blob: bc0074866d9fca5ebb02bb2258868a2421952060 [file] [log] [blame]
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
*/
#include "mycrypt.h"
/* Implementation of SOBER-128 by Tom St Denis.
* Based on s128fast.c reference code supplied by Greg Rose of QUALCOMM.
*/
#ifdef SOBER128
#include "sober128tab.c"
const struct _prng_descriptor sober128_desc =
{
"sober128", 64,
&sober128_start,
&sober128_add_entropy,
&sober128_ready,
&sober128_read,
&sober128_done,
&sober128_export,
&sober128_import,
&sober128_test
};
/* don't change these... */
#define N 17
#define FOLD N /* how many iterations of folding to do */
#define INITKONST 0x6996c53a /* value of KONST to use during key loading */
#define KEYP 15 /* where to insert key words */
#define FOLDP 4 /* where to insert non-linear feedback */
#define B(x,i) ((unsigned char)(((x) >> (8*i)) & 0xFF))
static ulong32 BYTE2WORD(unsigned char *b)
{
ulong32 t;
LOAD32L(t, b);
return t;
}
#define WORD2BYTE(w, b) STORE32L(b, w)
static void XORWORD(ulong32 w, unsigned char *b)
{
ulong32 t;
LOAD32L(t, b);
t ^= w;
STORE32L(t, b);
}
/* give correct offset for the current position of the register,
* where logically R[0] is at position "zero".
*/
#define OFF(zero, i) (((zero)+(i)) % N)
/* step the LFSR */
/* After stepping, "zero" moves right one place */
#define STEP(R,z) \
R[OFF(z,0)] = R[OFF(z,15)] ^ R[OFF(z,4)] ^ (R[OFF(z,0)] << 8) ^ Multab[(R[OFF(z,0)] >> 24) & 0xFF];
static void cycle(ulong32 *R)
{
ulong32 t;
int i;
STEP(R,0);
t = R[0];
for (i = 1; i < N; ++i) {
R[i-1] = R[i];
}
R[N-1] = t;
}
/* Return a non-linear function of some parts of the register.
*/
#define NLFUNC(c,z) \
{ \
t = c->R[OFF(z,0)] + c->R[OFF(z,16)]; \
t ^= Sbox[(t >> 24) & 0xFF]; \
t = ROR(t, 8); \
t = ((t + c->R[OFF(z,1)]) ^ c->konst) + c->R[OFF(z,6)]; \
t ^= Sbox[(t >> 24) & 0xFF]; \
t = t + c->R[OFF(z,13)]; \
}
static ulong32 nltap(struct sober128_prng *c)
{
ulong32 t;
NLFUNC(c, 0);
return t;
}
/* initialise to known state
*/
int sober128_start(prng_state *prng)
{
int i;
struct sober128_prng *c;
_ARGCHK(prng != NULL);
c = &(prng->sober128);
/* Register initialised to Fibonacci numbers */
c->R[0] = 1;
c->R[1] = 1;
for (i = 2; i < N; ++i) {
c->R[i] = c->R[i-1] + c->R[i-2];
}
c->konst = INITKONST;
/* next add_entropy will be the key */
c->flag = 1;
c->set = 0;
return CRYPT_OK;
}
/* Save the current register state
*/
static void s128_savestate(struct sober128_prng *c)
{
int i;
for (i = 0; i < N; ++i) {
c->initR[i] = c->R[i];
}
}
/* initialise to previously saved register state
*/
static void s128_reloadstate(struct sober128_prng *c)
{
int i;
for (i = 0; i < N; ++i) {
c->R[i] = c->initR[i];
}
}
/* Initialise "konst"
*/
static void s128_genkonst(struct sober128_prng *c)
{
ulong32 newkonst;
do {
cycle(c->R);
newkonst = nltap(c);
} while ((newkonst & 0xFF000000) == 0);
c->konst = newkonst;
}
/* Load key material into the register
*/
#define ADDKEY(k) \
c->R[KEYP] += (k);
#define XORNL(nl) \
c->R[FOLDP] ^= (nl);
/* nonlinear diffusion of register for key */
#define DROUND(z) STEP(c->R,z); NLFUNC(c,(z+1)); c->R[OFF((z+1),FOLDP)] ^= t;
static void s128_diffuse(struct sober128_prng *c)
{
ulong32 t;
/* relies on FOLD == N == 17! */
DROUND(0);
DROUND(1);
DROUND(2);
DROUND(3);
DROUND(4);
DROUND(5);
DROUND(6);
DROUND(7);
DROUND(8);
DROUND(9);
DROUND(10);
DROUND(11);
DROUND(12);
DROUND(13);
DROUND(14);
DROUND(15);
DROUND(16);
}
int sober128_add_entropy(const unsigned char *buf, unsigned long len, prng_state *prng)
{
struct sober128_prng *c;
ulong32 i, k;
_ARGCHK(buf != NULL);
_ARGCHK(prng != NULL);
c = &(prng->sober128);
if (c->flag == 1) {
/* this is the first call to the add_entropy so this input is the key */
/* len must be multiple of 4 bytes */
if ((len & 3) != 0) {
return CRYPT_INVALID_KEYSIZE;
}
for (i = 0; i < len; i += 4) {
k = BYTE2WORD((unsigned char *)&buf[i]);
ADDKEY(k);
cycle(c->R);
XORNL(nltap(c));
