blob: b77b76c7f8cb9f0bee8869fc664e8a1f69f2142d [file] [log] [blame]
#include <mycrypt.h>
#define KTIMES 25
#define TIMES 100000
struct list {
int id;
unsigned long spd1, spd2, avg;
} results[100];
int no_results;
int sorter(const void *a, const void *b)
{
const struct list *A, *B;
A = a;
B = b;
if (A->avg < B->avg) return -1;
if (A->avg > B->avg) return 1;
return 0;
}
void tally_results(int type)
{
int x;
// qsort the results
qsort(results, no_results, sizeof(struct list), &sorter);
printf("\n");
if (type == 0) {
for (x = 0; x < no_results; x++) {
printf("%-20s: Schedule at %6lu\n", cipher_descriptor[results[x].id].name, (unsigned long)results[x].spd1);
}
} else if (type == 1) {
for (x = 0; x < no_results; x++) {
printf
("%-20s: Encrypt at %5lu, Decrypt at %5lu\n", cipher_descriptor[results[x].id].name, results[x].spd1, results[x].spd2);
}
} else {
for (x = 0; x < no_results; x++) {
printf
("%-20s: Process at %5lu\n", hash_descriptor[results[x].id].name, results[x].spd1 / 1000);
}
}
}
/* RDTSC from Scott Duplichan */
static ulong64 rdtsc (void)
{
#if defined __GNUC__
#if defined(__i386__) || defined(__x86_64__)
unsigned long long a;
__asm__ __volatile__ ("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n"::"m"(a):"%eax","%edx");
return a;
#else /* gcc-IA64 version */
unsigned long result;
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
while (__builtin_expect ((int) result == -1, 0))
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
return result;
#endif
// Microsoft and Intel Windows compilers
#elif defined _M_IX86
__asm rdtsc
#elif defined _M_AMD64
return __rdtsc ();
#elif defined _M_IA64
#if defined __INTEL_COMPILER
#include <ia64intrin.h>
#endif
return __getReg (3116);
#else
#error need rdtsc function for this build
#endif
}
ulong64 timer, skew = 0;
prng_state prng;
void t_start(void)
{
timer = rdtsc();
}
ulong64 t_read(void)
{
return rdtsc() - timer;
}
void init_timer(void)
{
ulong64 c1, c2, t1, t2, t3;
unsigned long y1;
c1 = c2 = (ulong64)-1;
for (y1 = 0; y1 < TIMES*100; y1++) {
t_start();
t1 = t_read();
t3 = t_read();
t2 = t_read() - t1;
c1 = (c1 > t1) ? t1 : c1;
c2 = (c2 > t2) ? t2 : c2;
}
skew = c2 - c1;
printf("Clock Skew: %lu\n", (unsigned long)skew);
}
void reg_algs(void)
{
int err;
#ifdef RIJNDAEL
register_cipher (&aes_desc);
#endif
#ifdef BLOWFISH
register_cipher (&blowfish_desc);
#endif
#ifdef XTEA
register_cipher (&xtea_desc);
#endif
#ifdef RC5
register_cipher (&rc5_desc);
#endif
#ifdef RC6
register_cipher (&rc6_desc);
#endif
#ifdef SAFERP
register_cipher (&saferp_desc);
#endif
#ifdef TWOFISH
register_cipher (&twofish_desc);
#endif
#ifdef SAFER
register_cipher (&safer_k64_desc);
register_cipher (&safer_sk64_desc);
register_cipher (&safer_k128_desc);
register_cipher (&safer_sk128_desc);
#endif
#ifdef RC2
register_cipher (&rc2_desc);
#endif
#ifdef DES
register_cipher (&des_desc);
register_cipher (&des3_desc);
#endif
#ifdef CAST5
register_cipher (&cast5_desc);
#endif
#ifdef NOEKEON
register_cipher (&noekeon_desc);
#endif
#ifdef SKIPJACK
register_cipher (&skipjack_desc);
#endif
#ifdef TIGER
register_hash (&tiger_desc);
#endif
#ifdef MD2
register_hash (&md2_desc);
#endif
#ifdef MD4
register_hash (&md4_desc);
#endif
#ifdef MD5
register_hash (&md5_desc);
#endif
#ifdef SHA1
register_hash (&sha1_desc);
#endif
#ifdef SHA224
register_hash (&sha224_desc);
#endif
#ifdef SHA256
register_hash (&sha256_desc);
#endif
#ifdef SHA384
register_hash (&sha384_desc);
#endif
#ifdef SHA512
register_hash (&sha512_desc);
#endif
#ifdef RIPEMD128
register_hash (&rmd128_desc);
#endif
#ifdef RIPEMD160
register_hash (&rmd160_desc);
#endif
#ifdef WHIRLPOOL
register_hash (&whirlpool_desc);
#endif
#ifdef CHC_HASH
register_hash(&chc_desc);
if ((err = chc_register(register_cipher(&aes_desc))) != CRYPT_OK) {
printf("chc_register error: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
#endif
#ifndef YARROW
#error This demo requires Yarrow.
