk->dentry[bit_pos];
slots = (le16_to_cpu(de->name_len) + F2FS_NAME_LEN - 1) / F2FS_NAME_LEN;
if (EarlyMatchName(name, namelen, namehash, de)) {
if (!memcmp(dentry_blk->filename[bit_pos], name, namelen)) {
*res_page = dentry_page;
goto found;
}
}
next_pos = bit_pos + slots;
bit_pos = find_next_bit_le((const BITARR_TYPE *)&dentry_blk->dentry_bitmap, NR_DENTRY_IN_BLOCK,
next_pos);
if (bit_pos >= NR_DENTRY_IN_BLOCK)
end_pos = NR_DENTRY_IN_BLOCK;
else
end_pos = bit_pos;
if ((unsigned long)*max_slots < end_pos - next_pos)
*max_slots = end_pos - next_pos;
}
de = nullptr;
#if 0 // porting needed
// kunmap(dentry_page);
#endif
found:
return de;
}
struct f2fs_dir_entry *Dir::FindInLevel(unsigned int level, fbl::StringPiece name, int namelen,
f2fs_hash_t namehash, Page **res_page) {
int s = (namelen + F2FS_NAME_LEN - 1) / F2FS_NAME_LEN;
unsigned int nbucket, nblock;
unsigned int bidx, end_block;
Page *dentry_page = nullptr;
struct f2fs_dir_entry *de = nullptr;
bool room = false;
int max_slots = 0;
zx_status_t ret;
ZX_ASSERT(level <= MAX_DIR_HASH_DEPTH);
nbucket = DirBuckets(level);
nblock = BucketBlocks(level);
bidx = DirBlockIndex(level, namehash % nbucket);
end_block = bidx + nblock;
for (; bidx < end_block; bidx++) {
/* no need to allocate new dentry pages to all the indices */
ret = FindDataPage(bidx, &dentry_page);
if (ret) {
room = true;
continue;
}
de = FindInBlock(dentry_page, name.data(), namelen, &max_slots, namehash, res_page);
if (de)
break;
if (max_slots >= s)
room = true;
F2fsPutPage(dentry_page, 0);
}
if (!de && room && fi.chash != namehash) {
fi.chash = namehash;
fi.clevel = level;
}
return de;
}
/*
* Find an entry in the specified directory with the wanted name.
* It returns the page where the entry was found (as a parameter - res_page),
* and the entry itself. Page is returned mapped and unlocked.
* Entry is guaranteed to be valid.
*/
struct f2fs_dir_entry *Dir::F2fsFindEntry(fbl::StringPiece name, Page **res_page) {
unsigned long npages = DirBlocks();
struct f2fs_dir_entry *de = nullptr;
f2fs_hash_t name_hash;
unsigned int max_depth;
unsigned int level;
if (npages == 0)
return nullptr;
*res_page = nullptr;
name_hash = F2fsDentryHash(name.data(), name.length());
max_depth = fi.i_current_depth;
for (level = 0; level < max_depth; level++) {
de = FindInLevel(level, name, name.length(), name_hash, res_page);
if (de)
break;
}
if (!de && fi.chash != name_hash) {
fi.chash = name_hash;
fi.clevel = level - 1;
}
return de;
}
struct f2fs_dir_entry *Dir::F2fsParentDir(Page **p) {
Page *page = nullptr;
struct f2fs_dir_entry *de = nullptr;
struct f2fs_dentry_block *dentry_blk = nullptr;
zx_status_t ret;
ret = GetLockDataPage(0, &page);
if (ret)
return nullptr;
#if 0 // porting needed
// dentry_blk = kmap(page);
#endif
dentry_blk = (f2fs_dentry_block *)page_address(page);
de = &dentry_blk->dentry[1];
*p = page;
#if 0 // porting needed
// unlock_page(page);
#endif
return de;
}
ino_t Dir::F2fsInodeByName(fbl::StringPiece name) {
