blob: 4f105565152209aa584196183703b75edcd4230e [file] [log] [blame]
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.org
*/
/**
@file dh_sys.c
DH Crypto, Tom St Denis
*/
/**
Encrypt a short symmetric key with a public DH key
@param in The symmetric key to encrypt
@param inlen The length of the key (octets)
@param out [out] The ciphertext
@param outlen [in/out] The max size and resulting size of the ciphertext
@param prng An active PRNG state
@param wprng The index of the PRNG desired
@param hash The index of the hash desired (must produce a digest of size >= the size of the plaintext)
@param key The public key you wish to encrypt with.
@return CRYPT_OK if successful
*/
int dh_encrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, int hash,
dh_key *key)
{
unsigned char *pub_expt, *dh_shared, *skey;
dh_key pubkey;
unsigned long x, y, z, hashsize, pubkeysize;
int err;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
LTC_ARGCHK(key != NULL);
/* check that wprng/hash are not invalid */
if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
return err;
}
if ((err = hash_is_valid(hash)) != CRYPT_OK) {
return err;
}
if (inlen > hash_descriptor[hash].hashsize) {
return CRYPT_INVALID_HASH;
}
/* allocate memory */
pub_expt = XMALLOC(DH_BUF_SIZE);
dh_shared = XMALLOC(DH_BUF_SIZE);
skey = XMALLOC(MAXBLOCKSIZE);
if (pub_expt == NULL || dh_shared == NULL || skey == NULL) {
if (pub_expt != NULL) {
XFREE(pub_expt);
}
if (dh_shared != NULL) {
XFREE(dh_shared);
}
if (skey != NULL) {
XFREE(skey);
}
return CRYPT_MEM;
}
/* make a random key and export the public copy */
if ((err = dh_make_key(prng, wprng, dh_get_size(key), &pubkey)) != CRYPT_OK) {
goto LBL_ERR;
}
pubkeysize = DH_BUF_SIZE;
if ((err = dh_export(pub_expt, &pubkeysize, PK_PUBLIC, &pubkey)) != CRYPT_OK) {
dh_free(&pubkey);
goto LBL_ERR;
}
/* now check if the out buffer is big enough */
if (*outlen < (1 + 4 + 4 + PACKET_SIZE + pubkeysize + inlen)) {
dh_free(&pubkey);
err = CRYPT_BUFFER_OVERFLOW;
goto LBL_ERR;
}
/* make random key */
hashsize = hash_descriptor[hash].hashsize;
x = DH_BUF_SIZE;
if ((err = dh_shared_secret(&pubkey, key, dh_shared, &x)) != CRYPT_OK) {
dh_free(&pubkey);
goto LBL_ERR;
}
dh_free(&pubkey);
z = MAXBLOCKSIZE;
if ((err = hash_memory(hash, dh_shared, x, skey, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
/* store header */
packet_store_header(out, PACKET_SECT_DH, PACKET_SUB_ENC_KEY);
/* output header */
y = PACKET_SIZE;
/* size of hash name and the name itself */
out[y++] = hash_descriptor[hash].ID;
/* length of DH pubkey and the key itself */
STORE32L(pubkeysize, out+y);
y += 4;
for (x = 0; x < pubkeysize; x++, y++) {
out[y] = pub_expt[x];
}
/* Store the encrypted key */
STORE32L(inlen, out+y);
y += 4;
for (x = 0; x < inlen; x++, y++) {
out[y] = skey[x] ^ in[x];
}
*outlen = y;
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
/* clean up */
zeromem(pub_expt, DH_BUF_SIZE);
zeromem(dh_shared, DH_BUF_SIZE);
zeromem(skey, MAXBLOCKSIZE);
#endif
XFREE(skey);
XFREE(dh_shared);
XFREE(pub_expt);
return err;
}
/**
Decrypt a DH encrypted symmetric key
@param in The DH encrypted packet
@param inlen The length of the DH encrypted packet
@param out The plaintext
@param outlen [in/out] The max size and resulting size of the plaintext
@param key The private DH key corresponding to the public key that encrypted the plaintext
@return CRYPT_OK if successful
*/
int dh_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
dh_key *key)
{
unsigned char *shared_secret, *skey;
unsigned long x, y, z, hashsize, keysize;
int hash, err;
dh_key pubkey;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
LTC_ARGCHK(key != NULL);
/* right key type? */
if (key->type != PK_PRIVATE) {
return CRYPT_PK_NOT_PRIVATE;
}
/* allocate ram */
shared_secret = XMALLOC(DH_BUF_SIZE);
skey = XMALLOC(MAXBLOCKSIZE);
