blob: 0981c66ff15e48ae27425455ef28abedf2b2874b [file] [log] [blame]
/* Distributed under the OSI-approved BSD 3-Clause License. See accompanying
file Copyright.txt or https://cmake.org/licensing#kwsys for details. */
/*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
#ifdef __BORLANDC__
# pragma warn - 8027 /* 'for' not inlined. */
# pragma warn - 8026 /* 'exception' not inlined. */
#endif
#ifndef @KWSYS_NAMESPACE@_hashtable_hxx
# define @KWSYS_NAMESPACE@_hashtable_hxx
# include <@KWSYS_NAMESPACE@/Configure.hxx>
# include <algorithm> // lower_bound
# include <iterator> // iterator_traits
# include <memory> // allocator
# include <stddef.h> // size_t
# include <utility> // pair
# include <vector> // vector
# if defined(_MSC_VER)
# pragma warning(push)
# pragma warning(disable : 4284)
# pragma warning(disable : 4786)
# pragma warning(disable : 4512) /* no assignment operator for class */
# endif
# if defined(__sgi) && !defined(__GNUC__)
# pragma set woff 3970 /* pointer to int conversion */ 3321 3968
# endif
// In C++11, clang will warn about using dynamic exception specifications
// as they are deprecated. But as this class is trying to faithfully
// mimic unordered_set and unordered_map, we want to keep the 'throw()'
// decorations below. So we suppress the warning.
# if defined(__clang__) && defined(__has_warning)
# if __has_warning("-Wdeprecated")
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated"
# endif
# endif
namespace @KWSYS_NAMESPACE@ {
template <class _Val>
struct _Hashtable_node
{
_Hashtable_node* _M_next;
_Val _M_val;
void public_method_to_quiet_warning_about_all_methods_private();
private:
void operator=(_Hashtable_node<_Val> const&) = delete;
};
template <class _Val, class _Key, class _HashFcn, class _ExtractKey,
class _EqualKey, class _Alloc = std::allocator<char> >
class hashtable;
template <class _Val, class _Key, class _HashFcn, class _ExtractKey,
class _EqualKey, class _Alloc>
struct _Hashtable_iterator;
template <class _Val, class _Key, class _HashFcn, class _ExtractKey,
class _EqualKey, class _Alloc>
struct _Hashtable_const_iterator;
template <class _Val, class _Key, class _HashFcn, class _ExtractKey,
class _EqualKey, class _Alloc>
struct _Hashtable_iterator
{
typedef hashtable<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc>
_Hashtable;
typedef _Hashtable_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey,
_Alloc>
iterator;
typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey,
_EqualKey, _Alloc>
const_iterator;
typedef _Hashtable_node<_Val> _Node;
typedef std::forward_iterator_tag iterator_category;
typedef _Val value_type;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef _Val& reference;
typedef _Val* pointer;
_Node* _M_cur;
_Hashtable* _M_ht;
_Hashtable_iterator(_Node* __n, _Hashtable* __tab)
: _M_cur(__n)
, _M_ht(__tab)
{
}
_Hashtable_iterator() {}
reference operator*() const { return _M_cur->_M_val; }
pointer operator->() const { return &(operator*()); }
iterator& operator++();
iterator operator++(int);
bool operator==(const iterator& __it) const { return _M_cur == __it._M_cur; }
bool operator!=(const iterator& __it) const { return _M_cur != __it._M_cur; }
};
template <class _Val, class _Key, class _HashFcn, class _ExtractKey,
class _EqualKey, class _Alloc>
struct _Hashtable_const_iterator
{
typedef hashtable<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc>
_Hashtable;
typedef _Hashtable_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey,
_Alloc>
iterator;
typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey,
_EqualKey, _Alloc>
const_iterator;
typedef _Hashtable_node<_Val> _Node;
typedef std::forward_iterator_tag iterator_category;
typedef _Val value_type;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef const _Val& reference;
typedef const _Val* pointer;
const _Node* _M_cur;
const _Hashtable* _M_ht;
_Hashtable_const_iterator(const _Node* __n, const _Hashtable* __tab)
: _M_cur(__n)
, _M_ht(__tab)
{
}
_Hashtable_const_iterator() {}
_Hashtable_const_iterator(const iterator& __it)
: _M_cur(__it._M_cur)
, _M_ht(__it._M_ht)
{
}
reference operator*() const { return _M_cur->_M_val; }
pointer operator->() const { return &(operator*()); }
const_iterator& operator++();
const_iterator operator++(int);
bool operator==(const const_iterator& __it) const
{
return _M_cur == __it._M_cur;
}
bool operator!=(const const_iterator& __it) const
{
return _M_cur != __it._M_cur;
}
};
// Note: assumes long is at least 32 bits.