}
/* also fold in the length of the key */
ADDKEY(len);
/* now diffuse */
s128_diffuse(c);
s128_genkonst(c);
s128_savestate(c);
c->nbuf = 0;
c->flag = 0;
c->set = 1;
} else {
/* ok we are adding an IV then... */
s128_reloadstate(c);
/* len must be multiple of 4 bytes */
if ((len & 3) != 0) {
return CRYPT_INVALID_KEYSIZE;
}
for (i = 0; i < len; i += 4) {
k = BYTE2WORD((unsigned char *)&buf[i]);
ADDKEY(k);
cycle(c->R);
XORNL(nltap(c));
}
/* also fold in the length of the key */
ADDKEY(len);
/* now diffuse */
s128_diffuse(c);
c->nbuf = 0;
}
return CRYPT_OK;
}
int sober128_ready(prng_state *prng)
{
return prng->sober128.set == 1 ? CRYPT_OK : CRYPT_ERROR;
}
/* XOR pseudo-random bytes into buffer
*/
#define SROUND(z) STEP(c->R,z); NLFUNC(c,(z+1)); XORWORD(t, buf+(z*4));
unsigned long sober128_read(unsigned char *buf, unsigned long nbytes, prng_state *prng)
{
struct sober128_prng *c;
ulong32 t, tlen;
_ARGCHK(buf != NULL);
_ARGCHK(prng != NULL);
c = &(prng->sober128);
t = 0;
tlen = nbytes;
/* handle any previously buffered bytes */
while (c->nbuf != 0 && nbytes != 0) {
*buf++ ^= c->sbuf & 0xFF;
c->sbuf >>= 8;
c->nbuf -= 8;
--nbytes;
}
#ifndef SMALL_CODE
/* do lots at a time, if there's enough to do */
while (nbytes >= N*4) {
SROUND(0);
SROUND(1);
SROUND(2);
SROUND(3);
SROUND(4);
SROUND(5);
SROUND(6);
SROUND(7);
SROUND(8);
SROUND(9);
SROUND(10);
SROUND(11);
SROUND(12);
SROUND(13);
SROUND(14);
SROUND(15);
SROUND(16);
buf += 4*N;
nbytes -= 4*N;
}
#endif
/* do small or odd size buffers the slow way */
while (4 <= nbytes) {
cycle(c->R);
t = nltap(c);
XORWORD(t, buf);
buf += 4;
nbytes -= 4;
}
/* handle any trailing bytes */
if (nbytes != 0) {
cycle(c->R);
c->sbuf = nltap(c);
c->nbuf = 32;
while (c->nbuf != 0 && nbytes != 0) {
*buf++ ^= c->sbuf & 0xFF;
c->sbuf >>= 8;
c->nbuf -= 8;
--nbytes;
}
}
return tlen;
}
int sober128_done(prng_state *prng)
{
_ARGCHK(prng != NULL);
return CRYPT_OK;
}
int sober128_export(unsigned char *out, unsigned long *outlen, prng_state *prng)
{
_ARGCHK(outlen != NULL);
_ARGCHK(out != NULL);
_ARGCHK(prng != NULL);
if (*outlen < 64) {
return CRYPT_BUFFER_OVERFLOW;
}
if (sober128_read(out, 64, prng) != 64) {
return CRYPT_ERROR_READPRNG;
}
*outlen = 64;
return CRYPT_OK;
}
int sober128_import(const unsigned char *in, unsigned long inlen, prng_state *prng)
{
int err;
_ARGCHK(in != NULL);
_ARGCHK(prng != NULL);
if (inlen != 64) {
return CRYPT_INVALID_ARG;
}
if ((err = sober128_start(prng)) != CRYPT_OK) {
return err;
}
if ((err = sober128_add_entropy(in, 64, prng)) != CRYPT_OK) {
return err;
}
return sober128_ready(prng);
}
int sober128_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
int keylen, ivlen, len;
unsigned char key[16], iv[4], out[20];
} tests[] = {
{
16, 4, 20,
/* key */
{ 't', 'e', 's', 't', ' ', 'k', 'e', 'y',
' ', '1', '2', '8', 'b', 'i', 't', 's' },
/* IV */
{ 0x00, 0x00, 0x00, 0x0 },
/* expected output */
{ 0x43, 0x50, 0x0c, 0xcf, 0x89, 0x91, 0x9f, 0x1d,
0xaa, 0x37, 0x74, 0x95, 0xf4, 0xb4, 0x58, 0xc2,
0x40, 0x37, 0x8b, 0xbb }
}
};
prng_state prng;
unsigned char dst[20];
int err, x;
for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
if ((err = sober128_start(&prng)) != CRYPT_OK) {
return err;
}
if ((err = sober128_add_entropy(tests[x].key, tests[x].keylen, &prng)) != CRYPT_OK) {
return err;
}
/* add IV */
if ((err = sober128_add_entropy(tests[x].iv, tests[x].ivlen, &prng)) != CRYPT_OK) {
return err;
}
/* ready up */
if ((err = sober128_ready(&prng)) != CRYPT_OK) {
return err;
}
memset(dst, 0, tests[x].len);
if (sober128_read(dst, tests[x].len, &prng) != (unsigned long)tests[x].len) {
return CRYPT_ERROR_READPRNG;
}
sober128_done(&prng);
if (memcmp(dst, tests[x].out, tests[x].len)) {
#if 0
printf("\n\nSOBER128 failed, I got:\n");
for (y = 0; y < tests[x].len; y++) printf("%02x ", dst[y]);
printf("\n");
#endif
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#endif