blob: 4269df300932815064030b5889191df5b0bd3e2f [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <assert.h>
#include <endian.h>
#include <stdint.h>
#include <stdio.h>
#include "base/algorithm.h"
#include "base/coreboot/sysinfo.h"
#include "base/memory.h"
#include "base/ranges.h"
#include "base/xalloc.h"
#include "boot/fit.h"
static ListNode image_nodes;
static ListNode config_nodes;
static const char *fit_kernel_compat = NULL;
void fit_set_compat(const char *compat)
{
fit_kernel_compat = compat;
}
static void fit_set_default_compat(void)
{
const char pattern[] = "google,%s-rev%u";
uint32_t rev = get_sysinfo()->board_id;
// Make sure board ID is not ~0 and will fit in two digits, so that
// it doesn't require more space than the '%u' in the pattern string.
assert(rev < 100);
char *compat = malloc(sizeof(pattern) + sizeof(CONFIG_BOARD));
sprintf(compat, pattern, CONFIG_BOARD, get_sysinfo()->board_id);
char *c;
for (c = compat; *c != '\0'; c++)
if (*c == '_')
*c = '-';
fit_set_compat(compat);
}
static void image_node(DeviceTreeNode *node)
{
FitImageNode *image = xzalloc(sizeof(*image));
image->compression = CompressionNone;
image->name = node->name;
DeviceTreeProperty *prop;
list_for_each(prop, node->properties, list_node) {
if (!strcmp("data", prop->prop.name)) {
image->data = prop->prop.data;
image->size = prop->prop.size;
} else if (!strcmp("compression", prop->prop.name)) {
if (!strcmp("none", prop->prop.data))
image->compression = CompressionNone;
else if (!strcmp("lzma", prop->prop.data))
image->compression = CompressionLzma;
else if (!strcmp("lz4", prop->prop.data))
image->compression = CompressionLz4;
else
image->compression = CompressionInvalid;
}
}
list_insert_after(&image->list_node, &image_nodes);
}
static void config_node(DeviceTreeNode *node)
{
FitConfigNode *config = xzalloc(sizeof(*config));
config->name = node->name;
DeviceTreeProperty *prop;
list_for_each(prop, node->properties, list_node) {
if (!strcmp("kernel", prop->prop.name))
config->kernel = prop->prop.data;
else if (!strcmp("fdt", prop->prop.name))
config->fdt = prop->prop.data;
else if (!strcmp("ramdisk", prop->prop.name))
config->ramdisk = prop->prop.data;
}
list_insert_after(&config->list_node, &config_nodes);
}
static void fit_unpack(DeviceTree *tree, const char **default_config)
{
assert(tree && tree->root);
DeviceTreeNode *top;
list_for_each(top, tree->root->children, list_node) {
DeviceTreeNode *child;
if (!strcmp("images", top->name)) {
list_for_each(child, top->children, list_node)
image_node(child);
} else if (!strcmp("configurations", top->name)) {
DeviceTreeProperty *prop;
list_for_each(prop, top->properties, list_node) {
if (!strcmp("default", prop->prop.name) &&
default_config)
*default_config = prop->prop.data;
}
list_for_each(child, top->children, list_node)
config_node(child);
}
}
}
static FitImageNode *find_image(const char *name)
{
FitImageNode *image;
list_for_each(image, image_nodes, list_node) {
if (!strcmp(image->name, name))
return image;
}
return NULL;
}
static int fdt_find_compat(void *blob, uint32_t start_offset, FdtProperty *prop)
{
int offset = start_offset;
int size;
size = fdt_node_name(blob, offset, NULL);
if (!size)
return -1;
offset += size;
while ((size = fdt_next_property(blob, offset, prop))) {
if (!strcmp("compatible", prop->name))
return 0;
offset += size;
}
prop->name = NULL;
return -1;
}
static int fit_check_compat(FdtProperty *compat_prop, const char *compat_name)
{
int bytes = compat_prop->size;
const char *compat_str = compat_prop->data;
for (int pos = 0; bytes && compat_str[0]; pos++) {
if (!strncmp(compat_str, compat_name, bytes))
return pos;
int len = strlen(compat_str) + 1;
compat_str += len;
bytes -= len;
}
return -1;
}
static void update_chosen(DeviceTree *tree, char *cmd_line)
{
const char *path[] = { "chosen", NULL };
DeviceTreeNode *node = dt_find_node(tree->root, path, NULL, NULL, 1);
dt_add_string_prop(node, "bootargs", cmd_line);
}
void fit_add_ramdisk(DeviceTree *tree, void *ramdisk_addr, size_t ramdisk_size)
{
const char *path[] = { "chosen", NULL };
DeviceTreeNode *node = dt_find_node(tree->root, path, NULL, NULL, 1);
/* Warning: this assumes the ramdisk is currently located below 4GiB. */
uint32_t start = (uintptr_t)ramdisk_addr;
uint32_t end = start + ramdisk_size;
dt_add_u32_prop(node, "linux,initrd-start", start);
dt_add_u32_prop(node, "linux,initrd-end", end);
}
static void update_reserve_map(uint64_t start, uint64_t end, void *data)
{
DeviceTree *tree = (DeviceTree *)data;
DeviceTreeReserveMapEntry *entry = xzalloc(sizeof(*entry));
entry->start = start;
entry->size = end - start;
list_insert_after(&entry->list_node, &tree->reserve_map);
}
typedef struct EntryParams
{
unsigned addr_cells;
unsigned size_cells;
void *data;
} EntryParams;
static uint64_t max_range(unsigned size_cells)
{
// Split up ranges who's sizes are too large to fit in #size-cells.
