blob: 62a2cf5f6e0bf6248e4e357c50daa7be6bef2ada [file] [log] [blame]
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
*/
/* RC6 code by Tom St Denis */
#include "mycrypt.h"
#ifdef RC6
const struct _cipher_descriptor rc6_desc =
{
"rc6",
3,
8, 128, 16, 20,
&rc6_setup,
&rc6_ecb_encrypt,
&rc6_ecb_decrypt,
&rc6_test,
&rc6_keysize
};
static const ulong32 stab[44] = {
0xb7e15163UL, 0x5618cb1cUL, 0xf45044d5UL, 0x9287be8eUL, 0x30bf3847UL, 0xcef6b200UL, 0x6d2e2bb9UL, 0x0b65a572UL,
0xa99d1f2bUL, 0x47d498e4UL, 0xe60c129dUL, 0x84438c56UL, 0x227b060fUL, 0xc0b27fc8UL, 0x5ee9f981UL, 0xfd21733aUL,
0x9b58ecf3UL, 0x399066acUL, 0xd7c7e065UL, 0x75ff5a1eUL, 0x1436d3d7UL, 0xb26e4d90UL, 0x50a5c749UL, 0xeedd4102UL,
0x8d14babbUL, 0x2b4c3474UL, 0xc983ae2dUL, 0x67bb27e6UL, 0x05f2a19fUL, 0xa42a1b58UL, 0x42619511UL, 0xe0990ecaUL,
0x7ed08883UL, 0x1d08023cUL, 0xbb3f7bf5UL, 0x5976f5aeUL, 0xf7ae6f67UL, 0x95e5e920UL, 0x341d62d9UL, 0xd254dc92UL,
0x708c564bUL, 0x0ec3d004UL, 0xacfb49bdUL, 0x4b32c376UL };
#ifdef CLEAN_STACK
static int _rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#else
int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#endif
{
ulong32 L[64], S[50], A, B, i, j, v, s, l;
_ARGCHK(key != NULL);
_ARGCHK(skey != NULL);
/* test parameters */
if (num_rounds != 0 && num_rounds != 20) {
return CRYPT_INVALID_ROUNDS;
}
/* key must be between 64 and 1024 bits */
if (keylen < 8 || keylen > 128) {
return CRYPT_INVALID_KEYSIZE;
}
/* copy the key into the L array */
for (A = i = j = 0; i < (ulong32)keylen; ) {
A = (A << 8) | ((ulong32)(key[i++] & 255));
if (!(i & 3)) {
L[j++] = BSWAP(A);
A = 0;
}
}
/* handle odd sized keys */
if (keylen & 3) {
A <<= (8 * (4 - (keylen&3)));
L[j++] = BSWAP(A);
}
/* setup the S array */
XMEMCPY(S, stab, 44 * sizeof(stab[0]));
/* mix buffer */
s = 3 * MAX(44, j);
l = j;
for (A = B = i = j = v = 0; v < s; v++) {
A = S[i] = ROL(S[i] + A + B, 3);
B = L[j] = ROL(L[j] + A + B, (A+B));
if (++i == 44) { i = 0; }
if (++j == l) { j = 0; }
}
/* copy to key */
for (i = 0; i < 44; i++) {
skey->rc6.K[i] = S[i];
}
return CRYPT_OK;
}
#ifdef CLEAN_STACK
int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
int x;
x = _rc6_setup(key, keylen, num_rounds, skey);
burn_stack(sizeof(ulong32) * 122);
return x;
}
#endif
#ifdef CLEAN_STACK
static void _rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
#else
void rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
#endif
{
ulong32 a,b,c,d,t,u, *K;
int r;
_ARGCHK(key != NULL);
_ARGCHK(pt != NULL);
_ARGCHK(ct != NULL);
LOAD32L(a,&pt[0]);LOAD32L(b,&pt[4]);LOAD32L(c,&pt[8]);LOAD32L(d,&pt[12]);
b += key->rc6.K[0];
d += key->rc6.K[1];
#define RND(a,b,c,d) \
t = (b * (b + b + 1)); t = ROL(t, 5); \
u = (d * (d + d + 1)); u = ROL(u, 5); \
a = ROL(a^t,u) + K[0]; \
c = ROL(c^u,t) + K[1]; K += 2;
K = key->rc6.K + 2;
for (r = 0; r < 20; r += 4) {
RND(a,b,c,d);
RND(b,c,d,a);
RND(c,d,a,b);
RND(d,a,b,c);
}
#undef RND
a += key->rc6.K[42];
c += key->rc6.K[43];
STORE32L(a,&ct[0]);STORE32L(b,&ct[4]);STORE32L(c,&ct[8]);STORE32L(d,&ct[12]);
}
#ifdef CLEAN_STACK
void rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
{
_rc6_ecb_encrypt(pt, ct, key);
burn_stack(sizeof(ulong32) * 6 + sizeof(int));
}
#endif
#ifdef CLEAN_STACK
static void _rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
