| /* cairo - a vector graphics library with display and print output |
| * |
| * Copyright © 2002 University of Southern California |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it either under the terms of the GNU Lesser General Public |
| * License version 2.1 as published by the Free Software Foundation |
| * (the "LGPL") or, at your option, under the terms of the Mozilla |
| * Public License Version 1.1 (the "MPL"). If you do not alter this |
| * notice, a recipient may use your version of this file under either |
| * the MPL or the LGPL. |
| * |
| * You should have received a copy of the LGPL along with this library |
| * in the file COPYING-LGPL-2.1; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA |
| * You should have received a copy of the MPL along with this library |
| * in the file COPYING-MPL-1.1 |
| * |
| * The contents of this file are subject to the Mozilla Public License |
| * Version 1.1 (the "License"); you may not use this file except in |
| * compliance with the License. You may obtain a copy of the License at |
| * http://www.mozilla.org/MPL/ |
| * |
| * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY |
| * OF ANY KIND, either express or implied. See the LGPL or the MPL for |
| * the specific language governing rights and limitations. |
| * |
| * The Original Code is the cairo graphics library. |
| * |
| * The Initial Developer of the Original Code is University of Southern |
| * California. |
| * |
| * Contributor(s): |
| * Carl D. Worth <cworth@cworth.org> |
| */ |
| |
| #include "cairoint.h" |
| |
| #include "cairo-box-inline.h" |
| #include "cairo-slope-private.h" |
| |
| cairo_bool_t |
| _cairo_spline_intersects (const cairo_point_t *a, |
| const cairo_point_t *b, |
| const cairo_point_t *c, |
| const cairo_point_t *d, |
| const cairo_box_t *box) |
| { |
| cairo_box_t bounds; |
| |
| if (_cairo_box_contains_point (box, a) || |
| _cairo_box_contains_point (box, b) || |
| _cairo_box_contains_point (box, c) || |
| _cairo_box_contains_point (box, d)) |
| { |
| return TRUE; |
| } |
| |
| bounds.p2 = bounds.p1 = *a; |
| _cairo_box_add_point (&bounds, b); |
| _cairo_box_add_point (&bounds, c); |
| _cairo_box_add_point (&bounds, d); |
| |
| if (bounds.p2.x <= box->p1.x || bounds.p1.x >= box->p2.x || |
| bounds.p2.y <= box->p1.y || bounds.p1.y >= box->p2.y) |
| { |
| return FALSE; |
| } |
| |
| #if 0 /* worth refining? */ |
| bounds.p2 = bounds.p1 = *a; |
| _cairo_box_add_curve_to (&bounds, b, c, d); |
| if (bounds.p2.x <= box->p1.x || bounds.p1.x >= box->p2.x || |
| bounds.p2.y <= box->p1.y || bounds.p1.y >= box->p2.y) |
| { |
| return FALSE; |
| } |
| #endif |
| |
| return TRUE; |
| } |
| |
| cairo_bool_t |
| _cairo_spline_init (cairo_spline_t *spline, |
| cairo_spline_add_point_func_t add_point_func, |
| void *closure, |
| const cairo_point_t *a, const cairo_point_t *b, |
| const cairo_point_t *c, const cairo_point_t *d) |
| { |
| /* If both tangents are zero, this is just a straight line */ |
| if (a->x == b->x && a->y == b->y && c->x == d->x && c->y == d->y) |