enum
{
_stl_num_primes = 31
};
// create a function with a static local to that function that returns
// the static
static inline const unsigned long* get_stl_prime_list()
{
static const unsigned long _stl_prime_list[_stl_num_primes] = {
5ul, 11ul, 23ul, 53ul, 97ul,
193ul, 389ul, 769ul, 1543ul, 3079ul,
6151ul, 12289ul, 24593ul, 49157ul, 98317ul,
196613ul, 393241ul, 786433ul, 1572869ul, 3145739ul,
6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul,
201326611ul, 402653189ul, 805306457ul, 1610612741ul, 3221225473ul,
4294967291ul
};
return &_stl_prime_list[0];
}
static inline size_t _stl_next_prime(size_t __n)
{
const unsigned long* __first = get_stl_prime_list();
const unsigned long* __last = get_stl_prime_list() + (int)_stl_num_primes;
const unsigned long* pos = std::lower_bound(__first, __last, __n);
return pos == __last ? *(__last - 1) : *pos;
}
// Forward declaration of operator==.
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
class hashtable;
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
bool operator==(const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht1,
const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht2);
// Hashtables handle allocators a bit differently than other containers
// do. If we're using standard-conforming allocators, then a hashtable
// unconditionally has a member variable to hold its allocator, even if
// it so happens that all instances of the allocator type are identical.
// This is because, for hashtables, this extra storage is negligible.
// Additionally, a base class wouldn't serve any other purposes; it
// wouldn't, for example, simplify the exception-handling code.
template <class _Val, class _Key, class _HashFcn, class _ExtractKey,
class _EqualKey, class _Alloc>
class hashtable
{
public:
typedef _Key key_type;
typedef _Val value_type;
typedef _HashFcn hasher;
typedef _EqualKey key_equal;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
hasher hash_funct() const { return _M_hash; }
key_equal key_eq() const { return _M_equals; }
private:
typedef _Hashtable_node<_Val> _Node;
public:
typedef typename _Alloc::template rebind<_Val>::other allocator_type;
allocator_type get_allocator() const { return _M_node_allocator; }
private:
typedef
typename _Alloc::template rebind<_Node>::other _M_node_allocator_type;
typedef
typename _Alloc::template rebind<_Node*>::other _M_node_ptr_allocator_type;
typedef std::vector<_Node*, _M_node_ptr_allocator_type> _M_buckets_type;
private:
_M_node_allocator_type _M_node_allocator;
hasher _M_hash;
key_equal _M_equals;
_ExtractKey _M_get_key;
_M_buckets_type _M_buckets;
size_type _M_num_elements;
_Node* _M_get_node() { return _M_node_allocator.allocate(1); }
void _M_put_node(_Node* __p) { _M_node_allocator.deallocate(__p, 1); }
public:
typedef _Hashtable_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey,
_Alloc>
iterator;
typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey,
_EqualKey, _Alloc>
const_iterator;
friend struct _Hashtable_iterator<_Val, _Key, _HashFcn, _ExtractKey,
_EqualKey, _Alloc>;
friend struct _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey,
_EqualKey, _Alloc>;
public:
hashtable(size_type __n, const _HashFcn& __hf, const _EqualKey& __eql,
const _ExtractKey& __ext,
const allocator_type& __a = allocator_type())
: _M_node_allocator(__a)
, _M_hash(__hf)
, _M_equals(__eql)
, _M_get_key(__ext)
, _M_buckets(__a)
, _M_num_elements(0)
{
_M_initialize_buckets(__n);
}
hashtable(size_type __n, const _HashFcn& __hf, const _EqualKey& __eql,
