blob: 9ec6f7d9a95025e0d8eb6027eeed63a3362c00f1 [file] [log] [blame]
//===-- Clang.cpp - Clang+LLVM ToolChain Implementations --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Clang.h"
#include "Arch/AArch64.h"
#include "Arch/ARM.h"
#include "Arch/Mips.h"
#include "Arch/PPC.h"
#include "Arch/RISCV.h"
#include "Arch/Sparc.h"
#include "Arch/SystemZ.h"
#include "Arch/X86.h"
#include "AMDGPU.h"
#include "CommonArgs.h"
#include "Hexagon.h"
#include "MSP430.h"
#include "InputInfo.h"
#include "PS4CPU.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/ObjCRuntime.h"
#include "clang/Basic/Version.h"
#include "clang/Driver/Distro.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/SanitizerArgs.h"
#include "clang/Driver/XRayArgs.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/YAMLParser.h"
#ifdef LLVM_ON_UNIX
#include <unistd.h> // For getuid().
#endif
using namespace clang::driver;
using namespace clang::driver::tools;
using namespace clang;
using namespace llvm::opt;
static void CheckPreprocessingOptions(const Driver &D, const ArgList &Args) {
if (Arg *A =
Args.getLastArg(clang::driver::options::OPT_C, options::OPT_CC)) {
if (!Args.hasArg(options::OPT_E) && !Args.hasArg(options::OPT__SLASH_P) &&
!Args.hasArg(options::OPT__SLASH_EP) && !D.CCCIsCPP()) {
D.Diag(clang::diag::err_drv_argument_only_allowed_with)
<< A->getBaseArg().getAsString(Args)
<< (D.IsCLMode() ? "/E, /P or /EP" : "-E");
}
}
}
static void CheckCodeGenerationOptions(const Driver &D, const ArgList &Args) {
// In gcc, only ARM checks this, but it seems reasonable to check universally.
if (Args.hasArg(options::OPT_static))
if (const Arg *A =
Args.getLastArg(options::OPT_dynamic, options::OPT_mdynamic_no_pic))
D.Diag(diag::err_drv_argument_not_allowed_with) << A->getAsString(Args)
<< "-static";
}
// Add backslashes to escape spaces and other backslashes.
// This is used for the space-separated argument list specified with
// the -dwarf-debug-flags option.
static void EscapeSpacesAndBackslashes(const char *Arg,
SmallVectorImpl<char> &Res) {
for (; *Arg; ++Arg) {
switch (*Arg) {
default:
break;
case ' ':
case '\\':
Res.push_back('\\');
break;
}
Res.push_back(*Arg);
}
}
// Quote target names for inclusion in GNU Make dependency files.
// Only the characters '$', '#', ' ', '\t' are quoted.
static void QuoteTarget(StringRef Target, SmallVectorImpl<char> &Res) {
for (unsigned i = 0, e = Target.size(); i != e; ++i) {
switch (Target[i]) {
case ' ':
case '\t':
// Escape the preceding backslashes
for (int j = i - 1; j >= 0 && Target[j] == '\\'; --j)
Res.push_back('\\');
// Escape the space/tab
Res.push_back('\\');
break;
case '$':
Res.push_back('$');
break;
case '#':
Res.push_back('\\');
break;
default:
break;
}
Res.push_back(Target[i]);
}
}
/// Apply \a Work on the current tool chain \a RegularToolChain and any other
/// offloading tool chain that is associated with the current action \a JA.
static void
forAllAssociatedToolChains(Compilation &C, const JobAction &JA,
const ToolChain &RegularToolChain,
llvm::function_ref<void(const ToolChain &)> Work) {
// Apply Work on the current/regular tool chain.
Work(RegularToolChain);
// Apply Work on all the offloading tool chains associated with the current
// action.
if (JA.isHostOffloading(Action::OFK_Cuda))
Work(*C.getSingleOffloadToolChain<Action::OFK_Cuda>());
else if (JA.isDeviceOffloading(Action::OFK_Cuda))
Work(*C.getSingleOffloadToolChain<Action::OFK_Host>());
else if (JA.isHostOffloading(Action::OFK_HIP))
Work(*C.getSingleOffloadToolChain<Action::OFK_HIP>());
else if (JA.isDeviceOffloading(Action::OFK_HIP))
Work(*C.getSingleOffloadToolChain<Action::OFK_Host>());
if (JA.isHostOffloading(Action::OFK_OpenMP)) {
auto TCs = C.getOffloadToolChains<Action::OFK_OpenMP>();
for (auto II = TCs.first, IE = TCs.second; II != IE; ++II)
Work(*II->second);
} else if (JA.isDeviceOffloading(Action::OFK_OpenMP))
Work(*C.getSingleOffloadToolChain<Action::OFK_Host>());
//
// TODO: Add support for other offloading programming models here.
//
}
/// This is a helper function for validating the optional refinement step
/// parameter in reciprocal argument strings. Return false if there is an error
/// parsing the refinement step. Otherwise, return true and set the Position
/// of the refinement step in the input string.
static bool getRefinementStep(StringRef In, const Driver &D,
const Arg &A, size_t &Position) {
const char RefinementStepToken = ':';
Position = In.find(RefinementStepToken);
if (Position != StringRef::npos) {
StringRef Option = A.getOption().getName();
StringRef RefStep = In.substr(Position + 1);
// Allow exactly one numeric character for the additional refinement
// step parameter. This is reasonable for all currently-supported
// operations and architectures because we would expect that a larger value
// of refinement steps would cause the estimate "optimization" to
// under-perform the native operation. Also, if the estimate does not
// converge quickly, it probably will not ever converge, so further
// refinement steps will not produce a better answer.
if (RefStep.size() != 1) {
D.Diag(diag::err_drv_invalid_value) << Option << RefStep;
return false;
}
char RefStepChar = RefStep[0];
if (RefStepChar < '0' || RefStepChar > '9') {
D.Diag(diag::err_drv_invalid_value) << Option << RefStep;
return false;
}
}
return true;
}
/// The -mrecip flag requires processing of many optional parameters.
static void ParseMRecip(const Driver &D, const ArgList &Args,
ArgStringList &OutStrings) {
StringRef DisabledPrefixIn = "!";
StringRef DisabledPrefixOut = "!";
StringRef EnabledPrefixOut = "";
StringRef Out = "-mrecip=";
Arg *A = Args.getLastArg(options::OPT_mrecip, options::OPT_mrecip_EQ);
if (!A)
return;
unsigned NumOptions = A->getNumValues();
if (NumOptions == 0) {
// No option is the same as "all".
OutStrings.push_back(Args.MakeArgString(Out + "all"));
return;
}
// Pass through "all", "none", or "default" with an optional refinement step.
if (NumOptions == 1) {
StringRef Val = A->getValue(0);
size_t RefStepLoc;
if (!getRefinementStep(Val, D, *A, RefStepLoc))
return;
StringRef ValBase = Val.slice(0, RefStepLoc);
if (ValBase == "all" || ValBase == "none" || ValBase == "default") {
OutStrings.push_back(Args.MakeArgString(Out + Val));
return;
}
}
// Each reciprocal type may be enabled or disabled individually.
// Check each input value for validity, concatenate them all back together,
// and pass through.
llvm::StringMap<bool> OptionStrings;
OptionStrings.insert(std::make_pair("divd", false));
OptionStrings.insert(std::make_pair("divf", false));
OptionStrings.insert(std::make_pair("vec-divd", false));
OptionStrings.insert(std::make_pair("vec-divf", false));
OptionStrings.insert(std::make_pair("sqrtd", false));
OptionStrings.insert(std::make_pair("sqrtf", false));
OptionStrings.insert(std::make_pair("vec-sqrtd", false));
OptionStrings.insert(std::make_pair("vec-sqrtf", false));
for (unsigned i = 0; i != NumOptions; ++i) {
StringRef Val = A->getValue(i);
bool IsDisabled = Val.startswith(DisabledPrefixIn);
// Ignore the disablement token for string matching.
if (IsDisabled)
Val = Val.substr(1);
size_t RefStep;
if (!getRefinementStep(Val, D, *A, RefStep))
return;
StringRef ValBase = Val.slice(0, RefStep);
llvm::StringMap<bool>::iterator OptionIter = OptionStrings.find(ValBase);
if (OptionIter == OptionStrings.end()) {
// Try again specifying float suffix.
OptionIter = OptionStrings.find(ValBase.str() + 'f');
if (OptionIter == OptionStrings.end()) {
// The input name did not match any known option string.
D.Diag(diag::err_drv_unknown_argument) << Val;
return;
}
// The option was specified without a float or double suffix.
// Make sure that the double entry was not already specified.
// The float entry will be checked below.
if (OptionStrings[ValBase.str() + 'd']) {
D.Diag(diag::err_drv_invalid_value) << A->getOption().getName() << Val;
return;
}
}
if (OptionIter->second == true) {
// Duplicate option specified.
D.Diag(diag::err_drv_invalid_value) << A->getOption().getName() << Val;
return;
}
// Mark the matched option as found. Do not allow duplicate specifiers.
OptionIter->second = true;
// If the precision was not specified, also mark the double entry as found.
if (ValBase.back() != 'f' && ValBase.back() != 'd')
OptionStrings[ValBase.str() + 'd'] = true;
// Build the output string.
