| /* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */ |
| /* cairo - a vector graphics library with display and print output |
| * |
| * Copyright © 2002 University of Southern California |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it either under the terms of the GNU Lesser General Public |
| * License version 2.1 as published by the Free Software Foundation |
| * (the "LGPL") or, at your option, under the terms of the Mozilla |
| * Public License Version 1.1 (the "MPL"). If you do not alter this |
| * notice, a recipient may use your version of this file under either |
| * the MPL or the LGPL. |
| * |
| * You should have received a copy of the LGPL along with this library |
| * in the file COPYING-LGPL-2.1; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA |
| * You should have received a copy of the MPL along with this library |
| * in the file COPYING-MPL-1.1 |
| * |
| * The contents of this file are subject to the Mozilla Public License |
| * Version 1.1 (the "License"); you may not use this file except in |
| * compliance with the License. You may obtain a copy of the License at |
| * http://www.mozilla.org/MPL/ |
| * |
| * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY |
| * OF ANY KIND, either express or implied. See the LGPL or the MPL for |
| * the specific language governing rights and limitations. |
| * |
| * The Original Code is the cairo graphics library. |
| * |
| * The Initial Developer of the Original Code is University of Southern |
| * California. |
| * |
| * Contributor(s): |
| * Carl D. Worth <cworth@cworth.org> |
| * Chris Wilson <chris@chris-wilson.co.uk> |
| */ |
| |
| #define _BSD_SOURCE /* for hypot() */ |
| #include "cairoint.h" |
| |
| #include "cairo-box-inline.h" |
| #include "cairo-boxes-private.h" |
| #include "cairo-error-private.h" |
| #include "cairo-path-fixed-private.h" |
| #include "cairo-slope-private.h" |
| #include "cairo-stroke-dash-private.h" |
| #include "cairo-traps-private.h" |
| |
| typedef struct cairo_stroker { |
| cairo_stroke_style_t style; |
| |
| const cairo_matrix_t *ctm; |
| const cairo_matrix_t *ctm_inverse; |
| double half_line_width; |
| double tolerance; |
| double spline_cusp_tolerance; |
| double ctm_determinant; |
| cairo_bool_t ctm_det_positive; |
| |
| void *closure; |
| cairo_status_t (*add_external_edge) (void *closure, |
| const cairo_point_t *p1, |
| const cairo_point_t *p2); |
| cairo_status_t (*add_triangle) (void *closure, |
| const cairo_point_t triangle[3]); |
| cairo_status_t (*add_triangle_fan) (void *closure, |
| const cairo_point_t *midpt, |
| const cairo_point_t *points, |
| int npoints); |
| cairo_status_t (*add_convex_quad) (void *closure, |
| const cairo_point_t quad[4]); |
| |
| cairo_pen_t pen; |
| |
| cairo_point_t current_point; |
| cairo_point_t first_point; |
| |
| cairo_bool_t has_initial_sub_path; |
| |
| cairo_bool_t has_current_face; |
| cairo_stroke_face_t current_face; |
| |
| cairo_bool_t has_first_face; |
| cairo_stroke_face_t first_face; |
| |
| cairo_stroker_dash_t dash; |
| |
| cairo_bool_t has_bounds; |
| cairo_box_t bounds; |
| } cairo_stroker_t; |
| |
| static void |
| _cairo_stroker_limit (cairo_stroker_t *stroker, |
| const cairo_path_fixed_t *path, |
| const cairo_box_t *boxes, |
| int num_boxes) |
| { |
| double dx, dy; |
| cairo_fixed_t fdx, fdy; |
| |
| stroker->has_bounds = TRUE; |
| _cairo_boxes_get_extents (boxes, num_boxes, &stroker->bounds); |
| |
| /* Extend the bounds in each direction to account for the maximum area |
| * we might generate trapezoids, to capture line segments that are outside |
| * of the bounds but which might generate rendering that's within bounds. |
| */ |
| |
| _cairo_stroke_style_max_distance_from_path (&stroker->style, path, |
| stroker->ctm, &dx, &dy); |
| |
| fdx = _cairo_fixed_from_double (dx); |
| fdy = _cairo_fixed_from_double (dy); |
| |
| stroker->bounds.p1.x -= fdx; |
| stroker->bounds.p2.x += fdx; |
| |
| stroker->bounds.p1.y -= fdy; |
| stroker->bounds.p2.y += fdy; |
| } |
| |
| static cairo_status_t |
| _cairo_stroker_init (cairo_stroker_t *stroker, |
| const cairo_path_fixed_t *path, |
| const cairo_stroke_style_t *stroke_style, |
| const cairo_matrix_t *ctm, |
| const cairo_matrix_t *ctm_inverse, |
| double tolerance, |
| const cairo_box_t *limits, |
| int num_limits) |
| { |
| cairo_status_t status; |
| |
| stroker->style = *stroke_style; |
| stroker->ctm = ctm; |
| stroker->ctm_inverse = ctm_inverse; |
| stroker->tolerance = tolerance; |
| stroker->half_line_width = stroke_style->line_width / 2.0; |
| |
| /* To test whether we need to join two segments of a spline using |
| * a round-join or a bevel-join, we can inspect the angle between the |