ino_t res = 0;
struct f2fs_dir_entry *de;
Page *page;
de = F2fsFindEntry(name, &page);
if (de) {
res = le32_to_cpu(de->ino);
#if 0 // porting needed
// kunmap(page);
#endif
F2fsPutPage(page, 0);
}
return res;
}
void Dir::F2fsSetLink(struct f2fs_dir_entry *de, Page *page, VnodeF2fs *vnode) {
struct f2fs_sb_info &sbi = Vfs()->SbInfo();
mutex_lock_op(&sbi, DENTRY_OPS);
#if 0 // porting needed
// lock_page(page);
#endif
wait_on_page_writeback(page);
de->ino = cpu_to_le32(vnode->Ino());
SetDeType(de, vnode);
#if 0 // porting needed
// kunmap(page);
// set_page_dirty(page);
#else
FlushDirtyDataPage(Vfs(), page);
#endif
auto cur_time = time(nullptr);
i_mtime.tv_sec = cur_time;
i_mtime.tv_nsec = 0;
i_ctime.tv_sec = cur_time;
i_ctime.tv_nsec = 0;
mark_inode_dirty(this);
F2fsPutPage(page, 1);
mutex_unlock_op(&sbi, DENTRY_OPS);
}
void Dir::InitDentInode(VnodeF2fs *vnode, Page *ipage) {
#if 0 // porting needed
// struct inode *dir = dentry->d_parent->d_inode;
#endif
struct f2fs_node *rn;
if (!ipage)
return;
wait_on_page_writeback(ipage);
/* copy dentry info. to this inode page */
rn = (struct f2fs_node *)page_address(ipage);
rn->i.i_pino = cpu_to_le32(Ino());
rn->i.i_namelen = cpu_to_le32(vnode->i_name_sp.length());
memcpy(rn->i.i_name, vnode->i_name_sp.data(), vnode->i_name_sp.length());
#if 0 // porting needed
// set_page_dirty(ipage);
#else
FlushDirtyNodePage(Vfs(), ipage);
#endif
}
zx_status_t Dir::InitInodeMetadata(VnodeF2fs *vnode, struct dentry *dentry) {
#if 0 // porting needed
// struct inode *dir = dentry->d_parent->d_inode;
#endif
if (is_inode_flag_set(&vnode->fi, FI_NEW_INODE)) {
int err;
err = Vfs()->Nodemgr().NewInodePage(this, vnode);
if (err)
return err;
if (S_ISDIR(vnode->i_mode)) {
err = F2fsMakeEmpty(vnode, this);
if (err) {
Vfs()->Nodemgr().RemoveInodePage(vnode);
return err;
}
}
#if 0 // porting needed
// err = f2fs_init_acl(inode, dir);
// if (err) {
// remove_inode_page(inode);
// return err;
// }
#endif
} else {
Page *ipage = nullptr;
zx_status_t err;
err = Vfs()->Nodemgr().GetNodePage(vnode->Ino(), &ipage);
if (err)
return err;
InitDentInode(vnode, ipage);
F2fsPutPage(ipage, 1);
}
if (is_inode_flag_set(&vnode->fi, FI_INC_LINK)) {
vnode->IncNlink();
vnode->F2fsWriteInode(NULL);
}
return 0;
}
void Dir::UpdateParentMetadata(VnodeF2fs *vnode, unsigned int current_depth) {
bool need_dir_update = false;
if (is_inode_flag_set(&vnode->fi, FI_NEW_INODE)) {
if (S_ISDIR(vnode->i_mode)) {
IncNlink();
need_dir_update = true;
}
clear_inode_flag(&vnode->fi, FI_NEW_INODE);
}
auto cur_time = time(nullptr);
i_mtime.tv_sec = cur_time;
i_mtime.tv_nsec = 0;
i_ctime.tv_sec = cur_time;
i_ctime.tv_nsec = 0;
if (fi.i_current_depth != current_depth) {
fi.i_current_depth = current_depth;
need_dir_update = true;
}
if (need_dir_update)
F2fsWriteInode(NULL);
else
mark_inode_dirty(this);
if (is_inode_flag_set(&vnode->fi, FI_INC_LINK))
clear_inode_flag(&vnode->fi, FI_INC_LINK);
}
int Dir::RoomForFilename(struct f2fs_dentry_block *dentry_blk, int slots) {