StringRef Prefix = IsDisabled ? DisabledPrefixOut : EnabledPrefixOut;
Out = Args.MakeArgString(Out + Prefix + Val);
if (i != NumOptions - 1)
Out = Args.MakeArgString(Out + ",");
}
OutStrings.push_back(Args.MakeArgString(Out));
}
/// The -mprefer-vector-width option accepts either a positive integer
/// or the string "none".
static void ParseMPreferVectorWidth(const Driver &D, const ArgList &Args,
ArgStringList &CmdArgs) {
Arg *A = Args.getLastArg(options::OPT_mprefer_vector_width_EQ);
if (!A)
return;
StringRef Value = A->getValue();
if (Value == "none") {
CmdArgs.push_back("-mprefer-vector-width=none");
} else {
unsigned Width;
if (Value.getAsInteger(10, Width)) {
D.Diag(diag::err_drv_invalid_value) << A->getOption().getName() << Value;
return;
}
CmdArgs.push_back(Args.MakeArgString("-mprefer-vector-width=" + Value));
}
}
static void getWebAssemblyTargetFeatures(const ArgList &Args,
std::vector<StringRef> &Features) {
handleTargetFeaturesGroup(Args, Features, options::OPT_m_wasm_Features_Group);
}
static void getTargetFeatures(const ToolChain &TC, const llvm::Triple &Triple,
const ArgList &Args, ArgStringList &CmdArgs,
bool ForAS) {
const Driver &D = TC.getDriver();
std::vector<StringRef> Features;
switch (Triple.getArch()) {
default:
break;
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
mips::getMIPSTargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
arm::getARMTargetFeatures(TC, Triple, Args, CmdArgs, Features, ForAS);
break;
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le:
ppc::getPPCTargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
riscv::getRISCVTargetFeatures(D, Args, Features);
break;
case llvm::Triple::systemz:
systemz::getSystemZTargetFeatures(Args, Features);
break;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_be:
aarch64::getAArch64TargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::x86:
case llvm::Triple::x86_64:
x86::getX86TargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::hexagon:
hexagon::getHexagonTargetFeatures(D, Args, Features);
break;
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
getWebAssemblyTargetFeatures(Args, Features);
break;
case llvm::Triple::sparc:
case llvm::Triple::sparcel:
case llvm::Triple::sparcv9:
sparc::getSparcTargetFeatures(D, Args, Features);
break;
case llvm::Triple::r600:
case llvm::Triple::amdgcn:
amdgpu::getAMDGPUTargetFeatures(D, Args, Features);
break;
case llvm::Triple::msp430:
msp430::getMSP430TargetFeatures(D, Args, Features);
}
// Find the last of each feature.
llvm::StringMap<unsigned> LastOpt;
for (unsigned I = 0, N = Features.size(); I < N; ++I) {
StringRef Name = Features[I];
assert(Name[0] == '-' || Name[0] == '+');
LastOpt[Name.drop_front(1)] = I;
}
for (unsigned I = 0, N = Features.size(); I < N; ++I) {
// If this feature was overridden, ignore it.
StringRef Name = Features[I];
llvm::StringMap<unsigned>::iterator LastI = LastOpt.find(Name.drop_front(1));
assert(LastI != LastOpt.end());
unsigned Last = LastI->second;
if (Last != I)
continue;
CmdArgs.push_back("-target-feature");
CmdArgs.push_back(Name.data());
}
}
static bool
shouldUseExceptionTablesForObjCExceptions(const ObjCRuntime &runtime,
const llvm::Triple &Triple) {
// We use the zero-cost exception tables for Objective-C if the non-fragile
// ABI is enabled or when compiling for x86_64 and ARM on Snow Leopard and
// later.
if (runtime.isNonFragile())
return true;
if (!Triple.isMacOSX())
return false;
return (!Triple.isMacOSXVersionLT(10, 5) &&
(Triple.getArch() == llvm::Triple::x86_64 ||
Triple.getArch() == llvm::Triple::arm));
}
/// Adds exception related arguments to the driver command arguments. There's a
/// master flag, -fexceptions and also language specific flags to enable/disable
/// C++ and Objective-C exceptions. This makes it possible to for example
/// disable C++ exceptions but enable Objective-C exceptions.
static void addExceptionArgs(const ArgList &Args, types::ID InputType,
const ToolChain &TC, bool KernelOrKext,
const ObjCRuntime &objcRuntime,
ArgStringList &CmdArgs) {
const llvm::Triple &Triple = TC.getTriple();
if (KernelOrKext) {
// -mkernel and -fapple-kext imply no exceptions, so claim exception related
// arguments now to avoid warnings about unused arguments.
Args.ClaimAllArgs(options::OPT_fexceptions);
Args.ClaimAllArgs(options::OPT_fno_exceptions);
Args.ClaimAllArgs(options::OPT_fobjc_exceptions);
Args.ClaimAllArgs(options::OPT_fno_objc_exceptions);
Args.ClaimAllArgs(options::OPT_fcxx_exceptions);
Args.ClaimAllArgs(options::OPT_fno_cxx_exceptions);
return;
}
// See if the user explicitly enabled exceptions.
bool EH = Args.hasFlag(options::OPT_fexceptions, options::OPT_fno_exceptions,
false);
// Obj-C exceptions are enabled by default, regardless of -fexceptions. This
// is not necessarily sensible, but follows GCC.
if (types::isObjC(InputType) &&
Args.hasFlag(options::OPT_fobjc_exceptions,
options::OPT_fno_objc_exceptions, true)) {
CmdArgs.push_back("-fobjc-exceptions");
EH |= shouldUseExceptionTablesForObjCExceptions(objcRuntime, Triple);
}
if (types::isCXX(InputType)) {
// Disable C++ EH by default on XCore and PS4.
bool CXXExceptionsEnabled =
Triple.getArch() != llvm::Triple::xcore && !Triple.isPS4CPU();
Arg *ExceptionArg = Args.getLastArg(
options::OPT_fcxx_exceptions, options::OPT_fno_cxx_exceptions,
options::OPT_fexceptions, options::OPT_fno_exceptions);
if (ExceptionArg)
CXXExceptionsEnabled =
ExceptionArg->getOption().matches(options::OPT_fcxx_exceptions) ||
ExceptionArg->getOption().matches(options::OPT_fexceptions);
if (CXXExceptionsEnabled) {
CmdArgs.push_back("-fcxx-exceptions");
EH = true;
}
}
if (EH)
CmdArgs.push_back("-fexceptions");
}
static bool ShouldDisableAutolink(const ArgList &Args, const ToolChain &TC) {
bool Default = true;
if (TC.getTriple().isOSDarwin()) {
// The native darwin assembler doesn't support the linker_option directives,
// so we disable them if we think the .s file will be passed to it.
Default = TC.useIntegratedAs();
}
return !Args.hasFlag(options::OPT_fautolink, options::OPT_fno_autolink,
Default);
}
static bool ShouldDisableDwarfDirectory(const ArgList &Args,
const ToolChain &TC) {
bool UseDwarfDirectory =
Args.hasFlag(options::OPT_fdwarf_directory_asm,
options::OPT_fno_dwarf_directory_asm, TC.useIntegratedAs());
return !UseDwarfDirectory;
}
// Convert an arg of the form "-gN" or "-ggdbN" or one of their aliases
// to the corresponding DebugInfoKind.
static codegenoptions::DebugInfoKind DebugLevelToInfoKind(const Arg &A) {
assert(A.getOption().matches(options::OPT_gN_Group) &&
"Not a -g option that specifies a debug-info level");
if (A.getOption().matches(options::OPT_g0) ||
A.getOption().matches(options::OPT_ggdb0))
return codegenoptions::NoDebugInfo;
if (A.getOption().matches(options::OPT_gline_tables_only) ||
A.getOption().matches(options::OPT_ggdb1))
return codegenoptions::DebugLineTablesOnly;
if (A.getOption().matches(options::OPT_gline_directives_only))
return codegenoptions::DebugDirectivesOnly;
return codegenoptions::LimitedDebugInfo;
}
static bool mustUseNonLeafFramePointerForTarget(const llvm::Triple &Triple) {
switch (Triple.getArch()){
default:
return false;
case llvm::Triple::arm:
case llvm::Triple::thumb:
// ARM Darwin targets require a frame pointer to be always present to aid
// offline debugging via backtraces.
return Triple.isOSDarwin();
}
}
static bool useFramePointerForTargetByDefault(const ArgList &Args,
const llvm::Triple &Triple) {
switch (Triple.getArch()) {
case llvm::Triple::xcore:
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
case llvm::Triple::msp430:
// XCore never wants frame pointers, regardless of OS.
// WebAssembly never wants frame pointers.
return false;
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
return !areOptimizationsEnabled(Args);
default:
break;
}
if (Triple.isOSNetBSD()) {
return !areOptimizationsEnabled(Args);
}
if (Triple.isOSOpenBSD()) {
switch (Triple.getArch()) {
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
case llvm::Triple::ppc:
case llvm::Triple::x86:
case llvm::Triple::x86_64:
return !areOptimizationsEnabled(Args);
default:
return true;
}
}
if (Triple.isOSLinux() || Triple.getOS() == llvm::Triple::CloudABI ||
Triple.isOSHurd()) {
switch (Triple.getArch()) {
// Don't use a frame pointer on linux if optimizing for certain targets.
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le:
case llvm::Triple::systemz:
case llvm::Triple::x86:
case llvm::Triple::x86_64:
return !areOptimizationsEnabled(Args);
default:
return true;
}
}
if (Triple.isOSWindows()) {
switch (Triple.getArch()) {
case llvm::Triple::x86:
return !areOptimizationsEnabled(Args);
case llvm::Triple::x86_64:
return Triple.isOSBinFormatMachO();
case llvm::Triple::arm:
case llvm::Triple::thumb:
// Windows on ARM builds with FPO disabled to aid fast stack walking
return true;
default:
// All other supported Windows ISAs use xdata unwind information, so frame
// pointers are not generally useful.
return false;
}
}
return true;
}
static bool shouldUseFramePointer(const ArgList &Args,
const llvm::Triple &Triple) {
if (Arg *A = Args.getLastArg(options::OPT_fno_omit_frame_pointer,
options::OPT_fomit_frame_pointer))
return A->getOption().matches(options::OPT_fno_omit_frame_pointer) ||
mustUseNonLeafFramePointerForTarget(Triple);
if (Args.hasArg(options::OPT_pg))
return true;
return useFramePointerForTargetByDefault(Args, Triple);
}
static bool shouldUseLeafFramePointer(const ArgList &Args,
const llvm::Triple &Triple) {
if (Arg *A = Args.getLastArg(options::OPT_mno_omit_leaf_frame_pointer,
options::OPT_momit_leaf_frame_pointer))
return A->getOption().matches(options::OPT_mno_omit_leaf_frame_pointer);
if (Args.hasArg(options::OPT_pg))
return true;
if (Triple.isPS4CPU())
return false;
return useFramePointerForTargetByDefault(Args, Triple);
}
/// Add a CC1 option to specify the debug compilation directory.
static void addDebugCompDirArg(const ArgList &Args, ArgStringList &CmdArgs,
const llvm::vfs::FileSystem &VFS) {
if (Arg *A = Args.getLastArg(options::OPT_fdebug_compilation_dir)) {
CmdArgs.push_back("-fdebug-compilation-dir");
CmdArgs.push_back(A->getValue());
} else if (llvm::ErrorOr<std::string> CWD =
VFS.getCurrentWorkingDirectory()) {
CmdArgs.push_back("-fdebug-compilation-dir");
CmdArgs.push_back(Args.MakeArgString(*CWD));
}
}
/// Add a CC1 and CC1AS option to specify the debug file path prefix map.
static void addDebugPrefixMapArg(const Driver &D, const ArgList &Args, ArgStringList &CmdArgs) {
for (const Arg *A : Args.filtered(options::OPT_fdebug_prefix_map_EQ)) {
StringRef Map = A->getValue();
if (Map.find('=') == StringRef::npos)
D.Diag(diag::err_drv_invalid_argument_to_fdebug_prefix_map) << Map;
else
CmdArgs.push_back(Args.MakeArgString("-fdebug-prefix-map=" + Map));
A->claim();
}
}
/// Vectorize at all optimization levels greater than 1 except for -Oz.