| * two segments. If the difference between the chord distance |
| * (half-line-width times the cosine of the bisection angle) and the |
| * half-line-width itself is greater than tolerance then we need to |
| * inject a point. |
| */ |
| stroker->spline_cusp_tolerance = 1 - tolerance / stroker->half_line_width; |
| stroker->spline_cusp_tolerance *= stroker->spline_cusp_tolerance; |
| stroker->spline_cusp_tolerance *= 2; |
| stroker->spline_cusp_tolerance -= 1; |
| |
| stroker->ctm_determinant = _cairo_matrix_compute_determinant (stroker->ctm); |
| stroker->ctm_det_positive = stroker->ctm_determinant >= 0.0; |
| |
| status = _cairo_pen_init (&stroker->pen, |
| stroker->half_line_width, tolerance, ctm); |
| if (unlikely (status)) |
| return status; |
| |
| stroker->has_current_face = FALSE; |
| stroker->has_first_face = FALSE; |
| stroker->has_initial_sub_path = FALSE; |
| |
| _cairo_stroker_dash_init (&stroker->dash, stroke_style); |
| |
| stroker->add_external_edge = NULL; |
| |
| stroker->has_bounds = FALSE; |
| if (num_limits) |
| _cairo_stroker_limit (stroker, path, limits, num_limits); |
| |
| return CAIRO_STATUS_SUCCESS; |
| } |
| |
| static void |
| _cairo_stroker_fini (cairo_stroker_t *stroker) |
| { |
| _cairo_pen_fini (&stroker->pen); |
| } |
| |
| static void |
| _translate_point (cairo_point_t *point, const cairo_point_t *offset) |
| { |
| point->x += offset->x; |
| point->y += offset->y; |
| } |
| |
| static int |
| _cairo_stroker_join_is_clockwise (const cairo_stroke_face_t *in, |
| const cairo_stroke_face_t *out) |
| { |
| cairo_slope_t in_slope, out_slope; |
| |
| _cairo_slope_init (&in_slope, &in->point, &in->cw); |
| _cairo_slope_init (&out_slope, &out->point, &out->cw); |
| |
| return _cairo_slope_compare (&in_slope, &out_slope) < 0; |
| } |
| |
| /** |
| * _cairo_slope_compare_sgn: |
| * |
| * Return -1, 0 or 1 depending on the relative slopes of |
| * two lines. |
| **/ |
| static int |
| _cairo_slope_compare_sgn (double dx1, double dy1, double dx2, double dy2) |
| { |
| double c = (dx1 * dy2 - dx2 * dy1); |
| |
| if (c > 0) return 1; |
| if (c < 0) return -1; |
| return 0; |
| } |
| |
| static inline int |
| _range_step (int i, int step, int max) |
| { |
| i += step; |
| if (i < 0) |
| i = max - 1; |
| if (i >= max) |
| i = 0; |
| return i; |
| } |
| |
| /* |
| * Construct a fan around the midpoint using the vertices from pen between |
| * inpt and outpt. |
| */ |
| static cairo_status_t |
| _tessellate_fan (cairo_stroker_t *stroker, |
| const cairo_slope_t *in_vector, |
| const cairo_slope_t *out_vector, |
| const cairo_point_t *midpt, |
| const cairo_point_t *inpt, |
| const cairo_point_t *outpt, |
| cairo_bool_t clockwise) |
| { |
| cairo_point_t stack_points[64], *points = stack_points; |
| cairo_pen_t *pen = &stroker->pen; |
| int start, stop, num_points = 0; |
| cairo_status_t status; |
| |
| if (stroker->has_bounds && |
| ! _cairo_box_contains_point (&stroker->bounds, midpt)) |
| goto BEVEL; |
| |
| assert (stroker->pen.num_vertices); |
| |
| if (clockwise) { |
| _cairo_pen_find_active_ccw_vertices (pen, |
| in_vector, out_vector, |
| &start, &stop); |
| if (stroker->add_external_edge) { |
| cairo_point_t last; |
| last = *inpt; |
| while (start != stop) { |
| cairo_point_t p = *midpt; |
| _translate_point (&p, &pen->vertices[start].point); |
| |
| status = stroker->add_external_edge (stroker->closure, |
| &last, &p); |
| if (unlikely (status)) |
| return status; |
| last = p; |
| |
| if (start-- == 0) |
| start += pen->num_vertices; |
| } |
| status = stroker->add_external_edge (stroker->closure, |
| &last, outpt); |
| } else { |
| if (start == stop) |
| goto BEVEL; |
| |
| num_points = stop - start; |
| if (num_points < 0) |
| num_points += pen->num_vertices; |
| num_points += 2; |
| if (num_points > ARRAY_LENGTH(stack_points)) { |
| points = _cairo_malloc_ab (num_points, sizeof (cairo_point_t)); |
| if (unlikely (points == NULL)) |
| return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
| } |
| |
| points[0] = *inpt; |
| num_points = 1; |
| while (start != stop) { |
| points[num_points] = *midpt; |
| _translate_point (&points[num_points], &pen->vertices[start].point); |
| num_points++; |
| |
| if (start-- == 0) |
| start += pen->num_vertices; |
| } |
| points[num_points++] = *outpt; |
| } |
| } else { |
| _cairo_pen_find_active_cw_vertices (pen, |
| in_vector, out_vector, |
| &start, &stop); |
| if (stroker->add_external_edge) { |
| cairo_point_t last; |
| last = *inpt; |
| while (start != stop) { |
| cairo_point_t p = *midpt; |
| _translate_point (&p, &pen->vertices[start].point); |
| |
| status = stroker->add_external_edge (stroker->closure, |
