blob: 5e8e14d4ff6cf3a4b2fd50b93355ad174e2b8397 [file] [log] [blame]
/*
* Dropbear - a SSH2 server
*
* Copyright (c) 2002,2003 Matt Johnston
* All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE. */
#include "includes.h"
#include "packet.h"
#include "session.h"
#include "dbutil.h"
#include "ssh.h"
#include "algo.h"
#include "buffer.h"
#include "kex.h"
#include "random.h"
#include "service.h"
#include "auth.h"
#include "channel.h"
static void read_packet_init();
static void writemac(buffer * outputbuffer, buffer * clearwritebuf);
static int checkmac(buffer* hashbuf, buffer* readbuf);
#define ZLIB_COMPRESS_INCR 20 /* this is 12 bytes + 0.1% of 8000 bytes */
#define ZLIB_DECOMPRESS_INCR 100
#ifndef DISABLE_ZLIB
static buffer* buf_decompress(buffer* buf, unsigned int len);
static void buf_compress(buffer * dest, buffer * src, unsigned int len);
#endif
/* non-blocking function writing out a current encrypted packet */
void write_packet() {
int len, written;
buffer * writebuf = NULL;
TRACE(("enter write_packet"));
assert(!isempty(&ses.writequeue));
/* Get the next buffer in the queue of encrypted packets to write*/
writebuf = (buffer*)examine(&ses.writequeue);
len = writebuf->len - writebuf->pos;
assert(len > 0);
/* Try to write as much as possible */
written = write(ses.sock, buf_getptr(writebuf, len), len);
if (written < 0) {
if (errno == EINTR) {
TRACE(("leave writepacket: EINTR"));
return;
} else {
dropbear_exit("error writing");
}
}
if (written == 0) {
ses.remoteclosed();
}
if (written == len) {
/* We've finished with the packet, free it */
dequeue(&ses.writequeue);
buf_free(writebuf);
writebuf = NULL;
} else {
/* More packet left to write, leave it in the queue for later */
buf_incrpos(writebuf, written);
}
TRACE(("leave write_packet"));
}
/* Non-blocking function reading available portion of a packet into the
* ses's buffer, decrypting the length if encrypted, decrypting the
* full portion if possible */
void read_packet() {
int len;
unsigned int maxlen;
unsigned char blocksize;
TRACE(("enter read_packet"));
blocksize = ses.keys->recv_algo_crypt->blocksize;
if (ses.readbuf == NULL || ses.readbuf->len < blocksize) {
/* In the first blocksize of a packet */
/* Read the first blocksize of the packet, so we can decrypt it and
* find the length of the whole packet */
read_packet_init();
/* If we don't have the length of decryptreadbuf, we didn't read
* a whole blocksize and should exit */
if (ses.decryptreadbuf->len == 0) {
TRACE(("leave read_packet: packetinit done"));
return;
}
}
/* Attempt to read the remainder of the packet, note that there
* mightn't be any available (EAGAIN) */
assert(ses.readbuf != NULL);
maxlen = ses.readbuf->len - ses.readbuf->pos;
len = read(ses.sock, buf_getptr(ses.readbuf, maxlen), maxlen);
if (len == 0) {
ses.remoteclosed();
}
if (len < 0) {
if (errno == EINTR || errno == EAGAIN) {
TRACE(("leave read_packet: EINTR or EAGAIN"));
return;
} else {
dropbear_exit("error reading: %s", strerror(errno));
}
}
buf_incrpos(ses.readbuf, len);
if ((unsigned int)len == maxlen) {