#endif
register_prng(&yarrow_desc);
#ifdef FORTUNA
register_prng(&fortuna_desc);
#endif
#ifdef RC4
register_prng(&rc4_desc);
#endif
#ifdef SOBER128
register_prng(&sober128_desc);
#endif
rng_make_prng(128, find_prng("yarrow"), &prng, NULL);
}
int time_keysched(void)
{
unsigned long x, y1;
ulong64 t1, c1;
symmetric_key skey;
int kl;
int (*func) (const unsigned char *, int , int , symmetric_key *);
unsigned char key[MAXBLOCKSIZE];
printf ("\n\nKey Schedule Time Trials for the Symmetric Ciphers:\n(Times are cycles per key)\n");
no_results = 0;
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
#define DO1(k) func(k, kl, 0, &skey);
func = cipher_descriptor[x].setup;
kl = cipher_descriptor[x].min_key_length;
c1 = (ulong64)-1;
for (y1 = 0; y1 < KTIMES; y1++) {
yarrow_read(key, kl, &prng);
t_start();
DO1(key);
t1 = t_read();
c1 = (t1 > c1) ? c1 : t1;
}
t1 = c1 - skew;
results[no_results].spd1 = results[no_results].avg = t1;
results[no_results++].id = x;
printf("."); fflush(stdout);
#undef DO1
}
tally_results(0);
return 0;
}
int time_cipher(void)
{
unsigned long x, y1;
ulong64 t1, t2, c1, c2, a1, a2;
symmetric_key skey;
void (*func) (const unsigned char *, unsigned char *, symmetric_key *);
unsigned char key[MAXBLOCKSIZE], pt[MAXBLOCKSIZE];
int err;
printf ("\n\nECB Time Trials for the Symmetric Ciphers:\n");
no_results = 0;
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
cipher_descriptor[x].setup (key, cipher_descriptor[x].min_key_length, 0,
&skey);
/* sanity check on cipher */
if ((err = cipher_descriptor[x].test()) != CRYPT_OK) {
fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err));
exit(EXIT_FAILURE);
}
#define DO1 func(pt,pt,&skey);
#define DO2 DO1 DO1
func = cipher_descriptor[x].ecb_encrypt;
c1 = c2 = (ulong64)-1;
for (y1 = 0; y1 < TIMES; y1++) {
t_start();
DO1;
t1 = t_read();
DO2;
t2 = t_read();
t2 -= t1;
c1 = (t1 > c1 ? c1 : t1);
c2 = (t2 > c2 ? c2 : t2);
}
a1 = c2 - c1 - skew;
func = cipher_descriptor[x].ecb_decrypt;
c1 = c2 = (ulong64)-1;
for (y1 = 0; y1 < TIMES; y1++) {
t_start();
DO1;
t1 = t_read();
DO2;
t2 = t_read();
t2 -= t1;
c1 = (t1 > c1 ? c1 : t1);
c2 = (t2 > c2 ? c2 : t2);
}
a2 = c2 - c1 - skew;
results[no_results].id = x;
results[no_results].spd1 = a1/cipher_descriptor[x].block_length;
results[no_results].spd2 = a2/cipher_descriptor[x].block_length;;
results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2;
++no_results;
printf("."); fflush(stdout);
#undef DO2
#undef DO1
}
tally_results(1);
return 0;
}
int time_hash(void)
{
unsigned long x, y1, len;
ulong64 t1, t2, c1, c2;
hash_state md;
int (*func)(hash_state *, const unsigned char *, unsigned long), err;
unsigned char pt[MAXBLOCKSIZE];
printf ("\n\nHASH Time Trials for:\n");