/// For -Oz the loop vectorizer is disabled, while the slp vectorizer is
/// enabled.
static bool shouldEnableVectorizerAtOLevel(const ArgList &Args, bool isSlpVec) {
if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
if (A->getOption().matches(options::OPT_O4) ||
A->getOption().matches(options::OPT_Ofast))
return true;
if (A->getOption().matches(options::OPT_O0))
return false;
assert(A->getOption().matches(options::OPT_O) && "Must have a -O flag");
// Vectorize -Os.
StringRef S(A->getValue());
if (S == "s")
return true;
// Don't vectorize -Oz, unless it's the slp vectorizer.
if (S == "z")
return isSlpVec;
unsigned OptLevel = 0;
if (S.getAsInteger(10, OptLevel))
return false;
return OptLevel > 1;
}
return false;
}
/// Add -x lang to \p CmdArgs for \p Input.
static void addDashXForInput(const ArgList &Args, const InputInfo &Input,
ArgStringList &CmdArgs) {
// When using -verify-pch, we don't want to provide the type
// 'precompiled-header' if it was inferred from the file extension
if (Args.hasArg(options::OPT_verify_pch) && Input.getType() == types::TY_PCH)
return;
CmdArgs.push_back("-x");
if (Args.hasArg(options::OPT_rewrite_objc))
CmdArgs.push_back(types::getTypeName(types::TY_PP_ObjCXX));
else {
// Map the driver type to the frontend type. This is mostly an identity
// mapping, except that the distinction between module interface units
// and other source files does not exist at the frontend layer.
const char *ClangType;
switch (Input.getType()) {
case types::TY_CXXModule:
ClangType = "c++";
break;
case types::TY_PP_CXXModule:
ClangType = "c++-cpp-output";
break;
default:
ClangType = types::getTypeName(Input.getType());
break;
}
CmdArgs.push_back(ClangType);
}
}
static void appendUserToPath(SmallVectorImpl<char> &Result) {
#ifdef LLVM_ON_UNIX
const char *Username = getenv("LOGNAME");
#else
const char *Username = getenv("USERNAME");
#endif
if (Username) {
// Validate that LoginName can be used in a path, and get its length.
size_t Len = 0;
for (const char *P = Username; *P; ++P, ++Len) {
if (!clang::isAlphanumeric(*P) && *P != '_') {
Username = nullptr;
break;
}
}
if (Username && Len > 0) {
Result.append(Username, Username + Len);
return;
}
}
// Fallback to user id.
#ifdef LLVM_ON_UNIX
std::string UID = llvm::utostr(getuid());
#else
// FIXME: Windows seems to have an 'SID' that might work.
std::string UID = "9999";
#endif
Result.append(UID.begin(), UID.end());
}
static void addPGOAndCoverageFlags(const ToolChain &TC, Compilation &C,
const Driver &D, const InputInfo &Output,
const ArgList &Args,
ArgStringList &CmdArgs) {
auto *PGOGenerateArg = Args.getLastArg(options::OPT_fprofile_generate,
options::OPT_fprofile_generate_EQ,
options::OPT_fno_profile_generate);
if (PGOGenerateArg &&
PGOGenerateArg->getOption().matches(options::OPT_fno_profile_generate))
PGOGenerateArg = nullptr;
auto *CSPGOGenerateArg = Args.getLastArg(options::OPT_fcs_profile_generate,
options::OPT_fcs_profile_generate_EQ,
options::OPT_fno_profile_generate);
if (CSPGOGenerateArg &&
CSPGOGenerateArg->getOption().matches(options::OPT_fno_profile_generate))
CSPGOGenerateArg = nullptr;
auto *ProfileGenerateArg = Args.getLastArg(
options::OPT_fprofile_instr_generate,
options::OPT_fprofile_instr_generate_EQ,
options::OPT_fno_profile_instr_generate);
if (ProfileGenerateArg &&
ProfileGenerateArg->getOption().matches(
options::OPT_fno_profile_instr_generate))
ProfileGenerateArg = nullptr;
if (PGOGenerateArg && ProfileGenerateArg)
D.Diag(diag::err_drv_argument_not_allowed_with)
<< PGOGenerateArg->getSpelling() << ProfileGenerateArg->getSpelling();
auto *ProfileUseArg = getLastProfileUseArg(Args);
if (PGOGenerateArg && ProfileUseArg)
D.Diag(diag::err_drv_argument_not_allowed_with)
<< ProfileUseArg->getSpelling() << PGOGenerateArg->getSpelling();
if (ProfileGenerateArg && ProfileUseArg)
D.Diag(diag::err_drv_argument_not_allowed_with)
<< ProfileGenerateArg->getSpelling() << ProfileUseArg->getSpelling();
if (CSPGOGenerateArg && PGOGenerateArg)
D.Diag(diag::err_drv_argument_not_allowed_with)
<< CSPGOGenerateArg->getSpelling() << PGOGenerateArg->getSpelling();
if (ProfileGenerateArg) {
if (ProfileGenerateArg->getOption().matches(
options::OPT_fprofile_instr_generate_EQ))
CmdArgs.push_back(Args.MakeArgString(Twine("-fprofile-instrument-path=") +
ProfileGenerateArg->getValue()));
// The default is to use Clang Instrumentation.
CmdArgs.push_back("-fprofile-instrument=clang");
if (TC.getTriple().isWindowsMSVCEnvironment()) {
// Add dependent lib for clang_rt.profile
CmdArgs.push_back(Args.MakeArgString("--dependent-lib=" +
TC.getCompilerRT(Args, "profile")));
}
}
Arg *PGOGenArg = nullptr;
if (PGOGenerateArg) {
assert(!CSPGOGenerateArg);
PGOGenArg = PGOGenerateArg;
CmdArgs.push_back("-fprofile-instrument=llvm");
}
if (CSPGOGenerateArg) {
assert(!PGOGenerateArg);
PGOGenArg = CSPGOGenerateArg;
CmdArgs.push_back("-fprofile-instrument=csllvm");
}
if (PGOGenArg) {
if (TC.getTriple().isWindowsMSVCEnvironment()) {
CmdArgs.push_back(Args.MakeArgString("--dependent-lib=" +
TC.getCompilerRT(Args, "profile")));
}
if (PGOGenArg->getOption().matches(
PGOGenerateArg ? options::OPT_fprofile_generate_EQ
: options::OPT_fcs_profile_generate_EQ)) {
SmallString<128> Path(PGOGenArg->getValue());
llvm::sys::path::append(Path, "default_%m.profraw");
CmdArgs.push_back(
Args.MakeArgString(Twine("-fprofile-instrument-path=") + Path));
}
}
if (ProfileUseArg) {
if (ProfileUseArg->getOption().matches(options::OPT_fprofile_instr_use_EQ))
CmdArgs.push_back(Args.MakeArgString(
Twine("-fprofile-instrument-use-path=") + ProfileUseArg->getValue()));
else if ((ProfileUseArg->getOption().matches(
options::OPT_fprofile_use_EQ) ||
ProfileUseArg->getOption().matches(
options::OPT_fprofile_instr_use))) {
SmallString<128> Path(
ProfileUseArg->getNumValues() == 0 ? "" : ProfileUseArg->getValue());
if (Path.empty() || llvm::sys::fs::is_directory(Path))
llvm::sys::path::append(Path, "default.profdata");
CmdArgs.push_back(
Args.MakeArgString(Twine("-fprofile-instrument-use-path=") + Path));
}
}
if (Args.hasArg(options::OPT_ftest_coverage) ||
Args.hasArg(options::OPT_coverage))
CmdArgs.push_back("-femit-coverage-notes");
if (Args.hasFlag(options::OPT_fprofile_arcs, options::OPT_fno_profile_arcs,
false) ||
Args.hasArg(options::OPT_coverage))
CmdArgs.push_back("-femit-coverage-data");
if (Args.hasFlag(options::OPT_fcoverage_mapping,
options::OPT_fno_coverage_mapping, false)) {
if (!ProfileGenerateArg)
D.Diag(clang::diag::err_drv_argument_only_allowed_with)
<< "-fcoverage-mapping"
<< "-fprofile-instr-generate";
CmdArgs.push_back("-fcoverage-mapping");
}
if (Args.hasArg(options::OPT_fprofile_exclude_files_EQ)) {
auto *Arg = Args.getLastArg(options::OPT_fprofile_exclude_files_EQ);
if (!Args.hasArg(options::OPT_coverage))
D.Diag(clang::diag::err_drv_argument_only_allowed_with)
<< "-fprofile-exclude-files="
<< "--coverage";
StringRef v = Arg->getValue();
CmdArgs.push_back(
Args.MakeArgString(Twine("-fprofile-exclude-files=" + v)));
}
if (Args.hasArg(options::OPT_fprofile_filter_files_EQ)) {
auto *Arg = Args.getLastArg(options::OPT_fprofile_filter_files_EQ);
if (!Args.hasArg(options::OPT_coverage))
D.Diag(clang::diag::err_drv_argument_only_allowed_with)
<< "-fprofile-filter-files="
<< "--coverage";
StringRef v = Arg->getValue();
CmdArgs.push_back(Args.MakeArgString(Twine("-fprofile-filter-files=" + v)));
}
if (C.getArgs().hasArg(options::OPT_c) ||
C.getArgs().hasArg(options::OPT_S)) {
if (Output.isFilename()) {
CmdArgs.push_back("-coverage-notes-file");
SmallString<128> OutputFilename;
if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
OutputFilename = FinalOutput->getValue();
else
OutputFilename = llvm::sys::path::filename(Output.getBaseInput());
SmallString<128> CoverageFilename = OutputFilename;
if (llvm::sys::path::is_relative(CoverageFilename))
(void)D.getVFS().makeAbsolute(CoverageFilename);
llvm::sys::path::replace_extension(CoverageFilename, "gcno");
CmdArgs.push_back(Args.MakeArgString(CoverageFilename));
// Leave -fprofile-dir= an unused argument unless .gcda emission is
// enabled. To be polite, with '-fprofile-arcs -fno-profile-arcs' consider
// the flag used. There is no -fno-profile-dir, so the user has no
// targeted way to suppress the warning.
