blob: 8415debe15012bc415d71003c937176a2a02ebdc [file] [log] [blame]
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
*/
/* SAFER+ Implementation by Tom St Denis */
#include "mycrypt.h"
#ifdef SAFERP
const struct _cipher_descriptor saferp_desc =
{
"safer+",
4,
16, 32, 16, 8,
&saferp_setup,
&saferp_ecb_encrypt,
&saferp_ecb_decrypt,
&saferp_test,
&saferp_keysize
};
/* ROUND(b,i)
*
* This is one forward key application. Note the basic form is
* key addition, substitution, key addition. The safer_ebox and safer_lbox
* are the exponentiation box and logarithm boxes respectively.
* The value of 'i' is the current round number which allows this
* function to be unrolled massively. Most of SAFER+'s speed
* comes from not having to compute indirect accesses into the
* array of 16 bytes b[0..15] which is the block of data
*/
extern const unsigned char safer_ebox[], safer_lbox[];
#define ROUND(b, i) \
b[0] = (safer_ebox[(b[0] ^ skey->saferp.K[i][0]) & 255] + skey->saferp.K[i+1][0]) & 255; \
b[1] = safer_lbox[(b[1] + skey->saferp.K[i][1]) & 255] ^ skey->saferp.K[i+1][1]; \
b[2] = safer_lbox[(b[2] + skey->saferp.K[i][2]) & 255] ^ skey->saferp.K[i+1][2]; \
b[3] = (safer_ebox[(b[3] ^ skey->saferp.K[i][3]) & 255] + skey->saferp.K[i+1][3]) & 255; \
b[4] = (safer_ebox[(b[4] ^ skey->saferp.K[i][4]) & 255] + skey->saferp.K[i+1][4]) & 255; \
b[5] = safer_lbox[(b[5] + skey->saferp.K[i][5]) & 255] ^ skey->saferp.K[i+1][5]; \
b[6] = safer_lbox[(b[6] + skey->saferp.K[i][6]) & 255] ^ skey->saferp.K[i+1][6]; \
b[7] = (safer_ebox[(b[7] ^ skey->saferp.K[i][7]) & 255] + skey->saferp.K[i+1][7]) & 255; \
b[8] = (safer_ebox[(b[8] ^ skey->saferp.K[i][8]) & 255] + skey->saferp.K[i+1][8]) & 255; \
b[9] = safer_lbox[(b[9] + skey->saferp.K[i][9]) & 255] ^ skey->saferp.K[i+1][9]; \
b[10] = safer_lbox[(b[10] + skey->saferp.K[i][10]) & 255] ^ skey->saferp.K[i+1][10]; \
b[11] = (safer_ebox[(b[11] ^ skey->saferp.K[i][11]) & 255] + skey->saferp.K[i+1][11]) & 255; \
b[12] = (safer_ebox[(b[12] ^ skey->saferp.K[i][12]) & 255] + skey->saferp.K[i+1][12]) & 255; \
b[13] = safer_lbox[(b[13] + skey->saferp.K[i][13]) & 255] ^ skey->saferp.K[i+1][13]; \
b[14] = safer_lbox[(b[14] + skey->saferp.K[i][14]) & 255] ^ skey->saferp.K[i+1][14]; \
b[15] = (safer_ebox[(b[15] ^ skey->saferp.K[i][15]) & 255] + skey->saferp.K[i+1][15]) & 255;
/* This is one inverse key application */
#define iROUND(b, i) \
b[0] = safer_lbox[(b[0] - skey->saferp.K[i+1][0]) & 255] ^ skey->saferp.K[i][0]; \
b[1] = (safer_ebox[(b[1] ^ skey->saferp.K[i+1][1]) & 255] - skey->saferp.K[i][1]) & 255; \
b[2] = (safer_ebox[(b[2] ^ skey->saferp.K[i+1][2]) & 255] - skey->saferp.K[i][2]) & 255; \
b[3] = safer_lbox[(b[3] - skey->saferp.K[i+1][3]) & 255] ^ skey->saferp.K[i][3]; \
b[4] = safer_lbox[(b[4] - skey->saferp.K[i+1][4]) & 255] ^ skey->saferp.K[i][4]; \