no_results = 0;
for (x = 0; hash_descriptor[x].name != NULL; x++) {
/* sanity check on hash */
if ((err = hash_descriptor[x].test()) != CRYPT_OK) {
fprintf(stderr, "\n\nERROR: Hash %s failed self-test %s\n", hash_descriptor[x].name, error_to_string(err));
exit(EXIT_FAILURE);
}
hash_descriptor[x].init(&md);
#define DO1 func(&md,pt,len);
#define DO2 DO1 DO1
func = hash_descriptor[x].process;
len = hash_descriptor[x].blocksize;
c1 = c2 = (ulong64)-1;
for (y1 = 0; y1 < TIMES; y1++) {
t_start();
DO1;
t1 = t_read();
DO2;
t2 = t_read() - t1;
c1 = (t1 > c1) ? c1 : t1;
c2 = (t2 > c2) ? c2 : t2;
}
t1 = c2 - c1 - skew;
t1 = ((t1 * CONST64(1000))) / ((ulong64)hash_descriptor[x].blocksize);
results[no_results].id = x;
results[no_results].spd1 = results[no_results].avg = t1;
++no_results;
printf("."); fflush(stdout);
#undef DO2
#undef DO1
}
tally_results(2);
return 0;
}
void time_mult(void)
{
ulong64 t1, t2;
unsigned long x, y;
mp_int a, b, c;
printf("Timing Multiplying:\n");
mp_init_multi(&a,&b,&c,NULL);
for (x = 128/DIGIT_BIT; x <= 1024/DIGIT_BIT; x += 128/DIGIT_BIT) {
mp_rand(&a, x);
mp_rand(&b, x);
#define DO1 mp_mul(&a, &b, &c);
#define DO2 DO1; DO1;
t2 = -1;
for (y = 0; y < TIMES; y++) {
t_start();
t1 = t_read();
DO2;
t1 = (t_read() - t1)>>1;
if (t1 < t2) t2 = t1;
}
printf("%3lu digits: %9llu cycles\n", x, t2);
}
mp_clear_multi(&a,&b,&c,NULL);
#undef DO1
#undef DO2
}
void time_sqr(void)
{
ulong64 t1, t2;
unsigned long x, y;
mp_int a, b;
printf("Timing Squaring:\n");
mp_init_multi(&a,&b,NULL);
for (x = 128/DIGIT_BIT; x <= 1024/DIGIT_BIT; x += 128/DIGIT_BIT) {
mp_rand(&a, x);
#define DO1 mp_sqr(&a, &b);
#define DO2 DO1; DO1;
t2 = -1;
for (y = 0; y < TIMES; y++) {
t_start();
t1 = t_read();
DO2;
t1 = (t_read() - t1)>>1;
if (t1 < t2) t2 = t1;
}
printf("%3lu digits: %9llu cycles\n", x, t2);
}
mp_clear_multi(&a,&b,NULL);
#undef DO1
#undef DO2
}
void time_prng(void)
{
ulong64 t1, t2;
unsigned char buf[4096];
prng_state tprng;
unsigned long x, y;
int err;
printf("Timing PRNGs (cycles/byte output, cycles add_entropy (32 bytes) :\n");
for (x = 0; prng_descriptor[x].name != NULL; x++) {
/* sanity check on prng */
if ((err = prng_descriptor[x].test()) != CRYPT_OK) {
fprintf(stderr, "\n\nERROR: PRNG %s failed self-test %s\n", prng_descriptor[x].name, error_to_string(err));
exit(EXIT_FAILURE);
}
prng_descriptor[x].start(&tprng);
zeromem(buf, 256);
prng_descriptor[x].add_entropy(buf, 256, &tprng);
prng_descriptor[x].ready(&tprng);
t2 = -1;
#define DO1 if (prng_descriptor[x].read(buf, 4096, &tprng) != 4096) { printf("\n\nERROR READ != 4096\n\n"); exit(EXIT_FAILURE); }
#define DO2 DO1 DO1
for (y = 0; y < 10000; y++) {
t_start();
t1 = t_read();
DO2;