const allocator_type& __a = allocator_type())
: _M_node_allocator(__a)
, _M_hash(__hf)
, _M_equals(__eql)
, _M_get_key(_ExtractKey())
, _M_buckets(__a)
, _M_num_elements(0)
{
_M_initialize_buckets(__n);
}
hashtable(const hashtable& __ht)
: _M_node_allocator(__ht.get_allocator())
, _M_hash(__ht._M_hash)
, _M_equals(__ht._M_equals)
, _M_get_key(__ht._M_get_key)
, _M_buckets(__ht.get_allocator())
, _M_num_elements(0)
{
_M_copy_from(__ht);
}
hashtable& operator=(const hashtable& __ht)
{
if (&__ht != this) {
clear();
_M_hash = __ht._M_hash;
_M_equals = __ht._M_equals;
_M_get_key = __ht._M_get_key;
_M_copy_from(__ht);
}
return *this;
}
~hashtable() { clear(); }
size_type size() const { return _M_num_elements; }
size_type max_size() const { return size_type(-1); }
bool empty() const { return size() == 0; }
void swap(hashtable& __ht)
{
std::swap(_M_hash, __ht._M_hash);
std::swap(_M_equals, __ht._M_equals);
std::swap(_M_get_key, __ht._M_get_key);
_M_buckets.swap(__ht._M_buckets);
std::swap(_M_num_elements, __ht._M_num_elements);
}
iterator begin()
{
for (size_type __n = 0; __n < _M_buckets.size(); ++__n)
if (_M_buckets[__n])
return iterator(_M_buckets[__n], this);
return end();
}
iterator end() { return iterator(0, this); }
const_iterator begin() const
{
for (size_type __n = 0; __n < _M_buckets.size(); ++__n)
if (_M_buckets[__n])
return const_iterator(_M_buckets[__n], this);
return end();
}
const_iterator end() const { return const_iterator(0, this); }
friend bool operator==<>(const hashtable&, const hashtable&);
public:
size_type bucket_count() const { return _M_buckets.size(); }
size_type max_bucket_count() const
{
return get_stl_prime_list()[(int)_stl_num_primes - 1];
}
size_type elems_in_bucket(size_type __bucket) const
{
size_type __result = 0;
for (_Node* __cur = _M_buckets[__bucket]; __cur; __cur = __cur->_M_next)
__result += 1;
return __result;
}
std::pair<iterator, bool> insert_unique(const value_type& __obj)
{
resize(_M_num_elements + 1);
return insert_unique_noresize(__obj);
}
iterator insert_equal(const value_type& __obj)
{
resize(_M_num_elements + 1);
return insert_equal_noresize(__obj);
}
std::pair<iterator, bool> insert_unique_noresize(const value_type& __obj);
iterator insert_equal_noresize(const value_type& __obj);
template <class _InputIterator>
void insert_unique(_InputIterator __f, _InputIterator __l)
{
insert_unique(
__f, __l,
typename std::iterator_traits<_InputIterator>::iterator_category());
}
template <class _InputIterator>
void insert_equal(_InputIterator __f, _InputIterator __l)
{
insert_equal(
__f, __l,
typename std::iterator_traits<_InputIterator>::iterator_category());
}
template <class _InputIterator>
void insert_unique(_InputIterator __f, _InputIterator __l,
std::input_iterator_tag)
{
for (; __f != __l; ++__f)
insert_unique(*__f);
}
template <class _InputIterator>
void insert_equal(_InputIterator __f, _InputIterator __l,
std::input_iterator_tag)
{
for (; __f != __l; ++__f)
insert_equal(*__f);
}
template <class _ForwardIterator>
void insert_unique(_ForwardIterator __f, _ForwardIterator __l,
std::forward_iterator_tag)
{
size_type __n = 0;
std::distance(__f, __l, __n);
resize(_M_num_elements + __n);
for (; __n > 0; --__n, ++__f)
insert_unique_noresize(*__f);
}
template <class _ForwardIterator>
void insert_equal(_ForwardIterator __f, _ForwardIterator __l,
std::forward_iterator_tag)
{
size_type __n = 0;
std::distance(__f, __l, __n);
resize(_M_num_elements + __n);
for (; __n > 0; --__n, ++__f)
insert_equal_noresize(*__f);
}
reference find_or_insert(const value_type& __obj);