/* The whole packet has been read */
decrypt_packet();
/* The main select() loop process_packet() to
* handle the packet contents... */
}
TRACE(("leave read_packet"));
}
/* Function used to read the initial portion of a packet, and determine the
* length. Only called during the first BLOCKSIZE of a packet. */
static void read_packet_init() {
unsigned int maxlen;
int len;
unsigned char blocksize;
unsigned char macsize;
blocksize = ses.keys->recv_algo_crypt->blocksize;
macsize = ses.keys->recv_algo_mac->hashsize;
if (ses.readbuf == NULL) {
/* start of a new packet */
ses.readbuf = buf_new(INIT_READBUF);
assert(ses.decryptreadbuf == NULL);
ses.decryptreadbuf = buf_new(blocksize);
}
maxlen = blocksize - ses.readbuf->pos;
/* read the rest of the packet if possible */
len = read(ses.sock, buf_getwriteptr(ses.readbuf, maxlen),
maxlen);
if (len == 0) {
ses.remoteclosed();
}
if (len < 0) {
if (errno == EINTR) {
TRACE(("leave read_packet_init: EINTR"));
return;
}
dropbear_exit("error reading: %s", strerror(errno));
}
buf_incrwritepos(ses.readbuf, len);
if ((unsigned int)len != maxlen) {
/* don't have enough bytes to determine length, get next time */
return;
}
/* now we have the first block, need to get packet length, so we decrypt
* the first block (only need first 4 bytes) */
buf_setpos(ses.readbuf, 0);
if (ses.keys->recv_algo_crypt->cipherdesc == NULL) {
/* copy it */
memcpy(buf_getwriteptr(ses.decryptreadbuf, blocksize),
buf_getptr(ses.readbuf, blocksize),
blocksize);
} else {
/* decrypt it */
if (cbc_decrypt(buf_getptr(ses.readbuf, blocksize),
buf_getwriteptr(ses.decryptreadbuf,blocksize),
&ses.keys->recv_symmetric_struct) != CRYPT_OK) {
dropbear_exit("error decrypting");
}
}
buf_setlen(ses.decryptreadbuf, blocksize);
len = buf_getint(ses.decryptreadbuf) + 4 + macsize;
buf_setpos(ses.readbuf, blocksize);
/* check packet length */
if ((len > MAX_PACKET_LEN) ||
(len < MIN_PACKET_LEN + macsize) ||
((len - macsize) % blocksize != 0)) {
dropbear_exit("bad packet size");
}
buf_resize(ses.readbuf, len);
buf_setlen(ses.readbuf, len);
}
/* handle the received packet */
void decrypt_packet() {
unsigned char blocksize;
unsigned char macsize;
unsigned int padlen;
unsigned int len;
TRACE(("enter decrypt_packet"));
blocksize = ses.keys->recv_algo_crypt->blocksize;
macsize = ses.keys->recv_algo_mac->hashsize;
ses.kexstate.datarecv += ses.readbuf->len;
/* we've already decrypted the first blocksize in read_packet_init */
buf_setpos(ses.readbuf, blocksize);
buf_resize(ses.decryptreadbuf, ses.readbuf->len - macsize);
buf_setlen(ses.decryptreadbuf, ses.decryptreadbuf->size);
buf_setpos(ses.decryptreadbuf, blocksize);
/* decrypt if encryption is set, memcpy otherwise */
if (ses.keys->recv_algo_crypt->cipherdesc == NULL) {
/* copy it */
len = ses.readbuf->len - macsize - blocksize;
memcpy(buf_getwriteptr(ses.decryptreadbuf, len),
buf_getptr(ses.readbuf, len), len);
} else {
/* decrypt */
while (ses.readbuf->pos < ses.readbuf->len - macsize) {
if (cbc_decrypt(buf_getptr(ses.readbuf, blocksize),