| &p, &last); |
| if (unlikely (status)) |
| return status; |
| last = p; |
| |
| if (++start == pen->num_vertices) |
| start = 0; |
| } |
| status = stroker->add_external_edge (stroker->closure, |
| outpt, &last); |
| } else { |
| if (start == stop) |
| goto BEVEL; |
| |
| num_points = stop - start; |
| if (num_points < 0) |
| num_points += pen->num_vertices; |
| num_points += 2; |
| if (num_points > ARRAY_LENGTH(stack_points)) { |
| points = _cairo_malloc_ab (num_points, sizeof (cairo_point_t)); |
| if (unlikely (points == NULL)) |
| return _cairo_error (CAIRO_STATUS_NO_MEMORY); |
| } |
| |
| points[0] = *inpt; |
| num_points = 1; |
| while (start != stop) { |
| points[num_points] = *midpt; |
| _translate_point (&points[num_points], &pen->vertices[start].point); |
| num_points++; |
| |
| if (++start == pen->num_vertices) |
| start = 0; |
| } |
| points[num_points++] = *outpt; |
| } |
| } |
| |
| if (num_points) { |
| status = stroker->add_triangle_fan (stroker->closure, |
| midpt, points, num_points); |
| } |
| |
| if (points != stack_points) |
| free (points); |
| |
| return status; |
| |
| BEVEL: |
| /* Ensure a leak free connection... */ |
| if (stroker->add_external_edge != NULL) { |
| if (clockwise) |
| return stroker->add_external_edge (stroker->closure, inpt, outpt); |
| else |
| return stroker->add_external_edge (stroker->closure, outpt, inpt); |
| } else { |
| stack_points[0] = *midpt; |
| stack_points[1] = *inpt; |
| stack_points[2] = *outpt; |
| return stroker->add_triangle (stroker->closure, stack_points); |
| } |
| } |
| |
| static cairo_status_t |
| _cairo_stroker_join (cairo_stroker_t *stroker, |
| const cairo_stroke_face_t *in, |
| const cairo_stroke_face_t *out) |
| { |
| int clockwise = _cairo_stroker_join_is_clockwise (out, in); |
| const cairo_point_t *inpt, *outpt; |
| cairo_point_t points[4]; |
| cairo_status_t status; |
| |
| if (in->cw.x == out->cw.x && in->cw.y == out->cw.y && |
| in->ccw.x == out->ccw.x && in->ccw.y == out->ccw.y) |
| { |
| return CAIRO_STATUS_SUCCESS; |
| } |
| |
| if (clockwise) { |
| if (stroker->add_external_edge != NULL) { |
| status = stroker->add_external_edge (stroker->closure, |
| &out->cw, &in->point); |
| if (unlikely (status)) |
| return status; |
| |
| status = stroker->add_external_edge (stroker->closure, |
| &in->point, &in->cw); |
| if (unlikely (status)) |
| return status; |
| } |
| |
| inpt = &in->ccw; |
| outpt = &out->ccw; |
| } else { |
| if (stroker->add_external_edge != NULL) { |
| status = stroker->add_external_edge (stroker->closure, |
| &in->ccw, &in->point); |
| if (unlikely (status)) |
| return status; |
| |
| status = stroker->add_external_edge (stroker->closure, |
| &in->point, &out->ccw); |
| if (unlikely (status)) |
| return status; |
| } |
| |
| inpt = &in->cw; |
| outpt = &out->cw; |
| } |
| |
| switch (stroker->style.line_join) { |
| case CAIRO_LINE_JOIN_ROUND: |
| /* construct a fan around the common midpoint */ |
| return _tessellate_fan (stroker, |
| &in->dev_vector, |
| &out->dev_vector, |
| &in->point, inpt, outpt, |
| clockwise); |
| |
| case CAIRO_LINE_JOIN_MITER: |
| default: { |
| /* dot product of incoming slope vector with outgoing slope vector */ |
| double in_dot_out = -in->usr_vector.x * out->usr_vector.x + |
| -in->usr_vector.y * out->usr_vector.y; |
| double ml = stroker->style.miter_limit; |
| |
| /* Check the miter limit -- lines meeting at an acute angle |
| * can generate long miters, the limit converts them to bevel |
| * |
| * Consider the miter join formed when two line segments |
| * meet at an angle psi: |
| * |
| * /.\ |
| * /. .\ |
| * /./ \.\ |
| * /./psi\.\ |
| * |
| * We can zoom in on the right half of that to see: |
| * |
| * |\ |
| * | \ psi/2 |
| * | \ |
| * | \ |
| * | \ |
| * | \ |
| * miter \ |
| * length \ |
| * | \ |
| * | .\ |
| * | . \ |
| * |. line \ |
| * \ width \ |
| * \ \ |
| * |
| * |
| * The right triangle in that figure, (the line-width side is |
| * shown faintly with three '.' characters), gives us the |
| * following expression relating miter length, angle and line |
| * width: |
| * |
| * 1 /sin (psi/2) = miter_length / line_width |
| * |
| * The right-hand side of this relationship is the same ratio |
| * in which the miter limit (ml) is expressed. We want to know |
| * when the miter length is within the miter limit. That is |
| * when the following condition holds: |
| * |
| * 1/sin(psi/2) <= ml |
| * 1 <= ml sin(psi/2) |
| * 1 <= ml² sin²(psi/2) |
| * 2 <= ml² 2 sin²(psi/2) |
| * 2·sin²(psi/2) = 1-cos(psi) |
| * 2 <= ml² (1-cos(psi)) |
| * |
| * in · out = |in| |out| cos (psi) |
| * |
| * in and out are both unit vectors, so: |
| * |
| * in · out = cos (psi) |