#else
void rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
#endif
{
ulong32 a,b,c,d,t,u, *K;
int r;
_ARGCHK(key != NULL);
_ARGCHK(pt != NULL);
_ARGCHK(ct != NULL);
LOAD32L(a,&ct[0]);LOAD32L(b,&ct[4]);LOAD32L(c,&ct[8]);LOAD32L(d,&ct[12]);
a -= key->rc6.K[42];
c -= key->rc6.K[43];
#define RND(a,b,c,d) \
t = (b * (b + b + 1)); t = ROL(t, 5); \
u = (d * (d + d + 1)); u = ROL(u, 5); \
c = ROR(c - K[1], t) ^ u; \
a = ROR(a - K[0], u) ^ t; K -= 2;
K = key->rc6.K + 40;
for (r = 0; r < 20; r += 4) {
RND(d,a,b,c);
RND(c,d,a,b);
RND(b,c,d,a);
RND(a,b,c,d);
}
#undef RND
b -= key->rc6.K[0];
d -= key->rc6.K[1];
STORE32L(a,&pt[0]);STORE32L(b,&pt[4]);STORE32L(c,&pt[8]);STORE32L(d,&pt[12]);
}
#ifdef CLEAN_STACK
void rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
{
_rc6_ecb_decrypt(ct, pt, key);
burn_stack(sizeof(ulong32) * 6 + sizeof(int));
}
#endif
int rc6_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
int keylen;
unsigned char key[32], pt[16], ct[16];
} tests[] = {
{
16,
{ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79,
0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 },
{ 0x52, 0x4e, 0x19, 0x2f, 0x47, 0x15, 0xc6, 0x23,
0x1f, 0x51, 0xf6, 0x36, 0x7e, 0xa4, 0x3f, 0x18 }
},
{
24,
{ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78,
0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79,
0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 },
{ 0x68, 0x83, 0x29, 0xd0, 0x19, 0xe5, 0x05, 0x04,
0x1e, 0x52, 0xe9, 0x2a, 0xf9, 0x52, 0x91, 0xd4 }
},
{
32,
{ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78,
0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0,
0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe },
{ 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79,
0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 },
{ 0xc8, 0x24, 0x18, 0x16, 0xf0, 0xd7, 0xe4, 0x89,
0x20, 0xad, 0x16, 0xa1, 0x67, 0x4e, 0x5d, 0x48 }
}
};
unsigned char tmp[2][16];
int x, y, err;
symmetric_key key;
for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
/* setup key */
if ((err = rc6_setup(tests[x].key, tests[x].keylen, 0, &key)) != CRYPT_OK) {
return err;
}
/* encrypt and decrypt */
rc6_ecb_encrypt(tests[x].pt, tmp[0], &key);
rc6_ecb_decrypt(tmp[0], tmp[1], &key);
/* compare */
if (memcmp(tmp[0], tests[x].ct, 16) || memcmp(tmp[1], tests[x].pt, 16)) {
#if 0
printf("\n\nFailed test %d\n", x);
if (memcmp(tmp[0], tests[x].ct, 16)) {
printf("Ciphertext: ");
for (y = 0; y < 16; y++) printf("%02x ", tmp[0][y]);
printf("\nExpected : ");
for (y = 0; y < 16; y++) printf("%02x ", tests[x].ct[y]);
printf("\n");
}
if (memcmp(tmp[1], tests[x].pt, 16)) {
printf("Plaintext: ");
for (y = 0; y < 16; y++) printf("%02x ", tmp[0][y]);
printf("\nExpected : ");
for (y = 0; y < 16; y++) printf("%02x ", tests[x].pt[y]);
printf("\n");
}
#endif
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 16; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) rc6_ecb_encrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 1000; y++) rc6_ecb_decrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
int rc6_keysize(int *desired_keysize)
{
_ARGCHK(desired_keysize != NULL);
if (*desired_keysize < 8) {
return CRYPT_INVALID_KEYSIZE;
} else if (*desired_keysize > 128) {
*desired_keysize = 128;
}
return CRYPT_OK;
}
#endif /*RC6*/