iterator find(const key_type& __key)
{
size_type __n = _M_bkt_num_key(__key);
_Node* __first;
for (__first = _M_buckets[__n];
__first && !_M_equals(_M_get_key(__first->_M_val), __key);
__first = __first->_M_next) {
}
return iterator(__first, this);
}
const_iterator find(const key_type& __key) const
{
size_type __n = _M_bkt_num_key(__key);
const _Node* __first;
for (__first = _M_buckets[__n];
__first && !_M_equals(_M_get_key(__first->_M_val), __key);
__first = __first->_M_next) {
}
return const_iterator(__first, this);
}
size_type count(const key_type& __key) const
{
const size_type __n = _M_bkt_num_key(__key);
size_type __result = 0;
for (const _Node* __cur = _M_buckets[__n]; __cur; __cur = __cur->_M_next)
if (_M_equals(_M_get_key(__cur->_M_val), __key))
++__result;
return __result;
}
std::pair<iterator, iterator> equal_range(const key_type& __key);
std::pair<const_iterator, const_iterator> equal_range(
const key_type& __key) const;
size_type erase(const key_type& __key);
void erase(const iterator& __it);
void erase(iterator __first, iterator __last);
void erase(const const_iterator& __it);
void erase(const_iterator __first, const_iterator __last);
void resize(size_type __num_elements_hint);
void clear();
private:
size_type _M_next_size(size_type __n) const { return _stl_next_prime(__n); }
void _M_initialize_buckets(size_type __n)
{
const size_type __n_buckets = _M_next_size(__n);
_M_buckets.reserve(__n_buckets);
_M_buckets.insert(_M_buckets.end(), __n_buckets, (_Node*)0);
_M_num_elements = 0;
}
size_type _M_bkt_num_key(const key_type& __key) const
{
return _M_bkt_num_key(__key, _M_buckets.size());
}
size_type _M_bkt_num(const value_type& __obj) const
{
return _M_bkt_num_key(_M_get_key(__obj));
}
size_type _M_bkt_num_key(const key_type& __key, size_t __n) const
{
return _M_hash(__key) % __n;
}
size_type _M_bkt_num(const value_type& __obj, size_t __n) const
{
return _M_bkt_num_key(_M_get_key(__obj), __n);
}
void construct(_Val* p, const _Val& v) { new (p) _Val(v); }
void destroy(_Val* p)
{
(void)p;
p->~_Val();
}
_Node* _M_new_node(const value_type& __obj)
{
_Node* __n = _M_get_node();
__n->_M_next = 0;
try {
construct(&__n->_M_val, __obj);
return __n;
} catch (...) {
_M_put_node(__n);
throw;
}
}
void _M_delete_node(_Node* __n)
{
destroy(&__n->_M_val);
_M_put_node(__n);
}
void _M_erase_bucket(const size_type __n, _Node* __first, _Node* __last);
void _M_erase_bucket(const size_type __n, _Node* __last);
void _M_copy_from(const hashtable& __ht);
};
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
_Hashtable_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>&
_Hashtable_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>::operator++()
{
const _Node* __old = _M_cur;
_M_cur = _M_cur->_M_next;
if (!_M_cur) {
size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val);
while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size())
_M_cur = _M_ht->_M_buckets[__bucket];
}
return *this;
}
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
inline _Hashtable_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>
_Hashtable_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>::operator++(int)
{
iterator __tmp = *this;
++*this;
return __tmp;
}
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
_Hashtable_const_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>&
_Hashtable_const_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>::operator++()
{
const _Node* __old = _M_cur;
_M_cur = _M_cur->_M_next;
if (!_M_cur) {
size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val);