if (Args.hasArg(options::OPT_fprofile_arcs) ||
Args.hasArg(options::OPT_coverage)) {
CmdArgs.push_back("-coverage-data-file");
if (Arg *FProfileDir = Args.getLastArg(options::OPT_fprofile_dir)) {
CoverageFilename = FProfileDir->getValue();
llvm::sys::path::append(CoverageFilename, OutputFilename);
}
llvm::sys::path::replace_extension(CoverageFilename, "gcda");
CmdArgs.push_back(Args.MakeArgString(CoverageFilename));
}
}
}
}
/// Check whether the given input tree contains any compilation actions.
static bool ContainsCompileAction(const Action *A) {
if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A))
return true;
for (const auto &AI : A->inputs())
if (ContainsCompileAction(AI))
return true;
return false;
}
/// Check if -relax-all should be passed to the internal assembler.
/// This is done by default when compiling non-assembler source with -O0.
static bool UseRelaxAll(Compilation &C, const ArgList &Args) {
bool RelaxDefault = true;
if (Arg *A = Args.getLastArg(options::OPT_O_Group))
RelaxDefault = A->getOption().matches(options::OPT_O0);
if (RelaxDefault) {
RelaxDefault = false;
for (const auto &Act : C.getActions()) {
if (ContainsCompileAction(Act)) {
RelaxDefault = true;
break;
}
}
}
return Args.hasFlag(options::OPT_mrelax_all, options::OPT_mno_relax_all,
RelaxDefault);
}
// Extract the integer N from a string spelled "-dwarf-N", returning 0
// on mismatch. The StringRef input (rather than an Arg) allows
// for use by the "-Xassembler" option parser.
static unsigned DwarfVersionNum(StringRef ArgValue) {
return llvm::StringSwitch<unsigned>(ArgValue)
.Case("-gdwarf-2", 2)
.Case("-gdwarf-3", 3)
.Case("-gdwarf-4", 4)
.Case("-gdwarf-5", 5)
.Default(0);
}
static void RenderDebugEnablingArgs(const ArgList &Args, ArgStringList &CmdArgs,
codegenoptions::DebugInfoKind DebugInfoKind,
unsigned DwarfVersion,
llvm::DebuggerKind DebuggerTuning) {
switch (DebugInfoKind) {
case codegenoptions::DebugDirectivesOnly:
CmdArgs.push_back("-debug-info-kind=line-directives-only");
break;
case codegenoptions::DebugLineTablesOnly:
CmdArgs.push_back("-debug-info-kind=line-tables-only");
break;
case codegenoptions::LimitedDebugInfo:
CmdArgs.push_back("-debug-info-kind=limited");
break;
case codegenoptions::FullDebugInfo:
CmdArgs.push_back("-debug-info-kind=standalone");
break;
default:
break;
}
if (DwarfVersion > 0)
CmdArgs.push_back(
Args.MakeArgString("-dwarf-version=" + Twine(DwarfVersion)));
switch (DebuggerTuning) {
case llvm::DebuggerKind::GDB:
CmdArgs.push_back("-debugger-tuning=gdb");
break;
case llvm::DebuggerKind::LLDB:
CmdArgs.push_back("-debugger-tuning=lldb");
break;
case llvm::DebuggerKind::SCE:
CmdArgs.push_back("-debugger-tuning=sce");
break;
default:
break;
}
}
static bool checkDebugInfoOption(const Arg *A, const ArgList &Args,
const Driver &D, const ToolChain &TC) {
assert(A && "Expected non-nullptr argument.");
if (TC.supportsDebugInfoOption(A))
return true;
D.Diag(diag::warn_drv_unsupported_debug_info_opt_for_target)
<< A->getAsString(Args) << TC.getTripleString();
return false;
}
static void RenderDebugInfoCompressionArgs(const ArgList &Args,
ArgStringList &CmdArgs,
const Driver &D,
const ToolChain &TC) {
const Arg *A = Args.getLastArg(options::OPT_gz, options::OPT_gz_EQ);
if (!A)
return;
if (checkDebugInfoOption(A, Args, D, TC)) {
if (A->getOption().getID() == options::OPT_gz) {
if (llvm::zlib::isAvailable())
CmdArgs.push_back("--compress-debug-sections");
else
D.Diag(diag::warn_debug_compression_unavailable);
return;
}
StringRef Value = A->getValue();
if (Value == "none") {
CmdArgs.push_back("--compress-debug-sections=none");
} else if (Value == "zlib" || Value == "zlib-gnu") {
if (llvm::zlib::isAvailable()) {
CmdArgs.push_back(
Args.MakeArgString("--compress-debug-sections=" + Twine(Value)));
} else {
D.Diag(diag::warn_debug_compression_unavailable);
}
} else {
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Value;
}
}
}
static const char *RelocationModelName(llvm::Reloc::Model Model) {
switch (Model) {
case llvm::Reloc::Static:
return "static";
case llvm::Reloc::PIC_:
return "pic";
case llvm::Reloc::DynamicNoPIC:
return "dynamic-no-pic";
case llvm::Reloc::ROPI:
return "ropi";
case llvm::Reloc::RWPI:
return "rwpi";
case llvm::Reloc::ROPI_RWPI:
return "ropi-rwpi";
}
llvm_unreachable("Unknown Reloc::Model kind");
}
void Clang::AddPreprocessingOptions(Compilation &C, const JobAction &JA,
const Driver &D, const ArgList &Args,
ArgStringList &CmdArgs,
const InputInfo &Output,
const InputInfoList &Inputs) const {
Arg *A;
const bool IsIAMCU = getToolChain().getTriple().isOSIAMCU();
CheckPreprocessingOptions(D, Args);
Args.AddLastArg(CmdArgs, options::OPT_C);
Args.AddLastArg(CmdArgs, options::OPT_CC);
// Handle dependency file generation.
if ((A = Args.getLastArg(options::OPT_M, options::OPT_MM)) ||
(A = Args.getLastArg(options::OPT_MD)) ||
(A = Args.getLastArg(options::OPT_MMD))) {
// Determine the output location.
const char *DepFile;
if (Arg *MF = Args.getLastArg(options::OPT_MF)) {
DepFile = MF->getValue();
C.addFailureResultFile(DepFile, &JA);
} else if (Output.getType() == types::TY_Dependencies) {
DepFile = Output.getFilename();
} else if (A->getOption().matches(options::OPT_M) ||
A->getOption().matches(options::OPT_MM)) {
DepFile = "-";
} else {
DepFile = getDependencyFileName(Args, Inputs);
C.addFailureResultFile(DepFile, &JA);
}
CmdArgs.push_back("-dependency-file");
CmdArgs.push_back(DepFile);
// Add a default target if one wasn't specified.
if (!Args.hasArg(options::OPT_MT) && !Args.hasArg(options::OPT_MQ)) {
const char *DepTarget;
// If user provided -o, that is the dependency target, except
// when we are only generating a dependency file.
Arg *OutputOpt = Args.getLastArg(options::OPT_o);
if (OutputOpt && Output.getType() != types::TY_Dependencies) {
DepTarget = OutputOpt->getValue();
} else {
// Otherwise derive from the base input.
//
// FIXME: This should use the computed output file location.
SmallString<128> P(Inputs[0].getBaseInput());
llvm::sys::path::replace_extension(P, "o");
DepTarget = Args.MakeArgString(llvm::sys::path::filename(P));
}
if (!A->getOption().matches(options::OPT_MD) && !A->getOption().matches(options::OPT_MMD)) {
CmdArgs.push_back("-w");
}
CmdArgs.push_back("-MT");
SmallString<128> Quoted;
QuoteTarget(DepTarget, Quoted);
CmdArgs.push_back(Args.MakeArgString(Quoted));
}
if (A->getOption().matches(options::OPT_M) ||
A->getOption().matches(options::OPT_MD))
CmdArgs.push_back("-sys-header-deps");
if ((isa<PrecompileJobAction>(JA) &&
!Args.hasArg(options::OPT_fno_module_file_deps)) ||
Args.hasArg(options::OPT_fmodule_file_deps))
CmdArgs.push_back("-module-file-deps");
}
if (Args.hasArg(options::OPT_MG)) {
if (!A || A->getOption().matches(options::OPT_MD) ||
A->getOption().matches(options::OPT_MMD))
D.Diag(diag::err_drv_mg_requires_m_or_mm);
CmdArgs.push_back("-MG");
}
Args.AddLastArg(CmdArgs, options::OPT_MP);
Args.AddLastArg(CmdArgs, options::OPT_MV);
// Convert all -MQ <target> args to -MT <quoted target>
for (const Arg *A : Args.filtered(options::OPT_MT, options::OPT_MQ)) {
A->claim();
if (A->getOption().matches(options::OPT_MQ)) {
CmdArgs.push_back("-MT");
SmallString<128> Quoted;
QuoteTarget(A->getValue(), Quoted);
CmdArgs.push_back(Args.MakeArgString(Quoted));
// -MT flag - no change
} else {
A->render(Args, CmdArgs);
}
}
// Add offload include arguments specific for CUDA. This must happen before
// we -I or -include anything else, because we must pick up the CUDA headers
// from the particular CUDA installation, rather than from e.g.