| * |
| * 2 <= ml² (1 - in · out) |
| * |
| */ |
| if (2 <= ml * ml * (1 - in_dot_out)) { |
| double x1, y1, x2, y2; |
| double mx, my; |
| double dx1, dx2, dy1, dy2; |
| double ix, iy; |
| double fdx1, fdy1, fdx2, fdy2; |
| double mdx, mdy; |
| |
| /* |
| * we've got the points already transformed to device |
| * space, but need to do some computation with them and |
| * also need to transform the slope from user space to |
| * device space |
| */ |
| /* outer point of incoming line face */ |
| x1 = _cairo_fixed_to_double (inpt->x); |
| y1 = _cairo_fixed_to_double (inpt->y); |
| dx1 = in->usr_vector.x; |
| dy1 = in->usr_vector.y; |
| cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1); |
| |
| /* outer point of outgoing line face */ |
| x2 = _cairo_fixed_to_double (outpt->x); |
| y2 = _cairo_fixed_to_double (outpt->y); |
| dx2 = out->usr_vector.x; |
| dy2 = out->usr_vector.y; |
| cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2); |
| |
| /* |
| * Compute the location of the outer corner of the miter. |
| * That's pretty easy -- just the intersection of the two |
| * outer edges. We've got slopes and points on each |
| * of those edges. Compute my directly, then compute |
| * mx by using the edge with the larger dy; that avoids |
| * dividing by values close to zero. |
| */ |
| my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) / |
| (dx1 * dy2 - dx2 * dy1)); |
| if (fabs (dy1) >= fabs (dy2)) |
| mx = (my - y1) * dx1 / dy1 + x1; |
| else |
| mx = (my - y2) * dx2 / dy2 + x2; |
| |
| /* |
| * When the two outer edges are nearly parallel, slight |
| * perturbations in the position of the outer points of the lines |
| * caused by representing them in fixed point form can cause the |
| * intersection point of the miter to move a large amount. If |
| * that moves the miter intersection from between the two faces, |
| * then draw a bevel instead. |
| */ |
| |
| ix = _cairo_fixed_to_double (in->point.x); |
| iy = _cairo_fixed_to_double (in->point.y); |
| |
| /* slope of one face */ |
| fdx1 = x1 - ix; fdy1 = y1 - iy; |
| |
| /* slope of the other face */ |
| fdx2 = x2 - ix; fdy2 = y2 - iy; |
| |
| /* slope from the intersection to the miter point */ |
| mdx = mx - ix; mdy = my - iy; |
| |
| /* |
| * Make sure the miter point line lies between the two |
| * faces by comparing the slopes |
| */ |
| if (_cairo_slope_compare_sgn (fdx1, fdy1, mdx, mdy) != |
| _cairo_slope_compare_sgn (fdx2, fdy2, mdx, mdy)) |
| { |
| if (stroker->add_external_edge != NULL) { |
| points[0].x = _cairo_fixed_from_double (mx); |
| points[0].y = _cairo_fixed_from_double (my); |
| |
| if (clockwise) { |
| status = stroker->add_external_edge (stroker->closure, |
| inpt, &points[0]); |
| if (unlikely (status)) |
| return status; |
| |
| status = stroker->add_external_edge (stroker->closure, |
| &points[0], outpt); |
| if (unlikely (status)) |
| return status; |
| } else { |
| status = stroker->add_external_edge (stroker->closure, |
| outpt, &points[0]); |
| if (unlikely (status)) |
| return status; |
| |
| status = stroker->add_external_edge (stroker->closure, |
| &points[0], inpt); |
| if (unlikely (status)) |
| return status; |
| } |
| |
| return CAIRO_STATUS_SUCCESS; |
| } else { |
| points[0] = in->point; |
| points[1] = *inpt; |
| points[2].x = _cairo_fixed_from_double (mx); |
| points[2].y = _cairo_fixed_from_double (my); |
| points[3] = *outpt; |
| |
| return stroker->add_convex_quad (stroker->closure, points); |
| } |
| } |
| } |
| } |
| |
| /* fall through ... */ |
| |
| case CAIRO_LINE_JOIN_BEVEL: |
| if (stroker->add_external_edge != NULL) { |
| if (clockwise) { |
| return stroker->add_external_edge (stroker->closure, |
| inpt, outpt); |
| } else { |
| return stroker->add_external_edge (stroker->closure, |
| outpt, inpt); |
| } |
| } else { |
| points[0] = in->point; |
| points[1] = *inpt; |
| points[2] = *outpt; |
| |
| return stroker->add_triangle (stroker->closure, points); |
| } |
| } |
| } |
| |
| static cairo_status_t |
| _cairo_stroker_add_cap (cairo_stroker_t *stroker, |
| const cairo_stroke_face_t *f) |
| { |
| switch (stroker->style.line_cap) { |
| case CAIRO_LINE_CAP_ROUND: { |
| cairo_slope_t slope; |
| |
| slope.dx = -f->dev_vector.dx; |
| slope.dy = -f->dev_vector.dy; |
| |
| return _tessellate_fan (stroker, |
| &f->dev_vector, |
| &slope, |
| &f->point, &f->cw, &f->ccw, |
| FALSE); |
| |
| } |
| |
| case CAIRO_LINE_CAP_SQUARE: { |
| double dx, dy; |
| cairo_slope_t fvector; |
| cairo_point_t quad[4]; |
| |
| dx = f->usr_vector.x; |
| dy = f->usr_vector.y; |
| dx *= stroker->half_line_width; |
| dy *= stroker->half_line_width; |
| cairo_matrix_transform_distance (stroker->ctm, &dx, &dy); |