b[5] = (safer_ebox[(b[5] ^ skey->saferp.K[i+1][5]) & 255] - skey->saferp.K[i][5]) & 255; \
b[6] = (safer_ebox[(b[6] ^ skey->saferp.K[i+1][6]) & 255] - skey->saferp.K[i][6]) & 255; \
b[7] = safer_lbox[(b[7] - skey->saferp.K[i+1][7]) & 255] ^ skey->saferp.K[i][7]; \
b[8] = safer_lbox[(b[8] - skey->saferp.K[i+1][8]) & 255] ^ skey->saferp.K[i][8]; \
b[9] = (safer_ebox[(b[9] ^ skey->saferp.K[i+1][9]) & 255] - skey->saferp.K[i][9]) & 255; \
b[10] = (safer_ebox[(b[10] ^ skey->saferp.K[i+1][10]) & 255] - skey->saferp.K[i][10]) & 255; \
b[11] = safer_lbox[(b[11] - skey->saferp.K[i+1][11]) & 255] ^ skey->saferp.K[i][11]; \
b[12] = safer_lbox[(b[12] - skey->saferp.K[i+1][12]) & 255] ^ skey->saferp.K[i][12]; \
b[13] = (safer_ebox[(b[13] ^ skey->saferp.K[i+1][13]) & 255] - skey->saferp.K[i][13]) & 255; \
b[14] = (safer_ebox[(b[14] ^ skey->saferp.K[i+1][14]) & 255] - skey->saferp.K[i][14]) & 255; \
b[15] = safer_lbox[(b[15] - skey->saferp.K[i+1][15]) & 255] ^ skey->saferp.K[i][15];
/* This is a forward single layer PHT transform. */
#define PHT(b) \
b[0] = (b[0] + (b[1] = (b[0] + b[1]) & 255)) & 255; \
b[2] = (b[2] + (b[3] = (b[3] + b[2]) & 255)) & 255; \
b[4] = (b[4] + (b[5] = (b[5] + b[4]) & 255)) & 255; \
b[6] = (b[6] + (b[7] = (b[7] + b[6]) & 255)) & 255; \
b[8] = (b[8] + (b[9] = (b[9] + b[8]) & 255)) & 255; \
b[10] = (b[10] + (b[11] = (b[11] + b[10]) & 255)) & 255; \
b[12] = (b[12] + (b[13] = (b[13] + b[12]) & 255)) & 255; \
b[14] = (b[14] + (b[15] = (b[15] + b[14]) & 255)) & 255;
/* This is an inverse single layer PHT transform */
#define iPHT(b) \
b[15] = (b[15] - (b[14] = (b[14] - b[15]) & 255)) & 255; \
b[13] = (b[13] - (b[12] = (b[12] - b[13]) & 255)) & 255; \
b[11] = (b[11] - (b[10] = (b[10] - b[11]) & 255)) & 255; \
b[9] = (b[9] - (b[8] = (b[8] - b[9]) & 255)) & 255; \
b[7] = (b[7] - (b[6] = (b[6] - b[7]) & 255)) & 255; \
b[5] = (b[5] - (b[4] = (b[4] - b[5]) & 255)) & 255; \
b[3] = (b[3] - (b[2] = (b[2] - b[3]) & 255)) & 255; \
b[1] = (b[1] - (b[0] = (b[0] - b[1]) & 255)) & 255; \
/* This is the "Armenian" Shuffle. It takes the input from b and stores it in b2 */
#define SHUF(b, b2) \
b2[0] = b[8]; b2[1] = b[11]; b2[2] = b[12]; b2[3] = b[15]; \
b2[4] = b[2]; b2[5] = b[1]; b2[6] = b[6]; b2[7] = b[5]; \
b2[8] = b[10]; b2[9] = b[9]; b2[10] = b[14]; b2[11] = b[13]; \
b2[12] = b[0]; b2[13] = b[7]; b2[14] = b[4]; b2[15] = b[3];
/* This is the inverse shuffle. It takes from b and gives to b2 */
#define iSHUF(b, b2) \
b2[0] = b[12]; b2[1] = b[5]; b2[2] = b[4]; b2[3] = b[15]; \
b2[4] = b[14]; b2[5] = b[7]; b2[6] = b[6]; b2[7] = b[13]; \
b2[8] = b[0]; b2[9] = b[9]; b2[10] = b[8]; b2[11] = b[1]; \
b2[12] = b[2]; b2[13] = b[11]; b2[14] = b[10]; b2[15] = b[3];
/* The complete forward Linear Transform layer.