// /usr/local/include.
if (JA.isOffloading(Action::OFK_Cuda))
getToolChain().AddCudaIncludeArgs(Args, CmdArgs);
// If we are offloading to a target via OpenMP we need to include the
// openmp_wrappers folder which contains alternative system headers.
if (JA.isDeviceOffloading(Action::OFK_OpenMP) &&
getToolChain().getTriple().isNVPTX()){
if (!Args.hasArg(options::OPT_nobuiltininc)) {
// Add openmp_wrappers/* to our system include path. This lets us wrap
// standard library headers.
SmallString<128> P(D.ResourceDir);
llvm::sys::path::append(P, "include");
llvm::sys::path::append(P, "openmp_wrappers");
CmdArgs.push_back("-internal-isystem");
CmdArgs.push_back(Args.MakeArgString(P));
}
CmdArgs.push_back("-include");
CmdArgs.push_back("__clang_openmp_math_declares.h");
}
// Add -i* options, and automatically translate to
// -include-pch/-include-pth for transparent PCH support. It's
// wonky, but we include looking for .gch so we can support seamless
// replacement into a build system already set up to be generating
// .gch files.
if (getToolChain().getDriver().IsCLMode()) {
const Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
const Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
if (YcArg && JA.getKind() >= Action::PrecompileJobClass &&
JA.getKind() <= Action::AssembleJobClass) {
CmdArgs.push_back(Args.MakeArgString("-building-pch-with-obj"));
}
if (YcArg || YuArg) {
StringRef ThroughHeader = YcArg ? YcArg->getValue() : YuArg->getValue();
if (!isa<PrecompileJobAction>(JA)) {
CmdArgs.push_back("-include-pch");
CmdArgs.push_back(Args.MakeArgString(D.GetClPchPath(
C, !ThroughHeader.empty()
? ThroughHeader
: llvm::sys::path::filename(Inputs[0].getBaseInput()))));
}
if (ThroughHeader.empty()) {
CmdArgs.push_back(Args.MakeArgString(
Twine("-pch-through-hdrstop-") + (YcArg ? "create" : "use")));
} else {
CmdArgs.push_back(
Args.MakeArgString(Twine("-pch-through-header=") + ThroughHeader));
}
}
}
bool RenderedImplicitInclude = false;
for (const Arg *A : Args.filtered(options::OPT_clang_i_Group)) {
if (A->getOption().matches(options::OPT_include)) {
// Handling of gcc-style gch precompiled headers.
bool IsFirstImplicitInclude = !RenderedImplicitInclude;
RenderedImplicitInclude = true;
bool FoundPCH = false;
SmallString<128> P(A->getValue());
// We want the files to have a name like foo.h.pch. Add a dummy extension
// so that replace_extension does the right thing.
P += ".dummy";
llvm::sys::path::replace_extension(P, "pch");
if (llvm::sys::fs::exists(P))
FoundPCH = true;
if (!FoundPCH) {
llvm::sys::path::replace_extension(P, "gch");
if (llvm::sys::fs::exists(P)) {
FoundPCH = true;
}
}
if (FoundPCH) {
if (IsFirstImplicitInclude) {
A->claim();
CmdArgs.push_back("-include-pch");
CmdArgs.push_back(Args.MakeArgString(P));
continue;
} else {
// Ignore the PCH if not first on command line and emit warning.
D.Diag(diag::warn_drv_pch_not_first_include) << P
<< A->getAsString(Args);
}
}
} else if (A->getOption().matches(options::OPT_isystem_after)) {
// Handling of paths which must come late. These entries are handled by
// the toolchain itself after the resource dir is inserted in the right
// search order.
// Do not claim the argument so that the use of the argument does not
// silently go unnoticed on toolchains which do not honour the option.
continue;
}
// Not translated, render as usual.
A->claim();
A->render(Args, CmdArgs);
}
Args.AddAllArgs(CmdArgs,
{options::OPT_D, options::OPT_U, options::OPT_I_Group,
options::OPT_F, options::OPT_index_header_map});
// Add -Wp, and -Xpreprocessor if using the preprocessor.
// FIXME: There is a very unfortunate problem here, some troubled
// souls abuse -Wp, to pass preprocessor options in gcc syntax. To
// really support that we would have to parse and then translate
// those options. :(
Args.AddAllArgValues(CmdArgs, options::OPT_Wp_COMMA,
options::OPT_Xpreprocessor);
// -I- is a deprecated GCC feature, reject it.
if (Arg *A = Args.getLastArg(options::OPT_I_))
D.Diag(diag::err_drv_I_dash_not_supported) << A->getAsString(Args);
// If we have a --sysroot, and don't have an explicit -isysroot flag, add an
// -isysroot to the CC1 invocation.
StringRef sysroot = C.getSysRoot();
if (sysroot != "") {
if (!Args.hasArg(options::OPT_isysroot)) {
CmdArgs.push_back("-isysroot");
CmdArgs.push_back(C.getArgs().MakeArgString(sysroot));
}
}
// Parse additional include paths from environment variables.
// FIXME: We should probably sink the logic for handling these from the
// frontend into the driver. It will allow deleting 4 otherwise unused flags.
// CPATH - included following the user specified includes (but prior to
// builtin and standard includes).
addDirectoryList(Args, CmdArgs, "-I", "CPATH");
// C_INCLUDE_PATH - system includes enabled when compiling C.
addDirectoryList(Args, CmdArgs, "-c-isystem", "C_INCLUDE_PATH");
// CPLUS_INCLUDE_PATH - system includes enabled when compiling C++.
addDirectoryList(Args, CmdArgs, "-cxx-isystem", "CPLUS_INCLUDE_PATH");
// OBJC_INCLUDE_PATH - system includes enabled when compiling ObjC.
addDirectoryList(Args, CmdArgs, "-objc-isystem", "OBJC_INCLUDE_PATH");
// OBJCPLUS_INCLUDE_PATH - system includes enabled when compiling ObjC++.
addDirectoryList(Args, CmdArgs, "-objcxx-isystem", "OBJCPLUS_INCLUDE_PATH");
// While adding the include arguments, we also attempt to retrieve the
// arguments of related offloading toolchains or arguments that are specific
// of an offloading programming model.
// Add C++ include arguments, if needed.
if (types::isCXX(Inputs[0].getType()))
forAllAssociatedToolChains(C, JA, getToolChain(),
[&Args, &CmdArgs](const ToolChain &TC) {
TC.AddClangCXXStdlibIncludeArgs(Args, CmdArgs);
});
// Add system include arguments for all targets but IAMCU.
if (!IsIAMCU)
forAllAssociatedToolChains(C, JA, getToolChain(),
[&Args, &CmdArgs](const ToolChain &TC) {
TC.AddClangSystemIncludeArgs(Args, CmdArgs);
});
else {
// For IAMCU add special include arguments.
getToolChain().AddIAMCUIncludeArgs(Args, CmdArgs);
}
}
// FIXME: Move to target hook.
static bool isSignedCharDefault(const llvm::Triple &Triple) {
switch (Triple.getArch()) {
default:
return true;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_be:
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
if (Triple.isOSDarwin() || Triple.isOSWindows())
return true;
return false;
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
if (Triple.isOSDarwin())
return true;
return false;
case llvm::Triple::hexagon:
case llvm::Triple::ppc64le:
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
case llvm::Triple::systemz:
case llvm::Triple::xcore:
return false;
}
}
static bool isNoCommonDefault(const llvm::Triple &Triple) {
switch (Triple.getArch()) {
default:
if (Triple.isOSFuchsia())
return true;
return false;
case llvm::Triple::xcore:
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
return true;
}
}
namespace {
void RenderARMABI(const llvm::Triple &Triple, const ArgList &Args,
ArgStringList &CmdArgs) {
// Select the ABI to use.
// FIXME: Support -meabi.
// FIXME: Parts of this are duplicated in the backend, unify this somehow.
const char *ABIName = nullptr;
if (Arg *A = Args.getLastArg(options::OPT_mabi_EQ)) {
ABIName = A->getValue();
} else {
std::string CPU = getCPUName(Args, Triple, /*FromAs*/ false);
ABIName = llvm::ARM::computeDefaultTargetABI(Triple, CPU).data();
}
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName);
}
}
void Clang::AddARMTargetArgs(const llvm::Triple &Triple, const ArgList &Args,
ArgStringList &CmdArgs, bool KernelOrKext) const {
RenderARMABI(Triple, Args, CmdArgs);
// Determine floating point ABI from the options & target defaults.
arm::FloatABI ABI = arm::getARMFloatABI(getToolChain(), Args);
if (ABI == arm::FloatABI::Soft) {
// Floating point operations and argument passing are soft.
// FIXME: This changes CPP defines, we need -target-soft-float.
CmdArgs.push_back("-msoft-float");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
} else if (ABI == arm::FloatABI::SoftFP) {
// Floating point operations are hard, but argument passing is soft.
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
} else {
// Floating point operations and argument passing are hard.
assert(ABI == arm::FloatABI::Hard && "Invalid float abi!");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("hard");
}
// Forward the -mglobal-merge option for explicit control over the pass.
if (Arg *A = Args.getLastArg(options::OPT_mglobal_merge,
options::OPT_mno_global_merge)) {
CmdArgs.push_back("-mllvm");
if (A->getOption().matches(options::OPT_mno_global_merge))
CmdArgs.push_back("-arm-global-merge=false");
else
CmdArgs.push_back("-arm-global-merge=true");
}
if (!Args.hasFlag(options::OPT_mimplicit_float,
options::OPT_mno_implicit_float, true))
CmdArgs.push_back("-no-implicit-float");
if (Args.getLastArg(options::OPT_mcmse))
CmdArgs.push_back("-mcmse");
}
void Clang::RenderTargetOptions(const llvm::Triple &EffectiveTriple,
const ArgList &Args, bool KernelOrKext,
ArgStringList &CmdArgs) const {
const ToolChain &TC = getToolChain();
// Add the target features
getTargetFeatures(TC, EffectiveTriple, Args, CmdArgs, false);
// Add target specific flags.
switch (TC.getArch()) {
default:
break;
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
// Use the effective triple, which takes into account the deployment target.