| fvector.dx = _cairo_fixed_from_double (dx); |
| fvector.dy = _cairo_fixed_from_double (dy); |
| |
| quad[0] = f->ccw; |
| quad[1].x = f->ccw.x + fvector.dx; |
| quad[1].y = f->ccw.y + fvector.dy; |
| quad[2].x = f->cw.x + fvector.dx; |
| quad[2].y = f->cw.y + fvector.dy; |
| quad[3] = f->cw; |
| |
| if (stroker->add_external_edge != NULL) { |
| cairo_status_t status; |
| |
| status = stroker->add_external_edge (stroker->closure, |
| &quad[0], &quad[1]); |
| if (unlikely (status)) |
| return status; |
| |
| status = stroker->add_external_edge (stroker->closure, |
| &quad[1], &quad[2]); |
| if (unlikely (status)) |
| return status; |
| |
| status = stroker->add_external_edge (stroker->closure, |
| &quad[2], &quad[3]); |
| if (unlikely (status)) |
| return status; |
| |
| return CAIRO_STATUS_SUCCESS; |
| } else { |
| return stroker->add_convex_quad (stroker->closure, quad); |
| } |
| } |
| |
| case CAIRO_LINE_CAP_BUTT: |
| default: |
| if (stroker->add_external_edge != NULL) { |
| return stroker->add_external_edge (stroker->closure, |
| &f->ccw, &f->cw); |
| } else { |
| return CAIRO_STATUS_SUCCESS; |
| } |
| } |
| } |
| |
| static cairo_status_t |
| _cairo_stroker_add_leading_cap (cairo_stroker_t *stroker, |
| const cairo_stroke_face_t *face) |
| { |
| cairo_stroke_face_t reversed; |
| cairo_point_t t; |
| |
| reversed = *face; |
| |
| /* The initial cap needs an outward facing vector. Reverse everything */ |
| reversed.usr_vector.x = -reversed.usr_vector.x; |
| reversed.usr_vector.y = -reversed.usr_vector.y; |
| reversed.dev_vector.dx = -reversed.dev_vector.dx; |
| reversed.dev_vector.dy = -reversed.dev_vector.dy; |
| t = reversed.cw; |
| reversed.cw = reversed.ccw; |
| reversed.ccw = t; |
| |
| return _cairo_stroker_add_cap (stroker, &reversed); |
| } |
| |
| static cairo_status_t |
| _cairo_stroker_add_trailing_cap (cairo_stroker_t *stroker, |
| const cairo_stroke_face_t *face) |
| { |
| return _cairo_stroker_add_cap (stroker, face); |
| } |
| |
| static inline cairo_bool_t |
| _compute_normalized_device_slope (double *dx, double *dy, |
| const cairo_matrix_t *ctm_inverse, |
| double *mag_out) |
| { |
| double dx0 = *dx, dy0 = *dy; |
| double mag; |
| |
| cairo_matrix_transform_distance (ctm_inverse, &dx0, &dy0); |
| |
| if (dx0 == 0.0 && dy0 == 0.0) { |
| if (mag_out) |
| *mag_out = 0.0; |
| return FALSE; |
| } |
| |
| if (dx0 == 0.0) { |
| *dx = 0.0; |
| if (dy0 > 0.0) { |
| mag = dy0; |
| *dy = 1.0; |
| } else { |
| mag = -dy0; |
| *dy = -1.0; |
| } |
| } else if (dy0 == 0.0) { |
| *dy = 0.0; |
| if (dx0 > 0.0) { |
| mag = dx0; |
| *dx = 1.0; |
| } else { |
| mag = -dx0; |
| *dx = -1.0; |
| } |
| } else { |
| mag = hypot (dx0, dy0); |
| *dx = dx0 / mag; |
| *dy = dy0 / mag; |
| } |
| |
| if (mag_out) |
| *mag_out = mag; |
| |
| return TRUE; |
| } |
| |
| static void |
| _compute_face (const cairo_point_t *point, |
| const cairo_slope_t *dev_slope, |
| double slope_dx, |
| double slope_dy, |
| cairo_stroker_t *stroker, |
| cairo_stroke_face_t *face) |
| { |
| double face_dx, face_dy; |
| cairo_point_t offset_ccw, offset_cw; |
| |
| /* |
| * rotate to get a line_width/2 vector along the face, note that |
| * the vector must be rotated the right direction in device space, |
| * but by 90° in user space. So, the rotation depends on |
| * whether the ctm reflects or not, and that can be determined |
| * by looking at the determinant of the matrix. |
| */ |
| if (stroker->ctm_det_positive) |
| { |
| face_dx = - slope_dy * stroker->half_line_width; |
| face_dy = slope_dx * stroker->half_line_width; |
| } |
| else |
| { |
| face_dx = slope_dy * stroker->half_line_width; |
| face_dy = - slope_dx * stroker->half_line_width; |
| } |
| |
| /* back to device space */ |
| cairo_matrix_transform_distance (stroker->ctm, &face_dx, &face_dy); |
| |
| offset_ccw.x = _cairo_fixed_from_double (face_dx); |
| offset_ccw.y = _cairo_fixed_from_double (face_dy); |
| offset_cw.x = -offset_ccw.x; |
| offset_cw.y = -offset_ccw.y; |
| |
| face->ccw = *point; |
| _translate_point (&face->ccw, &offset_ccw); |
| |
| face->point = *point; |
| |
| face->cw = *point; |
| _translate_point (&face->cw, &offset_cw); |
| |
| face->usr_vector.x = slope_dx; |
| face->usr_vector.y = slope_dy; |
| |
| face->dev_vector = *dev_slope; |
| } |
| |
| static cairo_status_t |
| _cairo_stroker_add_caps (cairo_stroker_t *stroker) |
| { |
| cairo_status_t status; |
| |
| /* check for a degenerative sub_path */ |
| if (stroker->has_initial_sub_path |
| && ! stroker->has_first_face |
| && ! stroker->has_current_face |
| && stroker->style.line_cap == CAIRO_LINE_CAP_ROUND) |
| { |
| /* pick an arbitrary slope to use */ |
| double dx = 1.0, dy = 0.0; |