int bit_start = 0;
int zero_start, zero_end;
next:
zero_start = find_next_zero_bit_le(&dentry_blk->dentry_bitmap, NR_DENTRY_IN_BLOCK, bit_start);
if (zero_start >= NR_DENTRY_IN_BLOCK)
return NR_DENTRY_IN_BLOCK;
zero_end = find_next_bit_le(&dentry_blk->dentry_bitmap, NR_DENTRY_IN_BLOCK, zero_start);
if (zero_end - zero_start >= slots)
return zero_start;
bit_start = zero_end + 1;
if (zero_end + 1 >= NR_DENTRY_IN_BLOCK)
return NR_DENTRY_IN_BLOCK;
goto next;
}
zx_status_t Dir::F2fsAddLink(fbl::StringPiece name, VnodeF2fs *vnode) {
unsigned int bit_pos;
unsigned int level;
unsigned int current_depth;
unsigned long bidx, block;
f2fs_hash_t dentry_hash;
struct f2fs_dir_entry *de;
unsigned int nbucket, nblock;
struct f2fs_sb_info &sbi = Vfs()->SbInfo();
int namelen = name.length();
Page *dentry_page = nullptr;
struct f2fs_dentry_block *dentry_blk = nullptr;
int slots = (namelen + F2FS_NAME_LEN - 1) / F2FS_NAME_LEN;
zx_status_t err = 0;
int i;
dentry_hash = F2fsDentryHash(name.data(), namelen);
level = 0;
current_depth = fi.i_current_depth;
if (fi.chash == dentry_hash) {
level = fi.clevel;
fi.chash = 0;
}
start:
if (current_depth == MAX_DIR_HASH_DEPTH)
return ZX_ERR_OUT_OF_RANGE;
/* Increase the depth, if required */
if (level == current_depth)
++current_depth;
nbucket = DirBuckets(level);
nblock = BucketBlocks(level);
bidx = DirBlockIndex(level, (dentry_hash % nbucket));
for (block = bidx; block <= (bidx + nblock - 1); block++) {
mutex_lock_op(&sbi, DENTRY_OPS);
err = GetNewDataPage(block, true, &dentry_page);
if (err) {
mutex_unlock_op(&sbi, DENTRY_OPS);
return err;
}
#if 0 // porting needed
// dentry_blk = kmap(dentry_page);
#else
dentry_blk = (struct f2fs_dentry_block *)dentry_page->data;
#endif
bit_pos = RoomForFilename(dentry_blk, slots);
if (bit_pos < NR_DENTRY_IN_BLOCK)
goto add_dentry;
#if 0 // porting needed
// kunmap(dentry_page);
#endif
F2fsPutPage(dentry_page, 1);
mutex_unlock_op(&sbi, DENTRY_OPS);
}
/* Move to next level to find the empty slot for new dentry */
++level;
goto start;
add_dentry:
#if 0 // porting needed
// err = InitInodeMetadata(vnode, dentry);
#else
err = InitInodeMetadata(vnode, nullptr);
#endif
if (err)
goto fail;
wait_on_page_writeback(dentry_page);
de = &dentry_blk->dentry[bit_pos];
de->hash_code = cpu_to_le32(dentry_hash);
de->name_len = cpu_to_le16(namelen);
memcpy(dentry_blk->filename[bit_pos], name.data(), namelen);
de->ino = cpu_to_le32(vnode->Ino());
SetDeType(de, vnode);
for (i = 0; i < slots; i++)
test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
#if 0 // porting needed
// set_page_dirty(dentry_page);
#else
FlushDirtyDataPage(Vfs(), dentry_page);
#endif
UpdateParentMetadata(vnode, current_depth);
fail:
#if 0 // porting needed
// kunmap(dentry_page);
#endif
F2fsPutPage(dentry_page, 1);
mutex_unlock_op(&sbi, DENTRY_OPS);
return err;
}
/**
* It only removes the dentry from the dentry page,corresponding name
* entry in name page does not need to be touched during deletion.