AddARMTargetArgs(EffectiveTriple, Args, CmdArgs, KernelOrKext);
CmdArgs.push_back("-fallow-half-arguments-and-returns");
break;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_be:
AddAArch64TargetArgs(Args, CmdArgs);
CmdArgs.push_back("-fallow-half-arguments-and-returns");
break;
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
AddMIPSTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le:
AddPPCTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
AddRISCVTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::sparc:
case llvm::Triple::sparcel:
case llvm::Triple::sparcv9:
AddSparcTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::systemz:
AddSystemZTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::x86:
case llvm::Triple::x86_64:
AddX86TargetArgs(Args, CmdArgs);
break;
case llvm::Triple::lanai:
AddLanaiTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::hexagon:
AddHexagonTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
AddWebAssemblyTargetArgs(Args, CmdArgs);
break;
}
}
// Parse -mbranch-protection=<protection>[+<protection>]* where
// <protection> ::= standard | none | [bti,pac-ret[+b-key,+leaf]*]
// Returns a triple of (return address signing Scope, signing key, require
// landing pads)
static std::tuple<StringRef, StringRef, bool>
ParseAArch64BranchProtection(const Driver &D, const ArgList &Args,
const Arg *A) {
StringRef Scope = "none";
StringRef Key = "a_key";
bool IndirectBranches = false;
StringRef Value = A->getValue();
// This maps onto -mbranch-protection=<scope>+<key>
if (Value.equals("standard")) {
Scope = "non-leaf";
Key = "a_key";
IndirectBranches = true;
} else if (!Value.equals("none")) {
SmallVector<StringRef, 4> BranchProtection;
StringRef(A->getValue()).split(BranchProtection, '+');
auto Protection = BranchProtection.begin();
while (Protection != BranchProtection.end()) {
if (Protection->equals("bti"))
IndirectBranches = true;
else if (Protection->equals("pac-ret")) {
Scope = "non-leaf";
while (++Protection != BranchProtection.end()) {
// Inner loop as "leaf" and "b-key" options must only appear attached
// to pac-ret.
if (Protection->equals("leaf"))
Scope = "all";
else if (Protection->equals("b-key"))
Key = "b_key";
else
break;
}
Protection--;
} else
D.Diag(diag::err_invalid_branch_protection)
<< *Protection << A->getAsString(Args);
Protection++;
}
}
return std::make_tuple(Scope, Key, IndirectBranches);
}
namespace {
void RenderAArch64ABI(const llvm::Triple &Triple, const ArgList &Args,
ArgStringList &CmdArgs) {
const char *ABIName = nullptr;
if (Arg *A = Args.getLastArg(options::OPT_mabi_EQ))
ABIName = A->getValue();
else if (Triple.isOSDarwin())
ABIName = "darwinpcs";
else
ABIName = "aapcs";
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName);
}
}
void Clang::AddAArch64TargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
const llvm::Triple &Triple = getToolChain().getEffectiveTriple();
if (!Args.hasFlag(options::OPT_mred_zone, options::OPT_mno_red_zone, true) ||
Args.hasArg(options::OPT_mkernel) ||
Args.hasArg(options::OPT_fapple_kext))
CmdArgs.push_back("-disable-red-zone");
if (!Args.hasFlag(options::OPT_mimplicit_float,
options::OPT_mno_implicit_float, true))
CmdArgs.push_back("-no-implicit-float");
RenderAArch64ABI(Triple, Args, CmdArgs);
if (Arg *A = Args.getLastArg(options::OPT_mfix_cortex_a53_835769,
options::OPT_mno_fix_cortex_a53_835769)) {
CmdArgs.push_back("-mllvm");
if (A->getOption().matches(options::OPT_mfix_cortex_a53_835769))
CmdArgs.push_back("-aarch64-fix-cortex-a53-835769=1");
else
CmdArgs.push_back("-aarch64-fix-cortex-a53-835769=0");
} else if (Triple.isAndroid()) {
// Enabled A53 errata (835769) workaround by default on android
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-aarch64-fix-cortex-a53-835769=1");
}
// Forward the -mglobal-merge option for explicit control over the pass.
if (Arg *A = Args.getLastArg(options::OPT_mglobal_merge,
options::OPT_mno_global_merge)) {
CmdArgs.push_back("-mllvm");
if (A->getOption().matches(options::OPT_mno_global_merge))
CmdArgs.push_back("-aarch64-enable-global-merge=false");
else
CmdArgs.push_back("-aarch64-enable-global-merge=true");
}
// Enable/disable return address signing and indirect branch targets.
if (Arg *A = Args.getLastArg(options::OPT_msign_return_address_EQ,
options::OPT_mbranch_protection_EQ)) {
const Driver &D = getToolChain().getDriver();
StringRef Scope, Key;
bool IndirectBranches;
if (A->getOption().matches(options::OPT_msign_return_address_EQ)) {
Scope = A->getValue();
if (!Scope.equals("none") && !Scope.equals("non-leaf") &&
!Scope.equals("all"))
D.Diag(diag::err_invalid_branch_protection)
<< Scope << A->getAsString(Args);
Key = "a_key";
IndirectBranches = false;
} else
std::tie(Scope, Key, IndirectBranches) =
ParseAArch64BranchProtection(D, Args, A);
CmdArgs.push_back(
Args.MakeArgString(Twine("-msign-return-address=") + Scope));
CmdArgs.push_back(
Args.MakeArgString(Twine("-msign-return-address-key=") + Key));
if (IndirectBranches)
CmdArgs.push_back("-mbranch-target-enforce");
}
}
void Clang::AddMIPSTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
const Driver &D = getToolChain().getDriver();
StringRef CPUName;
StringRef ABIName;
const llvm::Triple &Triple = getToolChain().getTriple();
mips::getMipsCPUAndABI(Args, Triple, CPUName, ABIName);
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName.data());
mips::FloatABI ABI = mips::getMipsFloatABI(D, Args);
if (ABI == mips::FloatABI::Soft) {
// Floating point operations and argument passing are soft.
CmdArgs.push_back("-msoft-float");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
} else {
// Floating point operations and argument passing are hard.
assert(ABI == mips::FloatABI::Hard && "Invalid float abi!");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("hard");
}
if (Arg *A = Args.getLastArg(options::OPT_mxgot, options::OPT_mno_xgot)) {
if (A->getOption().matches(options::OPT_mxgot)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-mxgot");
}
}
if (Arg *A = Args.getLastArg(options::OPT_mldc1_sdc1,
options::OPT_mno_ldc1_sdc1)) {
if (A->getOption().matches(options::OPT_mno_ldc1_sdc1)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-mno-ldc1-sdc1");
}
}
if (Arg *A = Args.getLastArg(options::OPT_mcheck_zero_division,
options::OPT_mno_check_zero_division)) {
if (A->getOption().matches(options::OPT_mno_check_zero_division)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-mno-check-zero-division");
}
}
if (Arg *A = Args.getLastArg(options::OPT_G)) {
StringRef v = A->getValue();
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-mips-ssection-threshold=" + v));
A->claim();
}
Arg *GPOpt = Args.getLastArg(options::OPT_mgpopt, options::OPT_mno_gpopt);
Arg *ABICalls =
Args.getLastArg(options::OPT_mabicalls, options::OPT_mno_abicalls);
// -mabicalls is the default for many MIPS environments, even with -fno-pic.
// -mgpopt is the default for static, -fno-pic environments but these two
// options conflict. We want to be certain that -mno-abicalls -mgpopt is
// the only case where -mllvm -mgpopt is passed.
// NOTE: We need a warning here or in the backend to warn when -mgpopt is
// passed explicitly when compiling something with -mabicalls
// (implictly) in affect. Currently the warning is in the backend.
//
// When the ABI in use is N64, we also need to determine the PIC mode that
// is in use, as -fno-pic for N64 implies -mno-abicalls.
bool NoABICalls =
ABICalls && ABICalls->getOption().matches(options::OPT_mno_abicalls);
llvm::Reloc::Model RelocationModel;
unsigned PICLevel;
bool IsPIE;
std::tie(RelocationModel, PICLevel, IsPIE) =
ParsePICArgs(getToolChain(), Args);
NoABICalls = NoABICalls ||
(RelocationModel == llvm::Reloc::Static && ABIName == "n64");
bool WantGPOpt = GPOpt && GPOpt->getOption().matches(options::OPT_mgpopt);
// We quietly ignore -mno-gpopt as the backend defaults to -mno-gpopt.
if (NoABICalls && (!GPOpt || WantGPOpt)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-mgpopt");
Arg *LocalSData = Args.getLastArg(options::OPT_mlocal_sdata,
options::OPT_mno_local_sdata);
Arg *ExternSData = Args.getLastArg(options::OPT_mextern_sdata,
options::OPT_mno_extern_sdata);
Arg *EmbeddedData = Args.getLastArg(options::OPT_membedded_data,
options::OPT_mno_embedded_data);
if (LocalSData) {
CmdArgs.push_back("-mllvm");
if (LocalSData->getOption().matches(options::OPT_mlocal_sdata)) {
CmdArgs.push_back("-mlocal-sdata=1");
} else {
CmdArgs.push_back("-mlocal-sdata=0");
}
LocalSData->claim();
}
if (ExternSData) {
CmdArgs.push_back("-mllvm");
if (ExternSData->getOption().matches(options::OPT_mextern_sdata)) {
CmdArgs.push_back("-mextern-sdata=1");
} else {
CmdArgs.push_back("-mextern-sdata=0");
}
ExternSData->claim();
}
if (EmbeddedData) {
CmdArgs.push_back("-mllvm");
if (EmbeddedData->getOption().matches(options::OPT_membedded_data)) {
CmdArgs.push_back("-membedded-data=1");
} else {
CmdArgs.push_back("-membedded-data=0");
}
EmbeddedData->claim();
}
} else if ((!ABICalls || (!NoABICalls && ABICalls)) && WantGPOpt)
D.Diag(diag::warn_drv_unsupported_gpopt) << (ABICalls ? 0 : 1);
if (GPOpt)
GPOpt->claim();
if (Arg *A = Args.getLastArg(options::OPT_mcompact_branches_EQ)) {
StringRef Val = StringRef(A->getValue());
if (mips::hasCompactBranches(CPUName)) {
if (Val == "never" || Val == "always" || Val == "optimal") {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-mips-compact-branches=" + Val));
} else
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
} else
D.Diag(diag::warn_target_unsupported_compact_branches) << CPUName;
}
if (Arg *A = Args.getLastArg(options::OPT_mrelax_pic_calls,
options::OPT_mno_relax_pic_calls)) {
if (A->getOption().matches(options::OPT_mno_relax_pic_calls)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-mips-jalr-reloc=0");
}
}
}
void Clang::AddPPCTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
// Select the ABI to use.