buf_getwriteptr(ses.decryptreadbuf, blocksize),
&ses.keys->recv_symmetric_struct) != CRYPT_OK) {
dropbear_exit("error decrypting");
}
buf_incrpos(ses.readbuf, blocksize);
buf_incrwritepos(ses.decryptreadbuf, blocksize);
}
}
/* check the hmac */
buf_setpos(ses.readbuf, ses.readbuf->len - macsize);
if (checkmac(ses.readbuf, ses.decryptreadbuf) != DROPBEAR_SUCCESS) {
dropbear_exit("Integrity error");
}
/* readbuf no longer required */
buf_free(ses.readbuf);
ses.readbuf = NULL;
/* get padding length */
buf_setpos(ses.decryptreadbuf, PACKET_PADDING_OFF);
padlen = buf_getbyte(ses.decryptreadbuf);
/* payload length */
/* - 4 - 1 is for LEN and PADLEN values */
len = ses.decryptreadbuf->len - padlen - 4 - 1;
if ((len > MAX_PAYLOAD_LEN) || (len < 1)) {
dropbear_exit("bad packet size");
}
buf_setpos(ses.decryptreadbuf, PACKET_PAYLOAD_OFF);
#ifndef DISABLE_ZLIB
if (ses.keys->recv_algo_comp == DROPBEAR_COMP_ZLIB) {
/* decompress */
ses.payload = buf_decompress(ses.decryptreadbuf, len);
} else
#endif
{
/* copy payload */
ses.payload = buf_new(len);
memcpy(ses.payload->data, buf_getptr(ses.decryptreadbuf, len), len);
buf_incrlen(ses.payload, len);
}
buf_free(ses.decryptreadbuf);
ses.decryptreadbuf = NULL;
buf_setpos(ses.payload, 0);
ses.recvseq++;
TRACE(("leave decrypt_packet"));
}
/* Checks the mac in hashbuf, for the data in readbuf.
* Returns DROPBEAR_SUCCESS or DROPBEAR_FAILURE */
static int checkmac(buffer* macbuf, buffer* sourcebuf) {
unsigned char macsize;
hmac_state hmac;
unsigned char tempbuf[MAX_MAC_LEN];
unsigned long hashsize;
int len;
macsize = ses.keys->recv_algo_mac->hashsize;
if (macsize == 0) {
return DROPBEAR_SUCCESS;
}
/* calculate the mac */
if (hmac_init(&hmac,
find_hash(ses.keys->recv_algo_mac->hashdesc->name),
ses.keys->recvmackey,
ses.keys->recv_algo_mac->keysize)
!= CRYPT_OK) {
dropbear_exit("HMAC error");
}
/* sequence number */
STORE32H(ses.recvseq, tempbuf);
if (hmac_process(&hmac, tempbuf, 4) != CRYPT_OK) {
dropbear_exit("HMAC error");
}
buf_setpos(sourcebuf, 0);
len = sourcebuf->len;
if (hmac_process(&hmac, buf_getptr(sourcebuf, len), len) != CRYPT_OK) {
dropbear_exit("HMAC error");
}
hashsize = sizeof(tempbuf);
if (hmac_done(&hmac, tempbuf, &hashsize) != CRYPT_OK) {
dropbear_exit("HMAC error");
}
/* compare the hash */
if (memcmp(tempbuf, buf_getptr(macbuf, macsize), macsize) != 0) {
return DROPBEAR_FAILURE;
} else {
return DROPBEAR_SUCCESS;
}
}
#ifndef DISABLE_ZLIB
/* returns a pointer to a newly created buffer */
static buffer* buf_decompress(buffer* buf, unsigned int len) {
int result;
buffer * ret;
z_streamp zstream;
zstream = ses.keys->recv_zstream;
ret = buf_new(len);
zstream->avail_in = len;
zstream->next_in = buf_getptr(buf, len);
/* decompress the payload, incrementally resizing the output buffer */
while (1) {
zstream->avail_out = ret->size - ret->pos;
zstream->next_out = buf_getwriteptr(ret, zstream->avail_out);
result = inflate(zstream, Z_SYNC_FLUSH);
buf_setlen(ret, ret->size - zstream->avail_out);
buf_setpos(ret, ret->len);
if (result != Z_BUF_ERROR && result != Z_OK) {