*/
void Dir::F2fsDeleteEntry(struct f2fs_dir_entry *dentry, Page *page, VnodeF2fs *vnode) {
struct f2fs_dentry_block *dentry_blk;
unsigned int bit_pos;
#if 0 // porting needed
// struct address_space *mapping = page->mapping;
#endif
struct f2fs_sb_info &sbi = Vfs()->SbInfo();
int slots = (le16_to_cpu(dentry->name_len) + F2FS_NAME_LEN - 1) / F2FS_NAME_LEN;
void *kaddr = page_address(page);
int i;
mutex_lock_op(&sbi, DENTRY_OPS);
#if 0 // porting needed
// lock_page(page);
#endif
wait_on_page_writeback(page);
dentry_blk = (struct f2fs_dentry_block *)kaddr;
bit_pos = dentry - (struct f2fs_dir_entry *)dentry_blk->dentry;
for (i = 0; i < slots; i++)
test_and_clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
/* Let's check and deallocate this dentry page */
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, NR_DENTRY_IN_BLOCK, 0);
#if 0 // porting needed
// kunmap(page); /* kunmap - pair of f2fs_find_entry */
// set_page_dirty(page);
#else
FlushDirtyDataPage(Vfs(), page);
#endif
auto cur_time = time(nullptr);
i_mtime.tv_sec = cur_time;
i_mtime.tv_nsec = 0;
i_ctime.tv_sec = cur_time;
i_ctime.tv_nsec = 0;
if (vnode && S_ISDIR(vnode->i_mode)) {
DropNlink();
F2fsWriteInode(NULL);
} else {
mark_inode_dirty(this);
}
if (vnode) {
cur_time = time(nullptr);
i_ctime.tv_sec = cur_time;
i_ctime.tv_nsec = 0;
i_mtime.tv_sec = cur_time;
i_mtime.tv_nsec = 0;
vnode->i_ctime.tv_sec = cur_time;
vnode->i_ctime.tv_nsec = 0;
vnode->DropNlink();
if (S_ISDIR(vnode->i_mode)) {
vnode->DropNlink();
vnode->i_size = 0;
}
vnode->F2fsWriteInode(NULL);
if (vnode->i_nlink == 0)
Vfs()->AddOrphanInode(vnode->Ino());
}
if (bit_pos == NR_DENTRY_IN_BLOCK) {
loff_t page_offset;
TruncateHole(page->index, page->index + 1);
clear_page_dirty_for_io(page);
#if 0 // porting needed
// ClearPageUptodate(page);
#endif
DecPageCount(&sbi, F2FS_DIRTY_DENTS);
InodeDecDirtyDents(this);
page_offset = page->index << PAGE_CACHE_SHIFT;
F2fsPutPage(page, 1);
} else {
F2fsPutPage(page, 1);
}
mutex_unlock_op(&sbi, DENTRY_OPS);
}
zx_status_t Dir::F2fsMakeEmpty(VnodeF2fs *vnode, VnodeF2fs *parent) {
Page *dentry_page = nullptr;
struct f2fs_dentry_block *dentry_blk;
struct f2fs_dir_entry *de;
void *kaddr;
zx_status_t err;
err = vnode->GetNewDataPage(0, true, &dentry_page);
if (err)
return err;
#if 0 // porting needed
// kaddr = kmap_atomic(dentry_page);
#else
kaddr = dentry_page->data;
#endif
dentry_blk = (struct f2fs_dentry_block *)kaddr;
de = &dentry_blk->dentry[0];
de->name_len = cpu_to_le16(1);
de->hash_code = 0;
de->ino = cpu_to_le32(vnode->Ino());
memcpy(dentry_blk->filename[0], ".", 1);
SetDeType(de, vnode);
de = &dentry_blk->dentry[1];
de->hash_code = 0;
de->name_len = cpu_to_le16(2);
de->ino = cpu_to_le32(parent->Ino());
memcpy(dentry_blk->filename[1], "..", 2);
SetDeType(de, vnode);
test_and_set_bit_le(0, &dentry_blk->dentry_bitmap);
test_and_set_bit_le(1, &dentry_blk->dentry_bitmap);
#if 0 // porting needed
// kunmap_atomic(kaddr);
// set_page_dirty(dentry_page);