const char *ABIName = nullptr;
if (getToolChain().getTriple().isOSLinux())
switch (getToolChain().getArch()) {
case llvm::Triple::ppc64: {
// When targeting a processor that supports QPX, or if QPX is
// specifically enabled, default to using the ABI that supports QPX (so
// long as it is not specifically disabled).
bool HasQPX = false;
if (Arg *A = Args.getLastArg(options::OPT_mcpu_EQ))
HasQPX = A->getValue() == StringRef("a2q");
HasQPX = Args.hasFlag(options::OPT_mqpx, options::OPT_mno_qpx, HasQPX);
if (HasQPX) {
ABIName = "elfv1-qpx";
break;
}
ABIName = "elfv1";
break;
}
case llvm::Triple::ppc64le:
ABIName = "elfv2";
break;
default:
break;
}
if (Arg *A = Args.getLastArg(options::OPT_mabi_EQ))
// The ppc64 linux abis are all "altivec" abis by default. Accept and ignore
// the option if given as we don't have backend support for any targets
// that don't use the altivec abi.
if (StringRef(A->getValue()) != "altivec")
ABIName = A->getValue();
ppc::FloatABI FloatABI =
ppc::getPPCFloatABI(getToolChain().getDriver(), Args);
if (FloatABI == ppc::FloatABI::Soft) {
// Floating point operations and argument passing are soft.
CmdArgs.push_back("-msoft-float");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
} else {
// Floating point operations and argument passing are hard.
assert(FloatABI == ppc::FloatABI::Hard && "Invalid float abi!");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("hard");
}
if (ABIName) {
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName);
}
}
void Clang::AddRISCVTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
// FIXME: currently defaults to the soft-float ABIs. Will need to be
// expanded to select ilp32f, ilp32d, lp64f, lp64d when appropriate.
const char *ABIName = nullptr;
const llvm::Triple &Triple = getToolChain().getTriple();
if (Arg *A = Args.getLastArg(options::OPT_mabi_EQ))
ABIName = A->getValue();
else if (Triple.getArch() == llvm::Triple::riscv32)
ABIName = "ilp32";
else if (Triple.getArch() == llvm::Triple::riscv64)
ABIName = "lp64";
else
llvm_unreachable("Unexpected triple!");
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName);
}
void Clang::AddSparcTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
sparc::FloatABI FloatABI =
sparc::getSparcFloatABI(getToolChain().getDriver(), Args);
if (FloatABI == sparc::FloatABI::Soft) {
// Floating point operations and argument passing are soft.
CmdArgs.push_back("-msoft-float");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
} else {
// Floating point operations and argument passing are hard.
assert(FloatABI == sparc::FloatABI::Hard && "Invalid float abi!");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("hard");
}
}
void Clang::AddSystemZTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
if (Args.hasFlag(options::OPT_mbackchain, options::OPT_mno_backchain, false))
CmdArgs.push_back("-mbackchain");
}
void Clang::AddX86TargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
if (!Args.hasFlag(options::OPT_mred_zone, options::OPT_mno_red_zone, true) ||
Args.hasArg(options::OPT_mkernel) ||
Args.hasArg(options::OPT_fapple_kext))
CmdArgs.push_back("-disable-red-zone");
if (!Args.hasFlag(options::OPT_mtls_direct_seg_refs,
options::OPT_mno_tls_direct_seg_refs, true))
CmdArgs.push_back("-mno-tls-direct-seg-refs");
// Default to avoid implicit floating-point for kernel/kext code, but allow
// that to be overridden with -mno-soft-float.
bool NoImplicitFloat = (Args.hasArg(options::OPT_mkernel) ||
Args.hasArg(options::OPT_fapple_kext));
if (Arg *A = Args.getLastArg(
options::OPT_msoft_float, options::OPT_mno_soft_float,
options::OPT_mimplicit_float, options::OPT_mno_implicit_float)) {
const Option &O = A->getOption();
NoImplicitFloat = (O.matches(options::OPT_mno_implicit_float) ||
O.matches(options::OPT_msoft_float));
}
if (NoImplicitFloat)
CmdArgs.push_back("-no-implicit-float");
if (Arg *A = Args.getLastArg(options::OPT_masm_EQ)) {
StringRef Value = A->getValue();
if (Value == "intel" || Value == "att") {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-x86-asm-syntax=" + Value));
} else {
getToolChain().getDriver().Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Value;
}
} else if (getToolChain().getDriver().IsCLMode()) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-x86-asm-syntax=intel");
}
// Set flags to support MCU ABI.
if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
CmdArgs.push_back("-mstack-alignment=4");
}
}
void Clang::AddHexagonTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
CmdArgs.push_back("-mqdsp6-compat");
CmdArgs.push_back("-Wreturn-type");
if (auto G = toolchains::HexagonToolChain::getSmallDataThreshold(Args)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-hexagon-small-data-threshold=" +
Twine(G.getValue())));
}
if (!Args.hasArg(options::OPT_fno_short_enums))
CmdArgs.push_back("-fshort-enums");
if (Args.getLastArg(options::OPT_mieee_rnd_near)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-enable-hexagon-ieee-rnd-near");
}
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-machine-sink-split=0");
}
void Clang::AddLanaiTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
if (Arg *A = Args.getLastArg(options::OPT_mcpu_EQ)) {
StringRef CPUName = A->getValue();
CmdArgs.push_back("-target-cpu");
CmdArgs.push_back(Args.MakeArgString(CPUName));
}
if (Arg *A = Args.getLastArg(options::OPT_mregparm_EQ)) {
StringRef Value = A->getValue();
// Only support mregparm=4 to support old usage. Report error for all other
// cases.
int Mregparm;
if (Value.getAsInteger(10, Mregparm)) {
if (Mregparm != 4) {
getToolChain().getDriver().Diag(
diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Value;
}
}
}
}
void Clang::AddWebAssemblyTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
// Default to "hidden" visibility.
if (!Args.hasArg(options::OPT_fvisibility_EQ,
options::OPT_fvisibility_ms_compat)) {
CmdArgs.push_back("-fvisibility");
CmdArgs.push_back("hidden");
}
}
void Clang::DumpCompilationDatabase(Compilation &C, StringRef Filename,
StringRef Target, const InputInfo &Output,
const InputInfo &Input, const ArgList &Args) const {
// If this is a dry run, do not create the compilation database file.
if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH))
return;
using llvm::yaml::escape;
const Driver &D = getToolChain().getDriver();
if (!CompilationDatabase) {
std::error_code EC;
auto File = llvm::make_unique<llvm::raw_fd_ostream>(Filename, EC, llvm::sys::fs::F_Text);
if (EC) {
D.Diag(clang::diag::err_drv_compilationdatabase) << Filename
<< EC.message();
return;
}
CompilationDatabase = std::move(File);
}
auto &CDB = *CompilationDatabase;
SmallString<128> Buf;
if (llvm::sys::fs::current_path(Buf))
Buf = ".";
CDB << "{ \"directory\": \"" << escape(Buf) << "\"";
CDB << ", \"file\": \"" << escape(Input.getFilename()) << "\"";
CDB << ", \"output\": \"" << escape(Output.getFilename()) << "\"";
CDB << ", \"arguments\": [\"" << escape(D.ClangExecutable) << "\"";
Buf = "-x";
Buf += types::getTypeName(Input.getType());
CDB << ", \"" << escape(Buf) << "\"";
if (!D.SysRoot.empty() && !Args.hasArg(options::OPT__sysroot_EQ)) {
Buf = "--sysroot=";
Buf += D.SysRoot;
CDB << ", \"" << escape(Buf) << "\"";
}
CDB << ", \"" << escape(Input.getFilename()) << "\"";
for (auto &A: Args) {
auto &O = A->getOption();
// Skip language selection, which is positional.
if (O.getID() == options::OPT_x)
continue;
// Skip writing dependency output and the compilation database itself.
if (O.getGroup().isValid() && O.getGroup().getID() == options::OPT_M_Group)
continue;
// Skip inputs.
if (O.getKind() == Option::InputClass)
continue;
// All other arguments are quoted and appended.