* Note that alternating usage of b and b2.
* Each round of LT starts in 'b' and ends in 'b2'.
*/
#define LT(b, b2) \
PHT(b); SHUF(b, b2); \
PHT(b2); SHUF(b2, b); \
PHT(b); SHUF(b, b2); \
PHT(b2);
/* This is the inverse linear transform layer. */
#define iLT(b, b2) \
iPHT(b); \
iSHUF(b, b2); iPHT(b2); \
iSHUF(b2, b); iPHT(b); \
iSHUF(b, b2); iPHT(b2);
#ifdef SMALL_CODE
static void _round(unsigned char *b, int i, symmetric_key *skey)
{
ROUND(b, i);
}
static void _iround(unsigned char *b, int i, symmetric_key *skey)
{
iROUND(b, i);
}
static void _lt(unsigned char *b, unsigned char *b2)
{
LT(b, b2);
}
static void _ilt(unsigned char *b, unsigned char *b2)
{
iLT(b, b2);
}
#undef ROUND
#define ROUND(b, i) _round(b, i, skey)
#undef iROUND
#define iROUND(b, i) _iround(b, i, skey)
#undef LT
#define LT(b, b2) _lt(b, b2)
#undef iLT
#define iLT(b, b2) _ilt(b, b2)
#endif
/* These are the 33, 128-bit bias words for the key schedule */
static const unsigned char safer_bias[33][16] = {
{ 70, 151, 177, 186, 163, 183, 16, 10, 197, 55, 179, 201, 90, 40, 172, 100},
{ 236, 171, 170, 198, 103, 149, 88, 13, 248, 154, 246, 110, 102, 220, 5, 61},
{ 138, 195, 216, 137, 106, 233, 54, 73, 67, 191, 235, 212, 150, 155, 104, 160},
{ 93, 87, 146, 31, 213, 113, 92, 187, 34, 193, 190, 123, 188, 153, 99, 148},
{ 42, 97, 184, 52, 50, 25, 253, 251, 23, 64, 230, 81, 29, 65, 68, 143},
{ 221, 4, 128, 222, 231, 49, 214, 127, 1, 162, 247, 57, 218, 111, 35, 202},
{ 58, 208, 28, 209, 48, 62, 18, 161, 205, 15, 224, 168, 175, 130, 89, 44},
{ 125, 173, 178, 239, 194, 135, 206, 117, 6, 19, 2, 144, 79, 46, 114, 51},
{ 192, 141, 207, 169, 129, 226, 196, 39, 47, 108, 122, 159, 82, 225, 21, 56},
{ 252, 32, 66, 199, 8, 228, 9, 85, 94, 140, 20, 118, 96, 255, 223, 215},
{ 250, 11, 33, 0, 26, 249, 166, 185, 232, 158, 98, 76, 217, 145, 80, 210},
{ 24, 180, 7, 132, 234, 91, 164, 200, 14, 203, 72, 105, 75, 78, 156, 53},
{ 69, 77, 84, 229, 37, 60, 12, 74, 139, 63, 204, 167, 219, 107, 174, 244},
{ 45, 243, 124, 109, 157, 181, 38, 116, 242, 147, 83, 176, 240, 17, 237, 131},
{ 182, 3, 22, 115, 59, 30, 142, 112, 189, 134, 27, 71, 126, 36, 86, 241},
{ 136, 70, 151, 177, 186, 163, 183, 16, 10, 197, 55, 179, 201, 90, 40, 172},
{ 220, 134, 119, 215, 166, 17, 251, 244, 186, 146, 145, 100, 131, 241, 51, 239},
{ 44, 181, 178, 43, 136, 209, 153, 203, 140, 132, 29, 20, 129, 151, 113, 202},
{ 163, 139, 87, 60, 130, 196, 82, 92, 28, 232, 160, 4, 180, 133, 74, 246},
{ 84, 182, 223, 12, 26, 142, 222, 224, 57, 252, 32, 155, 36, 78, 169, 152},
{ 171, 242, 96, 208, 108, 234, 250, 199, 217, 0, 212, 31, 110, 67, 188, 236},
{ 137, 254, 122, 93, 73, 201, 50, 194, 249, 154, 248, 109, 22, 219, 89, 150},
{ 233, 205, 230, 70, 66, 143, 10, 193, 204, 185, 101, 176, 210, 198, 172, 30},