| return FALSE; |
| |
| spline->add_point_func = add_point_func; |
| spline->closure = closure; |
| |
| spline->knots.a = *a; |
| spline->knots.b = *b; |
| spline->knots.c = *c; |
| spline->knots.d = *d; |
| |
| if (a->x != b->x || a->y != b->y) |
| _cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.b); |
| else if (a->x != c->x || a->y != c->y) |
| _cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.c); |
| else if (a->x != d->x || a->y != d->y) |
| _cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.d); |
| else |
| return FALSE; |
| |
| if (c->x != d->x || c->y != d->y) |
| _cairo_slope_init (&spline->final_slope, &spline->knots.c, &spline->knots.d); |
| else if (b->x != d->x || b->y != d->y) |
| _cairo_slope_init (&spline->final_slope, &spline->knots.b, &spline->knots.d); |
| else |
| return FALSE; /* just treat this as a straight-line from a -> d */ |
| |
| /* XXX if the initial, final and vector are all equal, this is just a line */ |
| |
| return TRUE; |
| } |
| |
| static cairo_status_t |
| _cairo_spline_add_point (cairo_spline_t *spline, |
| const cairo_point_t *point, |
| const cairo_point_t *knot) |
| { |
| cairo_point_t *prev; |
| cairo_slope_t slope; |
| |
| prev = &spline->last_point; |
| if (prev->x == point->x && prev->y == point->y) |
| return CAIRO_STATUS_SUCCESS; |
| |
| _cairo_slope_init (&slope, point, knot); |
| |
| spline->last_point = *point; |
| return spline->add_point_func (spline->closure, point, &slope); |
| } |
| |
| static void |
| _lerp_half (const cairo_point_t *a, const cairo_point_t *b, cairo_point_t *result) |
| { |
| result->x = a->x + ((b->x - a->x) >> 1); |
| result->y = a->y + ((b->y - a->y) >> 1); |
| } |
| |
| static void |
| _de_casteljau (cairo_spline_knots_t *s1, cairo_spline_knots_t *s2) |
| { |
| cairo_point_t ab, bc, cd; |
| cairo_point_t abbc, bccd; |
| cairo_point_t final; |
| |
| _lerp_half (&s1->a, &s1->b, &ab); |
| _lerp_half (&s1->b, &s1->c, &bc); |
| _lerp_half (&s1->c, &s1->d, &cd); |
| _lerp_half (&ab, &bc, &abbc); |
| _lerp_half (&bc, &cd, &bccd); |
| _lerp_half (&abbc, &bccd, &final); |
| |
| s2->a = final; |
| s2->b = bccd; |
| s2->c = cd; |
| s2->d = s1->d; |
| |
| s1->b = ab; |
| s1->c = abbc; |
| s1->d = final; |
| } |
| |
| /* Return an upper bound on the error (squared) that could result from |
| * approximating a spline as a line segment connecting the two endpoints. */ |
| static double |
| _cairo_spline_error_squared (const cairo_spline_knots_t *knots) |
| { |
| double bdx, bdy, berr; |
| double cdx, cdy, cerr; |
| |
| /* We are going to compute the distance (squared) between each of the the b |
| * and c control points and the segment a-b. The maximum of these two |
| * distances will be our approximation error. */ |
| |
| bdx = _cairo_fixed_to_double (knots->b.x - knots->a.x); |
| bdy = _cairo_fixed_to_double (knots->b.y - knots->a.y); |
| |
| cdx = _cairo_fixed_to_double (knots->c.x - knots->a.x); |
| cdy = _cairo_fixed_to_double (knots->c.y - knots->a.y); |
| |