t1 = (t_read() - t1)>>1;
if (t1 < t2) t2 = t1;
}
printf("%20s: %5llu ", prng_descriptor[x].name, t2>>12);
#undef DO2
#undef DO1
#define DO1 prng_descriptor[x].start(&tprng); prng_descriptor[x].add_entropy(buf, 32, &tprng); prng_descriptor[x].ready(&tprng); prng_descriptor[x].done(&tprng);
#define DO2 DO1 DO1
for (y = 0; y < 10000; y++) {
t_start();
t1 = t_read();
DO2;
t1 = (t_read() - t1)>>1;
if (t1 < t2) t2 = t1;
}
printf("%5llu\n", t2);
#undef DO2
#undef DO1
}
}
/* time various RSA operations */
void time_rsa(void)
{
rsa_key key;
ulong64 t1, t2;
unsigned char buf[2][4096];
unsigned long x, y, z, zzz;
int err, zz;
for (x = 1024; x <= 2048; x += 512) {
t2 = 0;
for (y = 0; y < 16; y++) {
t_start();
t1 = t_read();
if ((err = rsa_make_key(&prng, find_prng("yarrow"), x/8, 65537, &key)) != CRYPT_OK) {
fprintf(stderr, "\n\nrsa_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
if (y < 15) {
rsa_free(&key);
}
}
t2 >>= 4;
printf("RSA-%lu make_key took %15llu cycles\n", x, t2);
t2 = 0;
for (y = 0; y < 16; y++) {
t_start();
t1 = t_read();
z = sizeof(buf[1]);
if ((err = rsa_encrypt_key(buf[0], 32, buf[1], &z, "testprog", 8, &prng,
find_prng("yarrow"), find_hash("sha1"),
&key)) != CRYPT_OK) {
fprintf(stderr, "\n\nrsa_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
}
t2 >>= 4;
printf("RSA-%lu encrypt_key took %15llu cycles\n", x, t2);
t2 = 0;
for (y = 0; y < 16; y++) {
t_start();
t1 = t_read();
zzz = sizeof(buf[0]);
if ((err = rsa_decrypt_key(buf[1], z, buf[0], &zzz, "testprog", 8, &prng,
find_prng("yarrow"), find_hash("sha1"),
&zz, &key)) != CRYPT_OK) {
fprintf(stderr, "\n\nrsa_decrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
}
t2 >>= 4;
printf("RSA-%lu decrypt_key took %15llu cycles\n", x, t2);
rsa_free(&key);
}
}
/* time various ECC operations */
void time_ecc(void)
{
ecc_key key;
ulong64 t1, t2;
unsigned char buf[2][4096];
unsigned long i, x, y, z;
int err;
static unsigned long sizes[] = {160/8, 256/8, 521/8, 100000};
for (x = sizes[i=0]; x < 100000; x = sizes[++i]) {
t2 = 0;
for (y = 0; y < 16; y++) {
t_start();
t1 = t_read();
if ((err = ecc_make_key(&prng, find_prng("yarrow"), x, &key)) != CRYPT_OK) {
fprintf(stderr, "\n\necc_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
if (y < 15) {
ecc_free(&key);
}
}
t2 >>= 4;
printf("ECC-%lu make_key took %15llu cycles\n", x*8, t2);
t2 = 0;
for (y = 0; y < 16; y++) {
t_start();
t1 = t_read();
z = sizeof(buf[1]);
if ((err = ecc_encrypt_key(buf[0], 20, buf[1], &z, &prng, find_prng("yarrow"), find_hash("sha1"),
&key)) != CRYPT_OK) {
fprintf(stderr, "\n\necc_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
}
t2 >>= 4;
printf("ECC-%lu encrypt_key took %15llu cycles\n", x*8, t2);