{ 98, 41, 46, 14, 116, 80, 2, 90, 195, 37, 123, 138, 42, 91, 240, 6},
{ 71, 111, 112, 157, 126, 16, 206, 18, 39, 213, 76, 79, 214, 121, 48, 104},
{ 117, 125, 228, 237, 128, 106, 144, 55, 162, 94, 118, 170, 197, 127, 61, 175},
{ 229, 25, 97, 253, 77, 124, 183, 11, 238, 173, 75, 34, 245, 231, 115, 35},
{ 200, 5, 225, 102, 221, 179, 88, 105, 99, 86, 15, 161, 49, 149, 23, 7},
{ 40, 1, 45, 226, 147, 190, 69, 21, 174, 120, 3, 135, 164, 184, 56, 207},
{ 8, 103, 9, 148, 235, 38, 168, 107, 189, 24, 52, 27, 187, 191, 114, 247},
{ 53, 72, 156, 81, 47, 59, 85, 227, 192, 159, 216, 211, 243, 141, 177, 255},
{ 62, 220, 134, 119, 215, 166, 17, 251, 244, 186, 146, 145, 100, 131, 241, 51}};
int saferp_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
unsigned x, y, z;
unsigned char t[33];
static const int rounds[3] = { 8, 12, 16 };
_ARGCHK(key != NULL);
_ARGCHK(skey != NULL);
/* check arguments */
if (keylen != 16 && keylen != 24 && keylen != 32) {
return CRYPT_INVALID_KEYSIZE;
}
/* Is the number of rounds valid? Either use zero for default or
* 8,12,16 rounds for 16,24,32 byte keys
*/
if (num_rounds != 0 && num_rounds != rounds[(keylen/8)-2]) {
return CRYPT_INVALID_ROUNDS;
}
/* 128 bit key version */
if (keylen == 16) {
/* copy key into t */
for (x = y = 0; x < 16; x++) {
t[x] = key[x];
y ^= key[x];
}
t[16] = y;
/* make round keys */
for (x = 0; x < 16; x++) {
skey->saferp.K[0][x] = t[x];
}
/* make the 16 other keys as a transformation of the first key */
for (x = 1; x < 17; x++) {
/* rotate 3 bits each */
for (y = 0; y < 17; y++) {
t[y] = ((t[y]<<3)|(t[y]>>5)) & 255;
}
/* select and add */
z = x;
for (y = 0; y < 16; y++) {
skey->saferp.K[x][y] = (t[z] + safer_bias[x-1][y]) & 255;
if (++z == 17) { z = 0; }
}
}
skey->saferp.rounds = 8;
} else if (keylen == 24) {
/* copy key into t */
for (x = y = 0; x < 24; x++) {
t[x] = key[x];
y ^= key[x];
}
t[24] = y;
/* make round keys */
for (x = 0; x < 16; x++) {
skey->saferp.K[0][x] = t[x];
}
for (x = 1; x < 25; x++) {
/* rotate 3 bits each */
for (y = 0; y < 25; y++) {
t[y] = ((t[y]<<3)|(t[y]>>5)) & 255;
}
/* select and add */
z = x;
for (y = 0; y < 16; y++) {
skey->saferp.K[x][y] = (t[z] + safer_bias[x-1][y]) & 255;
if (++z == 25) { z = 0; }
}
}
skey->saferp.rounds = 12;
} else {
/* copy key into t */
for (x = y = 0; x < 32; x++) {
t[x] = key[x];
y ^= key[x];
}
t[32] = y;
/* make round keys */
for (x = 0; x < 16; x++) {
skey->saferp.K[0][x] = t[x];
}
for (x = 1; x < 33; x++) {
/* rotate 3 bits each */
for (y = 0; y < 33; y++) {
t[y] = ((t[y]<<3)|(t[y]>>5)) & 255;
}
/* select and add */
z = x;
for (y = 0; y < 16; y++) {
skey->saferp.K[x][y] = (t[z] + safer_bias[x-1][y]) & 255;
if (++z == 33) { z = 0; }
}
}
skey->saferp.rounds = 16;
}
#ifdef CLEAN_STACK
zeromem(t, sizeof(t));
#endif
return CRYPT_OK;