| if (knots->a.x != knots->d.x || knots->a.y != knots->d.y) { |
| /* Intersection point (px): |
| * px = p1 + u(p2 - p1) |
| * (p - px) ∙ (p2 - p1) = 0 |
| * Thus: |
| * u = ((p - p1) ∙ (p2 - p1)) / ∥p2 - p1∥²; |
| */ |
| |
| double dx, dy, u, v; |
| |
| dx = _cairo_fixed_to_double (knots->d.x - knots->a.x); |
| dy = _cairo_fixed_to_double (knots->d.y - knots->a.y); |
| v = dx * dx + dy * dy; |
| |
| u = bdx * dx + bdy * dy; |
| if (u <= 0) { |
| /* bdx -= 0; |
| * bdy -= 0; |
| */ |
| } else if (u >= v) { |
| bdx -= dx; |
| bdy -= dy; |
| } else { |
| bdx -= u/v * dx; |
| bdy -= u/v * dy; |
| } |
| |
| u = cdx * dx + cdy * dy; |
| if (u <= 0) { |
| /* cdx -= 0; |
| * cdy -= 0; |
| */ |
| } else if (u >= v) { |
| cdx -= dx; |
| cdy -= dy; |
| } else { |
| cdx -= u/v * dx; |
| cdy -= u/v * dy; |
| } |
| } |
| |
| berr = bdx * bdx + bdy * bdy; |
| cerr = cdx * cdx + cdy * cdy; |
| if (berr > cerr) |
| return berr; |
| else |
| return cerr; |
| } |
| |
| static cairo_status_t |
| _cairo_spline_decompose_into (cairo_spline_knots_t *s1, |
| double tolerance_squared, |
| cairo_spline_t *result) |
| { |
| cairo_spline_knots_t s2; |
| cairo_status_t status; |
| |
| if (_cairo_spline_error_squared (s1) < tolerance_squared) |
| return _cairo_spline_add_point (result, &s1->a, &s1->b); |
| |
| _de_casteljau (s1, &s2); |
| |
| status = _cairo_spline_decompose_into (s1, tolerance_squared, result); |
| if (unlikely (status)) |
| return status; |
| |
| return _cairo_spline_decompose_into (&s2, tolerance_squared, result); |
| } |
| |
| cairo_status_t |
| _cairo_spline_decompose (cairo_spline_t *spline, double tolerance) |
| { |
| cairo_spline_knots_t s1; |
| cairo_status_t status; |
| |
| s1 = spline->knots; |
| spline->last_point = s1.a; |
| status = _cairo_spline_decompose_into (&s1, tolerance * tolerance, spline); |
| if (unlikely (status)) |
| return status; |
| |
| return spline->add_point_func (spline->closure, |
| &spline->knots.d, &spline->final_slope); |
| } |
| |
| /* Note: this function is only good for computing bounds in device space. */ |
| cairo_status_t |
| _cairo_spline_bound (cairo_spline_add_point_func_t add_point_func, |
| void *closure, |
| const cairo_point_t *p0, const cairo_point_t *p1, |
| const cairo_point_t *p2, const cairo_point_t *p3) |
| { |
| double x0, x1, x2, x3; |
| double y0, y1, y2, y3; |
| double a, b, c; |
| double t[4]; |
| int t_num = 0, i; |
| cairo_status_t status; |
| |
| x0 = _cairo_fixed_to_double (p0->x); |
| y0 = _cairo_fixed_to_double (p0->y); |
| x1 = _cairo_fixed_to_double (p1->x); |
| y1 = _cairo_fixed_to_double (p1->y); |
| x2 = _cairo_fixed_to_double (p2->x); |
| y2 = _cairo_fixed_to_double (p2->y); |
| x3 = _cairo_fixed_to_double (p3->x); |
| y3 = _cairo_fixed_to_double (p3->y); |
| |
| /* The spline can be written as a polynomial of the four points: |
| * |
| * (1-t)³p0 + 3t(1-t)²p1 + 3t²(1-t)p2 + t³p3 |
| * |
| * for 0≤t≤1. Now, the X and Y components of the spline follow the |
| * same polynomial but with x and y replaced for p. To find the |