| cairo_slope_t slope = { CAIRO_FIXED_ONE, 0 }; |
| cairo_stroke_face_t face; |
| |
| _compute_normalized_device_slope (&dx, &dy, |
| stroker->ctm_inverse, NULL); |
| |
| /* arbitrarily choose first_point |
| * first_point and current_point should be the same */ |
| _compute_face (&stroker->first_point, &slope, dx, dy, stroker, &face); |
| |
| status = _cairo_stroker_add_leading_cap (stroker, &face); |
| if (unlikely (status)) |
| return status; |
| |
| status = _cairo_stroker_add_trailing_cap (stroker, &face); |
| if (unlikely (status)) |
| return status; |
| } |
| |
| if (stroker->has_first_face) { |
| status = _cairo_stroker_add_leading_cap (stroker, |
| &stroker->first_face); |
| if (unlikely (status)) |
| return status; |
| } |
| |
| if (stroker->has_current_face) { |
| status = _cairo_stroker_add_trailing_cap (stroker, |
| &stroker->current_face); |
| if (unlikely (status)) |
| return status; |
| } |
| |
| return CAIRO_STATUS_SUCCESS; |
| } |
| |
| static cairo_status_t |
| _cairo_stroker_add_sub_edge (cairo_stroker_t *stroker, |
| const cairo_point_t *p1, |
| const cairo_point_t *p2, |
| cairo_slope_t *dev_slope, |
| double slope_dx, double slope_dy, |
| cairo_stroke_face_t *start, |
| cairo_stroke_face_t *end) |
| { |
| _compute_face (p1, dev_slope, slope_dx, slope_dy, stroker, start); |
| *end = *start; |
| |
| if (p1->x == p2->x && p1->y == p2->y) |
| return CAIRO_STATUS_SUCCESS; |
| |
| end->point = *p2; |
| end->ccw.x += p2->x - p1->x; |
| end->ccw.y += p2->y - p1->y; |
| end->cw.x += p2->x - p1->x; |
| end->cw.y += p2->y - p1->y; |
| |
| if (stroker->add_external_edge != NULL) { |
| cairo_status_t status; |
| |
| status = stroker->add_external_edge (stroker->closure, |
| &end->cw, &start->cw); |
| if (unlikely (status)) |
| return status; |
| |
| status = stroker->add_external_edge (stroker->closure, |
| &start->ccw, &end->ccw); |
| if (unlikely (status)) |
| return status; |
| |
| return CAIRO_STATUS_SUCCESS; |
| } else { |
| cairo_point_t quad[4]; |
| |
| quad[0] = start->cw; |
| quad[1] = end->cw; |
| quad[2] = end->ccw; |
| quad[3] = start->ccw; |
| |
| return stroker->add_convex_quad (stroker->closure, quad); |
| } |
| } |
| |
| static cairo_status_t |
| _cairo_stroker_move_to (void *closure, |
| const cairo_point_t *point) |
| { |
| cairo_stroker_t *stroker = closure; |
| cairo_status_t status; |
| |
| /* reset the dash pattern for new sub paths */ |
| _cairo_stroker_dash_start (&stroker->dash); |
| |
| /* Cap the start and end of the previous sub path as needed */ |
| status = _cairo_stroker_add_caps (stroker); |
| if (unlikely (status)) |
| return status; |
| |
| stroker->first_point = *point; |
| stroker->current_point = *point; |
| |
| stroker->has_first_face = FALSE; |
| stroker->has_current_face = FALSE; |
| stroker->has_initial_sub_path = FALSE; |
| |
| return CAIRO_STATUS_SUCCESS; |
| } |
| |
| static cairo_status_t |
| _cairo_stroker_line_to (void *closure, |
| const cairo_point_t *point) |
| { |
| cairo_stroker_t *stroker = closure; |
| cairo_stroke_face_t start, end; |
| cairo_point_t *p1 = &stroker->current_point; |
| cairo_slope_t dev_slope; |
| double slope_dx, slope_dy; |
| cairo_status_t status; |
| |
| stroker->has_initial_sub_path = TRUE; |
| |
| if (p1->x == point->x && p1->y == point->y) |
| return CAIRO_STATUS_SUCCESS; |
| |
| _cairo_slope_init (&dev_slope, p1, point); |
| slope_dx = _cairo_fixed_to_double (point->x - p1->x); |
| slope_dy = _cairo_fixed_to_double (point->y - p1->y); |
| _compute_normalized_device_slope (&slope_dx, &slope_dy, |
| stroker->ctm_inverse, NULL); |
| |
| status = _cairo_stroker_add_sub_edge (stroker, |
| p1, point, |
| &dev_slope, |
| slope_dx, slope_dy, |
| &start, &end); |
| if (unlikely (status)) |
| return status; |
| |
| if (stroker->has_current_face) { |
| /* Join with final face from previous segment */ |
| status = _cairo_stroker_join (stroker, |
| &stroker->current_face, |
| &start); |
| if (unlikely (status)) |
| return status; |
| } else if (! stroker->has_first_face) { |
| /* Save sub path's first face in case needed for closing join */ |
| stroker->first_face = start; |
| stroker->has_first_face = TRUE; |
| } |
| stroker->current_face = end; |
| stroker->has_current_face = TRUE; |
| |
| stroker->current_point = *point; |
| |
| return CAIRO_STATUS_SUCCESS; |
| } |
| |
| static cairo_status_t |
| _cairo_stroker_spline_to (void *closure, |
| const cairo_point_t *point, |
| const cairo_slope_t *tangent) |
| { |
| cairo_stroker_t *stroker = closure; |
| cairo_stroke_face_t new_face; |
| double slope_dx, slope_dy; |
| cairo_point_t points[3]; |
| cairo_point_t intersect_point; |
| |
| stroker->has_initial_sub_path = TRUE; |