}
void saferp_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
{
unsigned char b[16];
int x;
_ARGCHK(pt != NULL);
_ARGCHK(ct != NULL);
_ARGCHK(skey != NULL);
/* do eight rounds */
for (x = 0; x < 16; x++) {
b[x] = pt[x];
}
ROUND(b, 0); LT(b, ct);
ROUND(ct, 2); LT(ct, b);
ROUND(b, 4); LT(b, ct);
ROUND(ct, 6); LT(ct, b);
ROUND(b, 8); LT(b, ct);
ROUND(ct, 10); LT(ct, b);
ROUND(b, 12); LT(b, ct);
ROUND(ct, 14); LT(ct, b);
/* 192-bit key? */
if (skey->saferp.rounds > 8) {
ROUND(b, 16); LT(b, ct);
ROUND(ct, 18); LT(ct, b);
ROUND(b, 20); LT(b, ct);
ROUND(ct, 22); LT(ct, b);
}
/* 256-bit key? */
if (skey->saferp.rounds > 12) {
ROUND(b, 24); LT(b, ct);
ROUND(ct, 26); LT(ct, b);
ROUND(b, 28); LT(b, ct);
ROUND(ct, 30); LT(ct, b);
}
ct[0] = b[0] ^ skey->saferp.K[skey->saferp.rounds*2][0];
ct[1] = (b[1] + skey->saferp.K[skey->saferp.rounds*2][1]) & 255;
ct[2] = (b[2] + skey->saferp.K[skey->saferp.rounds*2][2]) & 255;
ct[3] = b[3] ^ skey->saferp.K[skey->saferp.rounds*2][3];
ct[4] = b[4] ^ skey->saferp.K[skey->saferp.rounds*2][4];
ct[5] = (b[5] + skey->saferp.K[skey->saferp.rounds*2][5]) & 255;
ct[6] = (b[6] + skey->saferp.K[skey->saferp.rounds*2][6]) & 255;
ct[7] = b[7] ^ skey->saferp.K[skey->saferp.rounds*2][7];
ct[8] = b[8] ^ skey->saferp.K[skey->saferp.rounds*2][8];
ct[9] = (b[9] + skey->saferp.K[skey->saferp.rounds*2][9]) & 255;
ct[10] = (b[10] + skey->saferp.K[skey->saferp.rounds*2][10]) & 255;
ct[11] = b[11] ^ skey->saferp.K[skey->saferp.rounds*2][11];
ct[12] = b[12] ^ skey->saferp.K[skey->saferp.rounds*2][12];
ct[13] = (b[13] + skey->saferp.K[skey->saferp.rounds*2][13]) & 255;
ct[14] = (b[14] + skey->saferp.K[skey->saferp.rounds*2][14]) & 255;
ct[15] = b[15] ^ skey->saferp.K[skey->saferp.rounds*2][15];
#ifdef CLEAN_STACK
zeromem(b, sizeof(b));
#endif
}
void saferp_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
{
unsigned char b[16];
int x;
_ARGCHK(pt != NULL);
_ARGCHK(ct != NULL);
_ARGCHK(skey != NULL);
/* do eight rounds */
b[0] = ct[0] ^ skey->saferp.K[skey->saferp.rounds*2][0];
b[1] = (ct[1] - skey->saferp.K[skey->saferp.rounds*2][1]) & 255;
b[2] = (ct[2] - skey->saferp.K[skey->saferp.rounds*2][2]) & 255;
b[3] = ct[3] ^ skey->saferp.K[skey->saferp.rounds*2][3];
b[4] = ct[4] ^ skey->saferp.K[skey->saferp.rounds*2][4];
b[5] = (ct[5] - skey->saferp.K[skey->saferp.rounds*2][5]) & 255;
b[6] = (ct[6] - skey->saferp.K[skey->saferp.rounds*2][6]) & 255;
b[7] = ct[7] ^ skey->saferp.K[skey->saferp.rounds*2][7];
b[8] = ct[8] ^ skey->saferp.K[skey->saferp.rounds*2][8];
b[9] = (ct[9] - skey->saferp.K[skey->saferp.rounds*2][9]) & 255;
b[10] = (ct[10] - skey->saferp.K[skey->saferp.rounds*2][10]) & 255;
b[11] = ct[11] ^ skey->saferp.K[skey->saferp.rounds*2][11];
b[12] = ct[12] ^ skey->saferp.K[skey->saferp.rounds*2][12];