| * bounds of the spline, we just need to find the X and Y bounds. |
| * To find the bound, we take the derivative and equal it to zero, |
| * and solve to find the t's that give the extreme points. |
| * |
| * Here is the derivative of the curve, sorted on t: |
| * |
| * 3t²(-p0+3p1-3p2+p3) + 2t(3p0-6p1+3p2) -3p0+3p1 |
| * |
| * Let: |
| * |
| * a = -p0+3p1-3p2+p3 |
| * b = p0-2p1+p2 |
| * c = -p0+p1 |
| * |
| * Gives: |
| * |
| * a.t² + 2b.t + c = 0 |
| * |
| * With: |
| * |
| * delta = b*b - a*c |
| * |
| * the extreme points are at -c/2b if a is zero, at (-b±√delta)/a if |
| * delta is positive, and at -b/a if delta is zero. |
| */ |
| |
| #define ADD(t0) \ |
| { \ |
| double _t0 = (t0); \ |
| if (0 < _t0 && _t0 < 1) \ |
| t[t_num++] = _t0; \ |
| } |
| |
| #define FIND_EXTREMES(a,b,c) \ |
| { \ |
| if (a == 0) { \ |
| if (b != 0) \ |
| ADD (-c / (2*b)); \ |
| } else { \ |
| double b2 = b * b; \ |
| double delta = b2 - a * c; \ |
| if (delta > 0) { \ |
| cairo_bool_t feasible; \ |
| double _2ab = 2 * a * b; \ |
| /* We are only interested in solutions t that satisfy 0<t<1 \ |
| * here. We do some checks to avoid sqrt if the solutions \ |
| * are not in that range. The checks can be derived from: \ |
| * \ |
| * 0 < (-b±√delta)/a < 1 \ |
| */ \ |
| if (_2ab >= 0) \ |
| feasible = delta > b2 && delta < a*a + b2 + _2ab; \ |
| else if (-b / a >= 1) \ |
| feasible = delta < b2 && delta > a*a + b2 + _2ab; \ |
| else \ |
| feasible = delta < b2 || delta < a*a + b2 + _2ab; \ |
| \ |
| if (unlikely (feasible)) { \ |
| double sqrt_delta = sqrt (delta); \ |
| ADD ((-b - sqrt_delta) / a); \ |
| ADD ((-b + sqrt_delta) / a); \ |
| } \ |
| } else if (delta == 0) { \ |
| ADD (-b / a); \ |
| } \ |
| } \ |
| } |
| |
| /* Find X extremes */ |
| a = -x0 + 3*x1 - 3*x2 + x3; |
| b = x0 - 2*x1 + x2; |
| c = -x0 + x1; |
| FIND_EXTREMES (a, b, c); |
| |
| /* Find Y extremes */ |
| a = -y0 + 3*y1 - 3*y2 + y3; |
| b = y0 - 2*y1 + y2; |
| c = -y0 + y1; |
| FIND_EXTREMES (a, b, c); |
| |
| status = add_point_func (closure, p0, NULL); |
| if (unlikely (status)) |
| return status; |
| |
| for (i = 0; i < t_num; i++) { |
| cairo_point_t p; |
| double x, y; |
| double t_1_0, t_0_1; |
| double t_2_0, t_0_2; |
| double t_3_0, t_2_1_3, t_1_2_3, t_0_3; |
| |
| t_1_0 = t[i]; /* t */ |
| t_0_1 = 1 - t_1_0; /* (1 - t) */ |
| |
| t_2_0 = t_1_0 * t_1_0; /* t * t */ |
| t_0_2 = t_0_1 * t_0_1; /* (1 - t) * (1 - t) */ |
| |
| t_3_0 = t_2_0 * t_1_0; /* t * t * t */ |
| t_2_1_3 = t_2_0 * t_0_1 * 3; /* t * t * (1 - t) * 3 */ |
| t_1_2_3 = t_1_0 * t_0_2 * 3; /* t * (1 - t) * (1 - t) * 3 */ |
| t_0_3 = t_0_1 * t_0_2; /* (1 - t) * (1 - t) * (1 - t) */ |
| |
| /* Bezier polynomial */ |
| x = x0 * t_0_3 |
| + x1 * t_1_2_3 |
| + x2 * t_2_1_3 |
| + x3 * t_3_0; |
| y = y0 * t_0_3 |
| + y1 * t_1_2_3 |
| + y2 * t_2_1_3 |
| + y3 * t_3_0; |
| |
| p.x = _cairo_fixed_from_double (x); |
| p.y = _cairo_fixed_from_double (y); |
| status = add_point_func (closure, &p, NULL); |
| if (unlikely (status)) |
| return status; |
| } |
| |
| return add_point_func (closure, p3, NULL); |
| } |