ecc_free(&key);
}
}
/* time various DH operations */
void time_dh(void)
{
dh_key key;
ulong64 t1, t2;
unsigned char buf[2][4096];
unsigned long i, x, y, z;
int err;
static unsigned long sizes[] = {768/8, 1024/8, 1536/8, 2048/8, 3072/8, 4096/8, 100000};
for (x = sizes[i=0]; x < 100000; x = sizes[++i]) {
t2 = 0;
for (y = 0; y < 16; y++) {
t_start();
t1 = t_read();
if ((err = dh_make_key(&prng, find_prng("yarrow"), x, &key)) != CRYPT_OK) {
fprintf(stderr, "\n\ndh_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
if (y < 15) {
dh_free(&key);
}
}
t2 >>= 4;
printf("DH-%4lu make_key took %15llu cycles\n", x*8, t2);
t2 = 0;
for (y = 0; y < 16; y++) {
t_start();
t1 = t_read();
z = sizeof(buf[1]);
if ((err = dh_encrypt_key(buf[0], 20, buf[1], &z, &prng, find_prng("yarrow"), find_hash("sha1"),
&key)) != CRYPT_OK) {
fprintf(stderr, "\n\ndh_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
}
t2 >>= 4;
printf("DH-%4lu encrypt_key took %15llu cycles\n", x*8, t2);
dh_free(&key);
}
}
#define MAC_SIZE 32
void time_macs(void)
{
unsigned char *buf, key[16], tag[16];
ulong64 t1, t2;
unsigned long x, z;
int err, cipher_idx, hash_idx;
printf("\nMAC Timings (cycles/byte on %dKB blocks):\n", MAC_SIZE);
buf = XMALLOC(MAC_SIZE*1024);
if (buf == NULL) {
fprintf(stderr, "\n\nout of heap yo\n\n");
exit(EXIT_FAILURE);
}
cipher_idx = find_cipher("aes");
hash_idx = find_hash("md5");
yarrow_read(buf, MAC_SIZE*1024, &prng);
yarrow_read(key, 16, &prng);
t2 = -1;
for (x = 0; x < 10000; x++) {
t_start();
t1 = t_read();
z = 16;
if ((err = omac_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
fprintf(stderr, "\n\nomac error... %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
if (t1 < t2) t2 = t1;
}
printf("OMAC-AES\t\t%9llu\n", t2/(MAC_SIZE*1024));
t2 = -1;
for (x = 0; x < 10000; x++) {
t_start();
t1 = t_read();
z = 16;
if ((err = pmac_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
fprintf(stderr, "\n\npmac error... %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
if (t1 < t2) t2 = t1;
}
printf("PMAC-AES\t\t%9llu\n", t2/(MAC_SIZE*1024));
t2 = -1;
for (x = 0; x < 10000; x++) {
t_start();
t1 = t_read();
z = 16;
if ((err = hmac_memory(hash_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
fprintf(stderr, "\n\nhmac error... %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
if (t1 < t2) t2 = t1;
}
printf("HMAC-MD5\t\t%9llu\n", t2/(MAC_SIZE*1024));
XFREE(buf);
}
int main(void)
{
reg_algs();
printf("Timings for ciphers and hashes. Times are listed as cycles per byte processed.\n\n");
// init_timer();
time_mult();
time_sqr();
time_rsa();
time_dh();
time_ecc();
time_prng();
time_cipher();
time_keysched();
time_hash();
time_macs();
return EXIT_SUCCESS;
}