// The largest value we can store isn't a power of two, so we'll round
// down to make the math easier.
return 0x1ULL << (size_cells * 32 - 1);
}
static void count_entries(uint64_t start, uint64_t end, void *pdata)
{
EntryParams *params = (EntryParams *)pdata;
unsigned *count = (unsigned *)params->data;
uint64_t size = end - start;
uint64_t max_size = max_range(params->size_cells);
*count += ALIGN_UP(size, max_size) / max_size;
}
static void update_mem_property(uint64_t start, uint64_t end, void *pdata)
{
EntryParams *params = (EntryParams *)pdata;
uint8_t *data = (uint8_t *)params->data;
uint64_t full_size = end - start;
while (full_size) {
const uint64_t max_size = max_range(params->size_cells);
const uint32_t size = MIN(max_size, full_size);
dt_write_int(data, start,
params->addr_cells * sizeof(uint32_t));
data += params->addr_cells * sizeof(uint32_t);
start += size;
dt_write_int(data, size, params->size_cells * sizeof(uint32_t));
data += params->size_cells * sizeof(uint32_t);
full_size -= size;
}
params->data = data;
}
static int update_memory(DeviceTree *tree)
{
Ranges mem;
Ranges reserved;
DeviceTreeNode *node;
uint32_t addr_cells = 1, size_cells = 1;
dt_read_cell_props(tree->root, &addr_cells, &size_cells);
E820MemRanges *e820 = get_e820_mem_ranges();
if (!e820)
return 1;
// First remove all existing device_type="memory" nodes, then add ours.
list_for_each(node, tree->root->children, list_node) {
const char *devtype = dt_find_string_prop(node, "device_type");
if (devtype && !strcmp(devtype, "memory"))
list_remove(&node->list_node);
}
node = xzalloc(sizeof(*node));
node->name = "memory";
list_insert_after(&node->list_node, &tree->root->children);
dt_add_string_prop(node, "device_type", "memory");
// Read memory info from coreboot (ranges are merged automatically).
ranges_init(&mem);
ranges_init(&reserved);
for (int i = 0; i < e820->num_ranges; i++) {
E820MemRange *range = &e820->ranges[i];
uint64_t start = range->base;
uint64_t end = range->base + range->size;
/*
* Kernel likes its availabe memory areas at least 1MB
* aligned, let's trim the regions such that unaligned padding
* is added to reserved memory.
*/
if (range->type == E820MemRange_Ram) {
uint64_t new_start = ALIGN_UP(start, 1 * MiB);
uint64_t new_end = ALIGN_DOWN(end, 1 * MiB);
if (new_start != start)
ranges_add(&reserved, start, new_start);
if (new_start != new_end)
ranges_add(&mem, new_start, new_end);
if (new_end != end)
ranges_add(&reserved, new_end, end);
} else {
ranges_add(&reserved, start, end);
}
}
// CBMEM regions are both carved out and explicitly reserved.
ranges_for_each(&reserved, &update_reserve_map, tree);
// Count the amount of 'reg' entries we need (account for size limits).
unsigned count = 0;
EntryParams count_params = { addr_cells, size_cells, &count };
ranges_for_each(&mem, &count_entries, &count_params);
// Allocate the right amount of space and fill up the entries.