while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size())
_M_cur = _M_ht->_M_buckets[__bucket];
}
return *this;
}
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
inline _Hashtable_const_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>
_Hashtable_const_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>::operator++(int)
{
const_iterator __tmp = *this;
++*this;
return __tmp;
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
bool operator==(const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht1,
const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht2)
{
typedef typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::_Node _Node;
if (__ht1._M_buckets.size() != __ht2._M_buckets.size())
return false;
for (int __n = 0; __n < __ht1._M_buckets.size(); ++__n) {
_Node* __cur1 = __ht1._M_buckets[__n];
_Node* __cur2 = __ht2._M_buckets[__n];
for (; __cur1 && __cur2 && __cur1->_M_val == __cur2->_M_val;
__cur1 = __cur1->_M_next, __cur2 = __cur2->_M_next) {
}
if (__cur1 || __cur2)
return false;
}
return true;
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
inline bool operator!=(const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht1,
const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht2)
{
return !(__ht1 == __ht2);
}
template <class _Val, class _Key, class _HF, class _Extract, class _EqKey,
class _All>
inline void swap(hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht1,
hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht2)
{
__ht1.swap(__ht2);
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
std::pair<typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::iterator, bool>
hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::insert_unique_noresize(
const value_type& __obj)
{
const size_type __n = _M_bkt_num(__obj);
_Node* __first = _M_buckets[__n];
for (_Node* __cur = __first; __cur; __cur = __cur->_M_next)
if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj)))
return std::pair<iterator, bool>(iterator(__cur, this), false);
_Node* __tmp = _M_new_node(__obj);
__tmp->_M_next = __first;
_M_buckets[__n] = __tmp;
++_M_num_elements;
return std::pair<iterator, bool>(iterator(__tmp, this), true);
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::iterator
hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::insert_equal_noresize(
const value_type& __obj)
{
const size_type __n = _M_bkt_num(__obj);
_Node* __first = _M_buckets[__n];
for (_Node* __cur = __first; __cur; __cur = __cur->_M_next)
if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) {
_Node* __tmp = _M_new_node(__obj);
__tmp->_M_next = __cur->_M_next;
__cur->_M_next = __tmp;
++_M_num_elements;
return iterator(__tmp, this);
}
_Node* __tmp = _M_new_node(__obj);
__tmp->_M_next = __first;
_M_buckets[__n] = __tmp;
++_M_num_elements;
return iterator(__tmp, this);
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::reference
hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::find_or_insert(
const value_type& __obj)
{
resize(_M_num_elements + 1);
size_type __n = _M_bkt_num(__obj);
_Node* __first = _M_buckets[__n];
for (_Node* __cur = __first; __cur; __cur = __cur->_M_next)
if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj)))
return __cur->_M_val;
_Node* __tmp = _M_new_node(__obj);
__tmp->_M_next = __first;
_M_buckets[__n] = __tmp;
++_M_num_elements;
return __tmp->_M_val;
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
std::pair<typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::iterator,
typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::iterator>
hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::equal_range(const key_type& __key)
{
typedef std::pair<iterator, iterator> _Pii;
const size_type __n = _M_bkt_num_key(__key);
for (_Node* __first = _M_buckets[__n]; __first; __first = __first->_M_next)
if (_M_equals(_M_get_key(__first->_M_val), __key)) {
for (_Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next)
if (!_M_equals(_M_get_key(__cur->_M_val), __key))
return _Pii(iterator(__first, this), iterator(__cur, this));
for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m)
if (_M_buckets[__m])
return _Pii(iterator(__first, this),
iterator(_M_buckets[__m], this));
return _Pii(iterator(__first, this), end());
}
return _Pii(end(), end());
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
std::pair<typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::const_iterator,
typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::const_iterator>
hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::equal_range(
const key_type& __key) const
{
typedef std::pair<const_iterator, const_iterator> _Pii;
const size_type __n = _M_bkt_num_key(__key);
for (const _Node* __first = _M_buckets[__n]; __first;
__first = __first->_M_next) {
if (_M_equals(_M_get_key(__first->_M_val), __key)) {
for (const _Node* __cur = __first->_M_next; __cur;
__cur = __cur->_M_next)
if (!_M_equals(_M_get_key(__cur->_M_val), __key))
return _Pii(const_iterator(__first, this),
const_iterator(__cur, this));
for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m)
if (_M_buckets[__m])
return _Pii(const_iterator(__first, this),
const_iterator(_M_buckets[__m], this));
return _Pii(const_iterator(__first, this), end());
}
}
return _Pii(end(), end());
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::size_type
hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::erase(const key_type& __key)
{
const size_type __n = _M_bkt_num_key(__key);
_Node* __first = _M_buckets[__n];
size_type __erased = 0;
if (__first) {
_Node* __cur = __first;
_Node* __next = __cur->_M_next;
while (__next) {
if (_M_equals(_M_get_key(__next->_M_val), __key)) {
__cur->_M_next = __next->_M_next;
_M_delete_node(__next);
__next = __cur->_M_next;
++__erased;
--_M_num_elements;
} else {
__cur = __next;
__next = __cur->_M_next;
}
}
if (_M_equals(_M_get_key(__first->_M_val), __key)) {
_M_buckets[__n] = __first->_M_next;
_M_delete_node(__first);
++__erased;
--_M_num_elements;
}
}
return __erased;
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::erase(const iterator& __it)
{
_Node* __p = __it._M_cur;
if (__p) {
const size_type __n = _M_bkt_num(__p->_M_val);
_Node* __cur = _M_buckets[__n];
if (__cur == __p) {
_M_buckets[__n] = __cur->_M_next;
_M_delete_node(__cur);
--_M_num_elements;
} else {
_Node* __next = __cur->_M_next;
while (__next) {
if (__next == __p) {
__cur->_M_next = __next->_M_next;
_M_delete_node(__next);
--_M_num_elements;
break;
} else {
__cur = __next;
__next = __cur->_M_next;
}
}
}
}
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::erase(iterator __first,
iterator __last)
{
size_type __f_bucket =
__first._M_cur ? _M_bkt_num(__first._M_cur->_M_val) : _M_buckets.size();
size_type __l_bucket =
__last._M_cur ? _M_bkt_num(__last._M_cur->_M_val) : _M_buckets.size();
if (__first._M_cur == __last._M_cur)
return;
else if (__f_bucket == __l_bucket)
_M_erase_bucket(__f_bucket, __first._M_cur, __last._M_cur);
else {
_M_erase_bucket(__f_bucket, __first._M_cur, 0);
for (size_type __n = __f_bucket + 1; __n < __l_bucket; ++__n)
_M_erase_bucket(__n, 0);