if (shared_secret == NULL || skey == NULL) {
if (shared_secret != NULL) {
XFREE(shared_secret);
}
if (skey != NULL) {
XFREE(skey);
}
return CRYPT_MEM;
}
/* check if initial header should fit */
if (inlen < PACKET_SIZE+1+4+4) {
err = CRYPT_INVALID_PACKET;
goto LBL_ERR;
} else {
inlen -= PACKET_SIZE+1+4+4;
}
/* is header correct? */
if ((err = packet_valid_header((unsigned char *)in, PACKET_SECT_DH, PACKET_SUB_ENC_KEY)) != CRYPT_OK) {
goto LBL_ERR;
}
/* now lets get the hash name */
y = PACKET_SIZE;
hash = find_hash_id(in[y++]);
if (hash == -1) {
err = CRYPT_INVALID_HASH;
goto LBL_ERR;
}
/* common values */
hashsize = hash_descriptor[hash].hashsize;
/* get public key */
LOAD32L(x, in+y);
/* now check if the imported key will fit */
if (inlen < x) {
err = CRYPT_INVALID_PACKET;
goto LBL_ERR;
} else {
inlen -= x;
}
y += 4;
if ((err = dh_import(in+y, x, &pubkey)) != CRYPT_OK) {
goto LBL_ERR;
}
y += x;
/* make shared key */
x = DH_BUF_SIZE;
if ((err = dh_shared_secret(key, &pubkey, shared_secret, &x)) != CRYPT_OK) {
dh_free(&pubkey);
goto LBL_ERR;
}
dh_free(&pubkey);
z = MAXBLOCKSIZE;
if ((err = hash_memory(hash, shared_secret, x, skey, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
/* load in the encrypted key */
LOAD32L(keysize, in+y);
/* will the out fit as part of the input */
if (inlen < keysize) {
err = CRYPT_INVALID_PACKET;
goto LBL_ERR;
} else {
inlen -= keysize;
}
if (keysize > *outlen) {
err = CRYPT_BUFFER_OVERFLOW;
goto LBL_ERR;
}
y += 4;
*outlen = keysize;
for (x = 0; x < keysize; x++, y++) {
out[x] = skey[x] ^ in[y];
}
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(shared_secret, DH_BUF_SIZE);
zeromem(skey, MAXBLOCKSIZE);
#endif
XFREE(skey);
XFREE(shared_secret);
return err;
}
/* perform an ElGamal Signature of a hash
*
* The math works as follows. x is the private key, M is the message to sign
1. pick a random k
2. compute a = g^k mod p
3. compute b = (M - xa)/k mod p
4. Send (a,b)
Now to verify with y=g^x mod p, a and b
1. compute y^a * a^b = g^(xa) * g^(k*(M-xa)/k)
= g^(xa + (M - xa))
= g^M [all mod p]
2. Compare against g^M mod p [based on input hash].
3. If result of #2 == result of #1 then signature valid
*/
/**
Sign a message digest using a DH private key
@param in The data to sign
@param inlen The length of the input (octets)
@param out [out] The destination of the signature
@param outlen [in/out] The max size and resulting size of the output
@param prng An active PRNG state
@param wprng The index of the PRNG desired
@param key A private DH key
@return CRYPT_OK if successful
*/
int dh_sign_hash(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, dh_key *key)
{
mp_int a, b, k, m, g, p, p1, tmp;
unsigned char *buf;
unsigned long x, y;
int err;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
LTC_ARGCHK(key != NULL);
/* check parameters */
if (key->type != PK_PRIVATE) {
return CRYPT_PK_NOT_PRIVATE;
}
if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
return err;
}
/* is the IDX valid ? */
if (is_valid_idx(key->idx) != 1) {
return CRYPT_PK_INVALID_TYPE;
}
/* allocate ram for buf */
buf = XMALLOC(520);
/* make up a random value k,
* since the order of the group is prime
* we need not check if gcd(k, r) is 1
*/
if (prng_descriptor[wprng].read(buf, sets[key->idx].size, prng) !=
(unsigned long)(sets[key->idx].size)) {
err = CRYPT_ERROR_READPRNG;
goto LBL_ERR;
}
/* init bignums */
if ((err = mp_init_multi(&a, &b, &k, &m, &p, &g, &p1, &tmp, NULL)) != MP_OKAY) {
err = mpi_to_ltc_error(err);
goto LBL_ERR;
}
/* load k and m */
if ((err = mp_read_unsigned_bin(&m, (unsigned char *)in, inlen)) != MP_OKAY) { goto error; }
if ((err = mp_read_unsigned_bin(&k, buf, sets[key->idx].size)) != MP_OKAY) { goto error; }
/* load g, p and p1 */
if ((err = mp_read_radix(&g, sets[key->idx].base, 64)) != MP_OKAY) { goto error; }