size_t length = count * (addr_cells + size_cells) * sizeof(uint32_t);
void *data = xmalloc(length);
EntryParams add_params = { addr_cells, size_cells, data };
ranges_for_each(&mem, &update_mem_property, &add_params);
assert(add_params.data - data == length);
// Assemble the final property and add it to the device tree.
dt_add_bin_prop(node, "reg", data, length);
return 0;
}
FitImageNode *fit_load(void *fit, char *cmd_line, DeviceTree **dt)
{
FdtHeader *header = (FdtHeader *)fit;
FitImageNode *image;
FitConfigNode *config;
printf("Loading FIT.\n");
if (be32toh(header->magic) != FdtMagic) {
printf("Bad FIT header magic value 0x%08x.\n",
be32toh(header->magic));
return NULL;
}
DeviceTree *tree = fdt_unflatten(fit);
const char *default_config_name = NULL;
FitConfigNode *default_config = NULL;
FitConfigNode *compat_config = NULL;
fit_unpack(tree, &default_config_name);
// List the images we found.
list_for_each(image, image_nodes, list_node)
printf("Image %s has %d bytes.\n", image->name, image->size);
if (!fit_kernel_compat)
fit_set_default_compat();
printf("Compat preference: %s\n", fit_kernel_compat);
// Process and list the configs.
list_for_each(config, config_nodes, list_node) {
if (config->kernel)
config->kernel_node = find_image(config->kernel);
if (config->fdt)
config->fdt_node = find_image(config->fdt);
if (config->ramdisk)
config->ramdisk_node = find_image(config->ramdisk);
if (!config->kernel_node ||
(config->fdt && !config->fdt_node)) {
printf("Missing image, discarding config %s.\n",
config->name);
list_remove(&config->list_node);
continue;
}
if (config->fdt_node) {
if (config->fdt_node->compression != CompressionNone) {
printf("FDT compression not yet supported, "
"skipping config %s.\n", config->name);
list_remove(&config->list_node);
continue;
}
void *fdt_blob = config->fdt_node->data;
FdtHeader *fdt_header = (FdtHeader *)fdt_blob;
uint32_t fdt_offset =
be32toh(fdt_header->structure_offset);
if (fdt_find_compat(fdt_blob, fdt_offset,
&config->compat)) {
config->compat_rank = -1;
config->compat.name = NULL;
} else {
config->compat_rank =
fit_check_compat(&config->compat,
fit_kernel_compat);
}
}
printf("Config %s", config->name);
if (default_config_name &&
!strcmp(config->name, default_config_name)) {
printf(" (default)");
default_config = config;
}
printf(", kernel %s", config->kernel);
if (config->fdt)
printf(", fdt %s", config->fdt);
if (config->ramdisk)
printf(", ramdisk %s", config->ramdisk);
if (config->compat.name) {
printf(", compat");
int bytes = config->compat.size;
const char *compat_str = config->compat.data;
for (int pos = 0; bytes && compat_str[0]; pos++) {
printf(" %s", compat_str);
if (pos == config->compat_rank)
printf(" (match)");
int len = strlen(compat_str) + 1;
compat_str += len;
bytes -= len;
}
if ((compat_config && (config->compat_rank >
compat_config->compat_rank)) ||
(!compat_config && (config->compat_rank != -1)))
compat_config = config;
}
printf("\n");
}
FitConfigNode *to_boot = NULL;
if (compat_config) {
to_boot = compat_config;
printf("Choosing best match %s.\n", to_boot->name);
} else if (default_config) {
to_boot = default_config;
printf("No match, choosing default %s.\n", to_boot->name);
} else {
printf("No compatible or default configs. Giving up.\n");
// We're leaking memory here, but at this point we're beyond
// saving anyway.
return NULL;
}
if (to_boot->fdt_node) {
*dt = fdt_unflatten(to_boot->fdt_node->data);
if (!*dt) {
printf("Failed to unflatten the kernel's fdt.\n");
return NULL;
}
/* Update only if non-NULL cmd line */
if (cmd_line)
update_chosen(*dt, cmd_line);
if (update_memory(*dt))
return NULL;
if (to_boot->ramdisk_node) {
if (to_boot->ramdisk_node->compression
!= CompressionNone) {
printf("Ramdisk compression not supported.\n");
return NULL;
}
fit_add_ramdisk(*dt, to_boot->ramdisk_node->data,
to_boot->ramdisk_node->size);
}
}
return to_boot->kernel_node;
}