dropbear_exit("zlib error");
}
if (zstream->avail_in == 0 &&
(zstream->avail_out != 0 || result == Z_BUF_ERROR)) {
/* we can only exit if avail_out hasn't all been used,
* and there's no remaining input */
return ret;
}
if (zstream->avail_out == 0) {
buf_resize(ret, ret->size + ZLIB_DECOMPRESS_INCR);
}
}
}
#endif
/* encrypt the writepayload, putting into writebuf, ready for write_packet()
* to put on the wire */
void encrypt_packet() {
unsigned char padlen;
unsigned char blocksize, macsize;
buffer * writebuf; /* the packet which will go on the wire */
buffer * clearwritebuf; /* unencrypted, possibly compressed */
TRACE(("enter encrypt_packet()"));
TRACE(("encrypt_packet type is %d", ses.writepayload->data[0]));
blocksize = ses.keys->trans_algo_crypt->blocksize;
macsize = ses.keys->trans_algo_mac->hashsize;
/* Encrypted packet len is payload+5, then worst case is if we are 3 away
* from a blocksize multiple. In which case we need to pad to the
* multiple, then add another blocksize (or MIN_PACKET_LEN) */
clearwritebuf = buf_new((ses.writepayload->len+4+1) + MIN_PACKET_LEN + 3
#ifndef DISABLE_ZLIB
+ ZLIB_COMPRESS_INCR /* bit of a kludge, but we can't know len*/
#endif
);
buf_setlen(clearwritebuf, PACKET_PAYLOAD_OFF);
buf_setpos(clearwritebuf, PACKET_PAYLOAD_OFF);
buf_setpos(ses.writepayload, 0);
#ifndef DISABLE_ZLIB
/* compression */
if (ses.keys->trans_algo_comp == DROPBEAR_COMP_ZLIB) {
buf_compress(clearwritebuf, ses.writepayload, ses.writepayload->len);
} else
#endif
{
memcpy(buf_getwriteptr(clearwritebuf, ses.writepayload->len),
buf_getptr(ses.writepayload, ses.writepayload->len),
ses.writepayload->len);
buf_incrwritepos(clearwritebuf, ses.writepayload->len);
}
/* finished with payload */
buf_burn(ses.writepayload); /* XXX This is probably a good idea, and isn't
_that_ likely to hurt performance too badly.
Buffers can have cleartext passwords etc, or
other sensitive data */
buf_setpos(ses.writepayload, 0);
buf_setlen(ses.writepayload, 0);
/* length of padding - packet length must be a multiple of blocksize,
* with a minimum of 4 bytes of padding */
padlen = blocksize - (clearwritebuf->len) % blocksize;
if (padlen < 4) {
padlen += blocksize;
}
/* check for min packet length */
if (clearwritebuf->len + padlen < MIN_PACKET_LEN) {
padlen += blocksize;
}
buf_setpos(clearwritebuf, 0);
/* packet length excluding the packetlength uint32 */
buf_putint(clearwritebuf, clearwritebuf->len + padlen - 4);
/* padding len */
buf_putbyte(clearwritebuf, padlen);
/* actual padding */
buf_setpos(clearwritebuf, clearwritebuf->len);
buf_incrlen(clearwritebuf, padlen);
genrandom(buf_getptr(clearwritebuf, padlen), padlen);
/* do the actual encryption */
buf_setpos(clearwritebuf, 0);
/* create a new writebuffer, this is freed when it has been put on the
* wire by writepacket() */
writebuf = buf_new(clearwritebuf->len + macsize);
if (ses.keys->trans_algo_crypt->cipherdesc == NULL) {
/* copy it */
memcpy(buf_getwriteptr(writebuf, clearwritebuf->len),
buf_getptr(clearwritebuf, clearwritebuf->len),