#else
FlushDirtyDataPage(Vfs(), dentry_page);
#endif
F2fsPutPage(dentry_page, 1);
return 0;
}
bool Dir::F2fsEmptyDir() {
unsigned long bidx;
Page *dentry_page = nullptr;
unsigned int bit_pos;
struct f2fs_dentry_block *dentry_blk;
unsigned long nblock = DirBlocks();
zx_status_t ret;
for (bidx = 0; bidx < nblock; bidx++) {
void *kaddr;
ret = GetLockDataPage(bidx, &dentry_page);
if (ret) {
if (ret == -ENOENT)
continue;
else
return false;
}
#if 0 // porting needed
// kaddr = kmap_atomic(dentry_page);
#else
kaddr = dentry_page->data;
#endif
dentry_blk = (struct f2fs_dentry_block *)kaddr;
if (bidx == 0)
bit_pos = 2;
else
bit_pos = 0;
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, NR_DENTRY_IN_BLOCK, bit_pos);
#if 0 // porting needed
// kunmap_atomic(kaddr);
#endif
F2fsPutPage(dentry_page, 1);
if (bit_pos < NR_DENTRY_IN_BLOCK)
return false;
}
return true;
}
zx_status_t Dir::Readdir(fs::VdirCookie *cookie, void *dirents, size_t len, size_t *out_actual) {
fs::DirentFiller df(dirents, len);
unsigned long *pos_cookie = reinterpret_cast<unsigned long *>(cookie);
unsigned long pos = *pos_cookie;
unsigned long npages = DirBlocks();
unsigned char *types = nullptr;
unsigned int bit_pos = 0, start_bit_pos = 0;
struct f2fs_dentry_block *dentry_blk = nullptr;
struct f2fs_dir_entry *de = nullptr;
Page *dentry_page = nullptr;
unsigned int n = 0;
unsigned char d_type = DT_UNKNOWN;
int slots;
zx_status_t ret = ZX_OK;
mtx_lock(&i_mutex);
types = f2fs_filetype_table;
bit_pos = (pos % NR_DENTRY_IN_BLOCK);
n = (pos / NR_DENTRY_IN_BLOCK);
for (; n < npages; n++) {
ret = GetLockDataPage(n, &dentry_page);
if (ret)
continue;
start_bit_pos = bit_pos;
#if 0 // porting needed
// dentry_blk = kmap(dentry_page);
#else
dentry_blk = (struct f2fs_dentry_block *)dentry_page;
#endif
while (bit_pos < NR_DENTRY_IN_BLOCK) {
d_type = DT_UNKNOWN;
bit_pos = find_next_bit_le((const BITARR_TYPE *)&dentry_blk->dentry_bitmap,
NR_DENTRY_IN_BLOCK, bit_pos);
if (bit_pos >= NR_DENTRY_IN_BLOCK)
break;
de = &dentry_blk->dentry[bit_pos];
if (types && de->file_type < F2FS_FT_MAX)
d_type = types[de->file_type];
fbl::StringPiece name((char *)dentry_blk->filename[bit_pos], le16_to_cpu(de->name_len));
if ((ret = df.Next(name, d_type, le32_to_cpu(de->ino))) != ZX_OK) {
*pos_cookie += bit_pos - start_bit_pos;
goto done;
}
slots = (le16_to_cpu(de->name_len) + F2FS_NAME_LEN - 1) / F2FS_NAME_LEN;
bit_pos += slots;
}
bit_pos = 0;
*pos_cookie = (n + 1) * NR_DENTRY_IN_BLOCK;
#if 0 // porting needed
// kunmap(dentry_page);
#endif
F2fsPutPage(dentry_page, 1);
dentry_page = nullptr;
}
done:
if (dentry_page && !ret) {
#if 0 // porting needed
// kunmap(dentry_page);
#endif
F2fsPutPage(dentry_page, 1);
}
*out_actual = df.BytesFilled();
mtx_unlock(&i_mutex);
return ret;
}
#if 0 // porting needed
// const struct file_operations f2fs_dir_operations = {
// .llseek = generic_file_llseek,
// .read = generic_read_dir,
// .readdir = f2fs_readdir,
// };
#endif
} // namespace f2fs