ArgStringList ASL;
A->render(Args, ASL);
for (auto &it: ASL)
CDB << ", \"" << escape(it) << "\"";
}
Buf = "--target=";
Buf += Target;
CDB << ", \"" << escape(Buf) << "\"]},\n";
}
static void CollectArgsForIntegratedAssembler(Compilation &C,
const ArgList &Args,
ArgStringList &CmdArgs,
const Driver &D) {
if (UseRelaxAll(C, Args))
CmdArgs.push_back("-mrelax-all");
// Only default to -mincremental-linker-compatible if we think we are
// targeting the MSVC linker.
bool DefaultIncrementalLinkerCompatible =
C.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment();
if (Args.hasFlag(options::OPT_mincremental_linker_compatible,
options::OPT_mno_incremental_linker_compatible,
DefaultIncrementalLinkerCompatible))
CmdArgs.push_back("-mincremental-linker-compatible");
switch (C.getDefaultToolChain().getArch()) {
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
if (Arg *A = Args.getLastArg(options::OPT_mimplicit_it_EQ)) {
StringRef Value = A->getValue();
if (Value == "always" || Value == "never" || Value == "arm" ||
Value == "thumb") {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-arm-implicit-it=" + Value));
} else {
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Value;
}
}
break;
default:
break;
}
// When passing -I arguments to the assembler we sometimes need to
// unconditionally take the next argument. For example, when parsing
// '-Wa,-I -Wa,foo' we need to accept the -Wa,foo arg after seeing the
// -Wa,-I arg and when parsing '-Wa,-I,foo' we need to accept the 'foo'
// arg after parsing the '-I' arg.
bool TakeNextArg = false;
bool UseRelaxRelocations = C.getDefaultToolChain().useRelaxRelocations();
bool UseNoExecStack = C.getDefaultToolChain().isNoExecStackDefault();
const char *MipsTargetFeature = nullptr;
for (const Arg *A :
Args.filtered(options::OPT_Wa_COMMA, options::OPT_Xassembler)) {
A->claim();
for (StringRef Value : A->getValues()) {
if (TakeNextArg) {
CmdArgs.push_back(Value.data());
TakeNextArg = false;
continue;
}
if (C.getDefaultToolChain().getTriple().isOSBinFormatCOFF() &&
Value == "-mbig-obj")
continue; // LLVM handles bigobj automatically
switch (C.getDefaultToolChain().getArch()) {
default:
break;
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
case llvm::Triple::arm:
case llvm::Triple::armeb:
if (Value == "-mthumb")
// -mthumb has already been processed in ComputeLLVMTriple()
// recognize but skip over here.
continue;
break;
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
if (Value == "--trap") {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("+use-tcc-in-div");
continue;
}
if (Value == "--break") {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("-use-tcc-in-div");
continue;
}
if (Value.startswith("-msoft-float")) {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("+soft-float");
continue;
}
if (Value.startswith("-mhard-float")) {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("-soft-float");
continue;
}
MipsTargetFeature = llvm::StringSwitch<const char *>(Value)
.Case("-mips1", "+mips1")
.Case("-mips2", "+mips2")
.Case("-mips3", "+mips3")
.Case("-mips4", "+mips4")
.Case("-mips5", "+mips5")
.Case("-mips32", "+mips32")
.Case("-mips32r2", "+mips32r2")
.Case("-mips32r3", "+mips32r3")
.Case("-mips32r5", "+mips32r5")
.Case("-mips32r6", "+mips32r6")
.Case("-mips64", "+mips64")
.Case("-mips64r2", "+mips64r2")
.Case("-mips64r3", "+mips64r3")
.Case("-mips64r5", "+mips64r5")
.Case("-mips64r6", "+mips64r6")
.Default(nullptr);
if (MipsTargetFeature)
continue;
}
if (Value == "-force_cpusubtype_ALL") {
// Do nothing, this is the default and we don't support anything else.
} else if (Value == "-L") {
CmdArgs.push_back("-msave-temp-labels");
} else if (Value == "--fatal-warnings") {
CmdArgs.push_back("-massembler-fatal-warnings");
} else if (Value == "--noexecstack") {
UseNoExecStack = true;
} else if (Value.startswith("-compress-debug-sections") ||
Value.startswith("--compress-debug-sections") ||
Value == "-nocompress-debug-sections" ||
Value == "--nocompress-debug-sections") {
CmdArgs.push_back(Value.data());
} else if (Value == "-mrelax-relocations=yes" ||
Value == "--mrelax-relocations=yes") {
UseRelaxRelocations = true;
} else if (Value == "-mrelax-relocations=no" ||
Value == "--mrelax-relocations=no") {
UseRelaxRelocations = false;
} else if (Value.startswith("-I")) {
CmdArgs.push_back(Value.data());
// We need to consume the next argument if the current arg is a plain
// -I. The next arg will be the include directory.
if (Value == "-I")
TakeNextArg = true;
} else if (Value.startswith("-gdwarf-")) {
// "-gdwarf-N" options are not cc1as options.
unsigned DwarfVersion = DwarfVersionNum(Value);
if (DwarfVersion == 0) { // Send it onward, and let cc1as complain.
CmdArgs.push_back(Value.data());
} else {
RenderDebugEnablingArgs(Args, CmdArgs,
codegenoptions::LimitedDebugInfo,
DwarfVersion, llvm::DebuggerKind::Default);
}
} else if (Value.startswith("-mcpu") || Value.startswith("-mfpu") ||
Value.startswith("-mhwdiv") || Value.startswith("-march")) {
// Do nothing, we'll validate it later.
} else if (Value == "-defsym") {
if (A->getNumValues() != 2) {
D.Diag(diag::err_drv_defsym_invalid_format) << Value;
break;
}
const char *S = A->getValue(1);
auto Pair = StringRef(S).split('=');
auto Sym = Pair.first;
auto SVal = Pair.second;
if (Sym.empty() || SVal.empty()) {
D.Diag(diag::err_drv_defsym_invalid_format) << S;
break;
}
int64_t IVal;
if (SVal.getAsInteger(0, IVal)) {
D.Diag(diag::err_drv_defsym_invalid_symval) << SVal;
break;
}
CmdArgs.push_back(Value.data());
TakeNextArg = true;
} else if (Value == "-fdebug-compilation-dir") {
CmdArgs.push_back("-fdebug-compilation-dir");
TakeNextArg = true;
} else {
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Value;
}
}
}
if (UseRelaxRelocations)
CmdArgs.push_back("--mrelax-relocations");
if (UseNoExecStack)
CmdArgs.push_back("-mnoexecstack");
if (MipsTargetFeature != nullptr) {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back(MipsTargetFeature);
}
// forward -fembed-bitcode to assmebler
if (C.getDriver().embedBitcodeEnabled() ||
C.getDriver().embedBitcodeMarkerOnly())
Args.AddLastArg(CmdArgs, options::OPT_fembed_bitcode_EQ);
}
static void RenderFloatingPointOptions(const ToolChain &TC, const Driver &D,
bool OFastEnabled, const ArgList &Args,
ArgStringList &CmdArgs) {
// Handle various floating point optimization flags, mapping them to the
// appropriate LLVM code generation flags. This is complicated by several
// "umbrella" flags, so we do this by stepping through the flags incrementally
// adjusting what we think is enabled/disabled, then at the end setting the
// LLVM flags based on the final state.
bool HonorINFs = true;
bool HonorNaNs = true;
// -fmath-errno is the default on some platforms, e.g. BSD-derived OSes.
bool MathErrno = TC.IsMathErrnoDefault();
bool AssociativeMath = false;
bool ReciprocalMath = false;
bool SignedZeros = true;
bool TrappingMath = true;
StringRef DenormalFPMath = "";
StringRef FPContract = "";
if (const Arg *A = Args.getLastArg(options::OPT_flimited_precision_EQ)) {
CmdArgs.push_back("-mlimit-float-precision");
CmdArgs.push_back(A->getValue());
}
for (const Arg *A : Args) {
switch (A->getOption().getID()) {
// If this isn't an FP option skip the claim below
default: continue;
// Options controlling individual features
case options::OPT_fhonor_infinities: HonorINFs = true; break;
case options::OPT_fno_honor_infinities: HonorINFs = false; break;
case options::OPT_fhonor_nans: HonorNaNs = true; break;
case options::OPT_fno_honor_nans: HonorNaNs = false; break;
case options::OPT_fmath_errno: MathErrno = true; break;
case options::OPT_fno_math_errno: MathErrno = false; break;
case options::OPT_fassociative_math: AssociativeMath = true; break;
case options::OPT_fno_associative_math: AssociativeMath = false; break;
case options::OPT_freciprocal_math: ReciprocalMath = true; break;
case options::OPT_fno_reciprocal_math: ReciprocalMath = false; break;
case options::OPT_fsigned_zeros: SignedZeros = true; break;
case options::OPT_fno_signed_zeros: SignedZeros = false; break;
case options::OPT_ftrapping_math: TrappingMath = true; break;
case options::OPT_fno_trapping_math: TrappingMath = false; break;
case options::OPT_fdenormal_fp_math_EQ:
DenormalFPMath = A->getValue();
break;
// Validate and pass through -fp-contract option.
case options::OPT_ffp_contract: {
StringRef Val = A->getValue();
if (Val == "fast" || Val == "on" || Val == "off")
FPContract = Val;
else
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
break;
}
case options::OPT_ffinite_math_only:
HonorINFs = false;
HonorNaNs = false;
break;
case options::OPT_fno_finite_math_only:
HonorINFs = true;
HonorNaNs = true;
break;
case options::OPT_funsafe_math_optimizations:
AssociativeMath = true;
ReciprocalMath = true;
SignedZeros = false;
TrappingMath = false;
break;
case options::OPT_fno_unsafe_math_optimizations:
AssociativeMath = false;
ReciprocalMath = false;
SignedZeros = true;
TrappingMath = true;
// -fno_unsafe_math_optimizations restores default denormal handling
DenormalFPMath = "";
break;
case options::OPT_Ofast:
// If -Ofast is the optimization level, then -ffast-math should be enabled
if (!OFastEnabled)
continue;
LLVM_FALLTHROUGH;
case options::OPT_ffast_math:
HonorINFs = false;
HonorNaNs = false;
MathErrno = false;
AssociativeMath = true;
ReciprocalMath = true;
SignedZeros = false;
TrappingMath = false;
// If fast-math is set then set the fp-contract mode to fast.
FPContract = "fast";
break;
case options::OPT_fno_fast_math:
HonorINFs = true;
HonorNaNs = true;
// Turning on -ffast-math (with either flag) removes the need for
// MathErrno. However, turning *off* -ffast-math merely restores the
// toolchain default (which may be false).
MathErrno = TC.IsMathErrnoDefault();
AssociativeMath = false;
ReciprocalMath = false;
SignedZeros = true;
TrappingMath = true;
// -fno_fast_math restores default denormal and fpcontract handling
DenormalFPMath = "";
FPContract = "";
break;
}
// If we handled this option claim it
A->claim();
}
if<