if (__l_bucket != _M_buckets.size())
_M_erase_bucket(__l_bucket, __last._M_cur);
}
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
inline void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::erase(
const_iterator __first, const_iterator __last)
{
erase(iterator(const_cast<_Node*>(__first._M_cur),
const_cast<hashtable*>(__first._M_ht)),
iterator(const_cast<_Node*>(__last._M_cur),
const_cast<hashtable*>(__last._M_ht)));
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
inline void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::erase(
const const_iterator& __it)
{
erase(iterator(const_cast<_Node*>(__it._M_cur),
const_cast<hashtable*>(__it._M_ht)));
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::resize(
size_type __num_elements_hint)
{
const size_type __old_n = _M_buckets.size();
if (__num_elements_hint > __old_n) {
const size_type __n = _M_next_size(__num_elements_hint);
if (__n > __old_n) {
_M_buckets_type __tmp(__n, (_Node*)(0), _M_buckets.get_allocator());
try {
for (size_type __bucket = 0; __bucket < __old_n; ++__bucket) {
_Node* __first = _M_buckets[__bucket];
while (__first) {
size_type __new_bucket = _M_bkt_num(__first->_M_val, __n);
_M_buckets[__bucket] = __first->_M_next;
__first->_M_next = __tmp[__new_bucket];
__tmp[__new_bucket] = __first;
__first = _M_buckets[__bucket];
}
}
_M_buckets.swap(__tmp);
} catch (...) {
for (size_type __bucket = 0; __bucket < __tmp.size(); ++__bucket) {
while (__tmp[__bucket]) {
_Node* __next = __tmp[__bucket]->_M_next;
_M_delete_node(__tmp[__bucket]);
__tmp[__bucket] = __next;
}
}
throw;
}
}
}
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::_M_erase_bucket(
const size_type __n, _Node* __first, _Node* __last)
{
_Node* __cur = _M_buckets[__n];
if (__cur == __first)
_M_erase_bucket(__n, __last);
else {
_Node* __next;
for (__next = __cur->_M_next; __next != __first;
__cur = __next, __next = __cur->_M_next)
;
while (__next != __last) {
__cur->_M_next = __next->_M_next;
_M_delete_node(__next);
__next = __cur->_M_next;
--_M_num_elements;
}
}
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::_M_erase_bucket(
const size_type __n, _Node* __last)
{
_Node* __cur = _M_buckets[__n];
while (__cur != __last) {
_Node* __next = __cur->_M_next;
_M_delete_node(__cur);
__cur = __next;
_M_buckets[__n] = __cur;
--_M_num_elements;
}
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::clear()
{
for (size_type __i = 0; __i < _M_buckets.size(); ++__i) {
_Node* __cur = _M_buckets[__i];
while (__cur != 0) {
_Node* __next = __cur->_M_next;
_M_delete_node(__cur);
__cur = __next;
}
_M_buckets[__i] = 0;
}
_M_num_elements = 0;
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::_M_copy_from(
const hashtable& __ht)
{
_M_buckets.clear();
_M_buckets.reserve(__ht._M_buckets.size());
_M_buckets.insert(_M_buckets.end(), __ht._M_buckets.size(), (_Node*)0);
try {
for (size_type __i = 0; __i < __ht._M_buckets.size(); ++__i) {
const _Node* __cur = __ht._M_buckets[__i];
if (__cur) {
_Node* __copy = _M_new_node(__cur->_M_val);
_M_buckets[__i] = __copy;
for (_Node* __next = __cur->_M_next; __next;
__cur = __next, __next = __cur->_M_next) {
__copy->_M_next = _M_new_node(__next->_M_val);
__copy = __copy->_M_next;
}
}
}
_M_num_elements = __ht._M_num_elements;
} catch (...) {
clear();
throw;
}
}
} // namespace @KWSYS_NAMESPACE@
// Undo warning suppression.
# if defined(__clang__) && defined(__has_warning)
# if __has_warning("-Wdeprecated")
# pragma clang diagnostic pop
# endif
# endif
# if defined(_MSC_VER)
# pragma warning(pop)
# endif
#endif