| |
| if (stroker->current_point.x == point->x && |
| stroker->current_point.y == point->y) |
| return CAIRO_STATUS_SUCCESS; |
| |
| slope_dx = _cairo_fixed_to_double (tangent->dx); |
| slope_dy = _cairo_fixed_to_double (tangent->dy); |
| |
| if (! _compute_normalized_device_slope (&slope_dx, &slope_dy, |
| stroker->ctm_inverse, NULL)) |
| return CAIRO_STATUS_SUCCESS; |
| |
| _compute_face (point, tangent, |
| slope_dx, slope_dy, |
| stroker, &new_face); |
| |
| assert (stroker->has_current_face); |
| |
| if ((new_face.dev_slope.x * stroker->current_face.dev_slope.x + |
| new_face.dev_slope.y * stroker->current_face.dev_slope.y) < stroker->spline_cusp_tolerance) { |
| |
| const cairo_point_t *inpt, *outpt; |
| int clockwise = _cairo_stroker_join_is_clockwise (&new_face, |
| &stroker->current_face); |
| |
| if (clockwise) { |
| inpt = &stroker->current_face.cw; |
| outpt = &new_face.cw; |
| } else { |
| inpt = &stroker->current_face.ccw; |
| outpt = &new_face.ccw; |
| } |
| |
| _tessellate_fan (stroker, |
| &stroker->current_face.dev_vector, |
| &new_face.dev_vector, |
| &stroker->current_face.point, |
| inpt, outpt, |
| clockwise); |
| } |
| |
| if (_slow_segment_intersection (&stroker->current_face.cw, |
| &stroker->current_face.ccw, |
| &new_face.cw, |
| &new_face.ccw, |
| &intersect_point)) { |
| points[0] = stroker->current_face.ccw; |
| points[1] = new_face.ccw; |
| points[2] = intersect_point; |
| stroker->add_triangle (stroker->closure, points); |
| |
| points[0] = stroker->current_face.cw; |
| points[1] = new_face.cw; |
| stroker->add_triangle (stroker->closure, points); |
| } else { |
| points[0] = stroker->current_face.ccw; |
| points[1] = stroker->current_face.cw; |
| points[2] = new_face.cw; |
| stroker->add_triangle (stroker->closure, points); |
| |
| points[0] = stroker->current_face.ccw; |
| points[1] = new_face.cw; |
| points[2] = new_face.ccw; |
| stroker->add_triangle (stroker->closure, points); |
| } |
| |
| stroker->current_face = new_face; |
| stroker->has_current_face = TRUE; |
| stroker->current_point = *point; |
| |
| return CAIRO_STATUS_SUCCESS; |
| } |
| |
| /* |
| * Dashed lines. Cap each dash end, join around turns when on |
| */ |
| static cairo_status_t |
| _cairo_stroker_line_to_dashed (void *closure, |
| const cairo_point_t *p2) |
| { |
| cairo_stroker_t *stroker = closure; |
| double mag, remain, step_length = 0; |
| double slope_dx, slope_dy; |
| double dx2, dy2; |
| cairo_stroke_face_t sub_start, sub_end; |
| cairo_point_t *p1 = &stroker->current_point; |
| cairo_slope_t dev_slope; |
| cairo_line_t segment; |
| cairo_bool_t fully_in_bounds; |
| cairo_status_t status; |
| |
| stroker->has_initial_sub_path = stroker->dash.dash_starts_on; |
| |
| if (p1->x == p2->x && p1->y == p2->y) |
| return CAIRO_STATUS_SUCCESS; |
| |
| fully_in_bounds = TRUE; |
| if (stroker->has_bounds && |
| (! _cairo_box_contains_point (&stroker->bounds, p1) || |
| ! _cairo_box_contains_point (&stroker->bounds, p2))) |
| { |
| fully_in_bounds = FALSE; |
| } |
| |
| _cairo_slope_init (&dev_slope, p1, p2); |
| |
| slope_dx = _cairo_fixed_to_double (p2->x - p1->x); |
| slope_dy = _cairo_fixed_to_double (p2->y - p1->y); |
| |
| if (! _compute_normalized_device_slope (&slope_dx, &slope_dy, |
| stroker->ctm_inverse, &mag)) |
| { |
| return CAIRO_STATUS_SUCCESS; |
| } |
| |
| remain = mag; |
| segment.p1 = *p1; |
| while (remain) { |
| step_length = MIN (stroker->dash.dash_remain, remain); |
| remain -= step_length; |
| dx2 = slope_dx * (mag - remain); |
| dy2 = slope_dy * (mag - remain); |
| cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2); |
| segment.p2.x = _cairo_fixed_from_double (dx2) + p1->x; |
| segment.p2.y = _cairo_fixed_from_double (dy2) + p1->y; |
| |
| if (stroker->dash.dash_on && |
| (fully_in_bounds || |
| (! stroker->has_first_face && stroker->dash.dash_starts_on) || |
| _cairo_box_intersects_line_segment (&stroker->bounds, &segment))) |
| { |
| status = _cairo_stroker_add_sub_edge (stroker, |
| &segment.p1, &segment.p2, |
| &dev_slope, |
| slope_dx, slope_dy, |
| &sub_start, &sub_end); |
| if (unlikely (status)) |
| return status; |
| |
| if (stroker->has_current_face) |
| { |
| /* Join with final face from previous segment */ |
| status = _cairo_stroker_join (stroker, |
| &stroker->current_face, |
| &sub_start); |
| if (unlikely (status)) |
| return status; |
| |
| stroker->has_current_face = FALSE; |
| } |
| else if (! stroker->has_first_face && |
| stroker->dash.dash_starts_on) |
| { |
| /* Save sub path's first face in case needed for closing join */ |
| stroker->first_face = sub_start; |
| stroker->has_first_face = TRUE; |
| } |
| else |
| { |