clearwritebuf->len);
buf_incrwritepos(writebuf, clearwritebuf->len);
} else {
/* encrypt it */
while (clearwritebuf->pos < clearwritebuf->len) {
if (cbc_encrypt(buf_getptr(clearwritebuf, blocksize),
buf_getwriteptr(writebuf, blocksize),
&ses.keys->trans_symmetric_struct) != CRYPT_OK) {
dropbear_exit("error encrypting");
}
buf_incrpos(clearwritebuf, blocksize);
buf_incrwritepos(writebuf, blocksize);
}
}
/* now add a hmac and we're done */
writemac(writebuf, clearwritebuf);
/* clearwritebuf is finished with */
buf_free(clearwritebuf);
clearwritebuf = NULL;
/* enqueue the packet for sending */
buf_setpos(writebuf, 0);
enqueue(&ses.writequeue, (void*)writebuf);
/* Update counts */
ses.kexstate.datatrans += writebuf->len;
ses.transseq++;
TRACE(("leave encrypt_packet()"));
}
/* Create the packet mac, and append H(seqno|clearbuf) to the output */
static void writemac(buffer * outputbuffer, buffer * clearwritebuf) {
int macsize;
unsigned char seqbuf[4];
unsigned long hashsize;
hmac_state hmac;
TRACE(("enter writemac"));
macsize = ses.keys->trans_algo_mac->hashsize;
if (macsize > 0) {
/* calculate the mac */
if (hmac_init(&hmac,
find_hash(ses.keys->trans_algo_mac->hashdesc->name),
ses.keys->transmackey,
ses.keys->trans_algo_mac->keysize) != CRYPT_OK) {
dropbear_exit("HMAC error");
}
/* sequence number */
STORE32H(ses.transseq, seqbuf);
if (hmac_process(&hmac, seqbuf, 4) != CRYPT_OK) {
dropbear_exit("HMAC error");
}
/* the actual contents */
buf_setpos(clearwritebuf, 0);
if (hmac_process(&hmac,
buf_getptr(clearwritebuf,
clearwritebuf->len),
clearwritebuf->len) != CRYPT_OK) {
dropbear_exit("HMAC error");
}
hashsize = macsize;
if (hmac_done(&hmac, buf_getwriteptr(outputbuffer, macsize), &hashsize)
!= CRYPT_OK) {
dropbear_exit("HMAC error");
}
buf_incrwritepos(outputbuffer, macsize);
}
TRACE(("leave writemac"));
}
#ifndef DISABLE_ZLIB
/* compresses len bytes from src, outputting to dest (starting from the
* respective current positions. */
static void buf_compress(buffer * dest, buffer * src, unsigned int len) {
unsigned int endpos = src->pos + len;
int result;
TRACE(("enter buf_compress"));
while (1) {
ses.keys->trans_zstream->avail_in = endpos - src->pos;
ses.keys->trans_zstream->next_in =
buf_getptr(src, ses.keys->trans_zstream->avail_in);
ses.keys->trans_zstream->avail_out = dest->size - dest->pos;
ses.keys->trans_zstream->next_out =
buf_getwriteptr(dest, ses.keys->trans_zstream->avail_out);
result = deflate(ses.keys->trans_zstream, Z_SYNC_FLUSH);
buf_setpos(src, endpos - ses.keys->trans_zstream->avail_in);
buf_setlen(dest, dest->size - ses.keys->trans_zstream->avail_out);
buf_setpos(dest, dest->len);
if (result != Z_OK) {
dropbear_exit("zlib error");
}
if (ses.keys->trans_zstream->avail_in == 0) {
break;
}
assert(ses.keys->trans_zstream->avail_out == 0);
/* the buffer has been filled, we must extend. This only happens in
* unusual circumstances where the data grows in size after deflate(),
* but it is possible */
buf_resize(dest, dest->size + ZLIB_COMPRESS_INCR);
}
TRACE(("leave buf_compress"));
}
#endif