b[13] = (ct[13] - skey->saferp.K[skey->saferp.rounds*2][13]) & 255;
b[14] = (ct[14] - skey->saferp.K[skey->saferp.rounds*2][14]) & 255;
b[15] = ct[15] ^ skey->saferp.K[skey->saferp.rounds*2][15];
/* 256-bit key? */
if (skey->saferp.rounds > 12) {
iLT(b, pt); iROUND(pt, 30);
iLT(pt, b); iROUND(b, 28);
iLT(b, pt); iROUND(pt, 26);
iLT(pt, b); iROUND(b, 24);
}
/* 192-bit key? */
if (skey->saferp.rounds > 8) {
iLT(b, pt); iROUND(pt, 22);
iLT(pt, b); iROUND(b, 20);
iLT(b, pt); iROUND(pt, 18);
iLT(pt, b); iROUND(b, 16);
}
iLT(b, pt); iROUND(pt, 14);
iLT(pt, b); iROUND(b, 12);
iLT(b, pt); iROUND(pt,10);
iLT(pt, b); iROUND(b, 8);
iLT(b, pt); iROUND(pt,6);
iLT(pt, b); iROUND(b, 4);
iLT(b, pt); iROUND(pt,2);
iLT(pt, b); iROUND(b, 0);
for (x = 0; x < 16; x++) {
pt[x] = b[x];
}
#ifdef CLEAN_STACK
zeromem(b, sizeof(b));
#endif
}
int saferp_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
int keylen;
unsigned char key[32], pt[16], ct[16];
} tests[] = {
{
16,
{ 41, 35, 190, 132, 225, 108, 214, 174,
82, 144, 73, 241, 241, 187, 233, 235 },
{ 179, 166, 219, 60, 135, 12, 62, 153,
36, 94, 13, 28, 6, 183, 71, 222 },
{ 224, 31, 182, 10, 12, 255, 84, 70,
127, 13, 89, 249, 9, 57, 165, 220 }
}, {
24,
{ 72, 211, 143, 117, 230, 217, 29, 42,
229, 192, 247, 43, 120, 129, 135, 68,
14, 95, 80, 0, 212, 97, 141, 190 },
{ 123, 5, 21, 7, 59, 51, 130, 31,
24, 112, 146, 218, 100, 84, 206, 177 },
{ 92, 136, 4, 63, 57, 95, 100, 0,
150, 130, 130, 16, 193, 111, 219, 133 }
}, {
32,
{ 243, 168, 141, 254, 190, 242, 235, 113,
255, 160, 208, 59, 117, 6, 140, 126,
135, 120, 115, 77, 208, 190, 130, 190,
219, 194, 70, 65, 43, 140, 250, 48 },
{ 127, 112, 240, 167, 84, 134, 50, 149,
170, 91, 104, 19, 11, 230, 252, 245 },
{ 88, 11, 25, 36, 172, 229, 202, 213,
170, 65, 105, 153, 220, 104, 153, 138 }
}
};
unsigned char tmp[2][16];
symmetric_key skey;
int err, i, y;
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
if ((err = saferp_setup(tests[i].key, tests[i].keylen, 0, &skey)) != CRYPT_OK) {
return err;
}
saferp_ecb_encrypt(tests[i].pt, tmp[0], &skey);
saferp_ecb_decrypt(tmp[0], tmp[1], &skey);
/* compare */
if (memcmp(tmp[0], tests[i].ct, 16) || memcmp(tmp[1], tests[i].pt, 16)) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 16; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) saferp_ecb_encrypt(tmp[0], tmp[0], &skey);
for (y = 0; y < 1000; y++) saferp_ecb_decrypt(tmp[0], tmp[0], &skey);
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
int saferp_keysize(int *desired_keysize)
{
_ARGCHK(desired_keysize != NULL);
if (*desired_keysize < 16)
return CRYPT_INVALID_KEYSIZE;
if (*desired_keysize < 24) {
*desired_keysize = 16;
} else if (*desired_keysize < 32) {
*desired_keysize = 24;
} else {
*desired_keysize = 32;
}
return CRYPT_OK;
}
#endif