if ((err = mp_read_radix(&p, sets[key->idx].prime, 64)) != MP_OKAY) { goto error; }
if ((err = mp_sub_d(&p, 1, &p1)) != MP_OKAY) { goto error; }
if ((err = mp_div_2(&p1, &p1)) != MP_OKAY) { goto error; } /* p1 = (p-1)/2 */
/* now get a = g^k mod p */
if ((err = mp_exptmod(&g, &k, &p, &a)) != MP_OKAY) { goto error; }
/* now find M = xa + kb mod p1 or just b = (M - xa)/k mod p1 */
if ((err = mp_invmod(&k, &p1, &k)) != MP_OKAY) { goto error; } /* k = 1/k mod p1 */
if ((err = mp_mulmod(&a, &key->x, &p1, &tmp)) != MP_OKAY) { goto error; } /* tmp = xa */
if ((err = mp_submod(&m, &tmp, &p1, &tmp)) != MP_OKAY) { goto error; } /* tmp = M - xa */
if ((err = mp_mulmod(&k, &tmp, &p1, &b)) != MP_OKAY) { goto error; } /* b = (M - xa)/k */
/* check for overflow */
if ((unsigned long)(PACKET_SIZE + 4 + 4 + mp_unsigned_bin_size(&a) + mp_unsigned_bin_size(&b)) > *outlen) {
err = CRYPT_BUFFER_OVERFLOW;
goto LBL_ERR;
}
/* store header */
y = PACKET_SIZE;
/* now store them both (a,b) */
x = (unsigned long)mp_unsigned_bin_size(&a);
STORE32L(x, out+y); y += 4;
if ((err = mp_to_unsigned_bin(&a, out+y)) != MP_OKAY) { goto error; }
y += x;
x = (unsigned long)mp_unsigned_bin_size(&b);
STORE32L(x, out+y); y += 4;
if ((err = mp_to_unsigned_bin(&b, out+y)) != MP_OKAY) { goto error; }
y += x;
/* check if size too big */
if (*outlen < y) {
err = CRYPT_BUFFER_OVERFLOW;
goto LBL_ERR;
}
/* store header */
packet_store_header(out, PACKET_SECT_DH, PACKET_SUB_SIGNED);
*outlen = y;
err = CRYPT_OK;
goto LBL_ERR;
error:
err = mpi_to_ltc_error(err);
LBL_ERR:
mp_clear_multi(&tmp, &p1, &g, &p, &m, &k, &b, &a, NULL);
XFREE(buf);
return err;
}
/**
Verify the signature given
@param sig The signature
@param siglen The length of the signature (octets)
@param hash The hash that was signed
@param hashlen The length of the hash (octets)
@param stat [out] Result of signature comparison, 1==valid, 0==invalid
@param key The public DH key that signed the hash
@return CRYPT_OK if succsessful (even if signature is invalid)
*/
int dh_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
int *stat, dh_key *key)
{
mp_int a, b, p, g, m, tmp;
unsigned long x, y;
int err;
LTC_ARGCHK(sig != NULL);
LTC_ARGCHK(hash != NULL);
LTC_ARGCHK(stat != NULL);
LTC_ARGCHK(key != NULL);
/* default to invalid */
*stat = 0;
/* check initial input length */
if (siglen < PACKET_SIZE+4+4) {
return CRYPT_INVALID_PACKET;
}
/* header ok? */
if ((err = packet_valid_header((unsigned char *)sig, PACKET_SECT_DH, PACKET_SUB_SIGNED)) != CRYPT_OK) {
return err;
}
/* get hash out of packet */
y = PACKET_SIZE;
/* init all bignums */
if ((err = mp_init_multi(&a, &p, &b, &g, &m, &tmp, NULL)) != MP_OKAY) {
return mpi_to_ltc_error(err);
}
/* load a and b */
INPUT_BIGNUM(&a, sig, x, y, siglen);
INPUT_BIGNUM(&b, sig, x, y, siglen);
/* load p and g */
if ((err = mp_read_radix(&p, sets[key->idx].prime, 64)) != MP_OKAY) { goto error1; }
if ((err = mp_read_radix(&g, sets[key->idx].base, 64)) != MP_OKAY) { goto error1; }
/* load m */
if ((err = mp_read_unsigned_bin(&m, (unsigned char *)hash, hashlen)) != MP_OKAY) { goto error1; }
/* find g^m mod p */
if ((err = mp_exptmod(&g, &m, &p, &m)) != MP_OKAY) { goto error1; } /* m = g^m mod p */
/* find y^a * a^b */
if ((err = mp_exptmod(&key->y, &a, &p, &tmp)) != MP_OKAY) { goto error1; } /* tmp = y^a mod p */
if ((err = mp_exptmod(&a, &b, &p, &a)) != MP_OKAY) { goto error1; } /* a = a^b mod p */
if ((err = mp_mulmod(&a, &tmp, &p, &a)) != MP_OKAY) { goto error1; } /* a = y^a * a^b mod p */
/* y^a * a^b == g^m ??? */
if (mp_cmp(&a, &m) == 0) {
*stat = 1;
}
/* clean up */
err = CRYPT_OK;
goto done;
error1:
err = mpi_to_ltc_error(err);
error:
done:
mp_clear_multi(&tmp, &m, &g, &p, &b, &a, NULL);
return err;
}
/* $Source: /cvs/libtom/libtomcrypt/src/pk/dh/dh_sys.c,v $ */
/* $Revision: 1.3 $ */
/* $Date: 2005/05/05 14:35:59 $ */