| /* Cap dash start if not connecting to a previous segment */ |
| status = _cairo_stroker_add_leading_cap (stroker, &sub_start); |
| if (unlikely (status)) |
| return status; |
| } |
| |
| if (remain) { |
| /* Cap dash end if not at end of segment */ |
| status = _cairo_stroker_add_trailing_cap (stroker, &sub_end); |
| if (unlikely (status)) |
| return status; |
| } else { |
| stroker->current_face = sub_end; |
| stroker->has_current_face = TRUE; |
| } |
| } else { |
| if (stroker->has_current_face) { |
| /* Cap final face from previous segment */ |
| status = _cairo_stroker_add_trailing_cap (stroker, |
| &stroker->current_face); |
| if (unlikely (status)) |
| return status; |
| |
| stroker->has_current_face = FALSE; |
| } |
| } |
| |
| _cairo_stroker_dash_step (&stroker->dash, step_length); |
| segment.p1 = segment.p2; |
| } |
| |
| if (stroker->dash.dash_on && ! stroker->has_current_face) { |
| /* This segment ends on a transition to dash_on, compute a new face |
| * and add cap for the beginning of the next dash_on step. |
| * |
| * Note: this will create a degenerate cap if this is not the last line |
| * in the path. Whether this behaviour is desirable or not is debatable. |
| * On one side these degenerate caps can not be reproduced with regular |
| * path stroking. |
| * On the other hand, Acroread 7 also produces the degenerate caps. |
| */ |
| _compute_face (p2, &dev_slope, |
| slope_dx, slope_dy, |
| stroker, |
| &stroker->current_face); |
| |
| status = _cairo_stroker_add_leading_cap (stroker, |
| &stroker->current_face); |
| if (unlikely (status)) |
| return status; |
| |
| stroker->has_current_face = TRUE; |
| } |
| |
| stroker->current_point = *p2; |
| |
| return CAIRO_STATUS_SUCCESS; |
| } |
| |
| static cairo_status_t |
| _cairo_stroker_curve_to (void *closure, |
| const cairo_point_t *b, |
| const cairo_point_t *c, |
| const cairo_point_t *d) |
| { |
| cairo_stroker_t *stroker = closure; |
| cairo_spline_t spline; |
| cairo_line_join_t line_join_save; |
| cairo_stroke_face_t face; |
| double slope_dx, slope_dy; |
| cairo_spline_add_point_func_t line_to; |
| cairo_spline_add_point_func_t spline_to; |
| cairo_status_t status = CAIRO_STATUS_SUCCESS; |
| |
| line_to = stroker->dash.dashed ? |
| (cairo_spline_add_point_func_t) _cairo_stroker_line_to_dashed : |
| (cairo_spline_add_point_func_t) _cairo_stroker_line_to; |
| |
| /* spline_to is only capable of rendering non-degenerate splines. */ |
| spline_to = stroker->dash.dashed ? |
| (cairo_spline_add_point_func_t) _cairo_stroker_line_to_dashed : |
| (cairo_spline_add_point_func_t) _cairo_stroker_spline_to; |
| |
| if (! _cairo_spline_init (&spline, |
| spline_to, |
| stroker, |
| &stroker->current_point, b, c, d)) |
| { |
| cairo_slope_t fallback_slope; |
| _cairo_slope_init (&fallback_slope, &stroker->current_point, d); |
| return line_to (closure, d, &fallback_slope); |
| } |
| |
| /* If the line width is so small that the pen is reduced to a |
| single point, then we have nothing to do. */ |
| if (stroker->pen.num_vertices <= 1) |
| return CAIRO_STATUS_SUCCESS; |
| |
| /* Compute the initial face */ |
| if (! stroker->dash.dashed || stroker->dash.dash_on) { |
| slope_dx = _cairo_fixed_to_double (spline.initial_slope.dx); |
| slope_dy = _cairo_fixed_to_double (spline.initial_slope.dy); |
| if (_compute_normalized_device_slope (&slope_dx, &slope_dy, |
| stroker->ctm_inverse, NULL)) |
| { |
| _compute_face (&stroker->current_point, |
| &spline.initial_slope, |
| slope_dx, slope_dy, |
| stroker, &face); |
| } |
| if (stroker->has_current_face) { |
| status = _cairo_stroker_join (stroker, |
| &stroker->current_face, &face); |
| if (unlikely (status)) |
| return status; |
| } else if (! stroker->has_first_face) { |
| stroker->first_face = face; |
| stroker->has_first_face = TRUE; |
| } |
| |
| stroker->current_face = face; |
| stroker->has_current_face = TRUE; |
| } |
| |
| /* Temporarily modify the stroker to use round joins to guarantee |
| * smooth stroked curves. */ |
| line_join_save = stroker->style.line_join; |
| stroker->style.line_join = CAIRO_LINE_JOIN_ROUND; |
| |
| status = _cairo_spline_decompose (&spline, stroker->tolerance); |
| if (unlikely (status)) |
| return status; |
| |
| /* And join the final face */ |
| if (! stroker->dash.dashed || stroker->dash.dash_on) { |
| slope_dx = _cairo_fixed_to_double (spline.final_slope.dx); |
| slope_dy = _cairo_fixed_to_double (spline.final_slope.dy); |
| if (_compute_normalized_device_slope (&slope_dx, &slope_dy, |
| stroker->ctm_inverse, NULL)) |
| { |
| _compute_face (&stroker->current_point, |
| &spline.final_slope, |
| slope_dx, slope_dy, |
| stroker, &face); |
| } |
| |
| status = _cairo_stroker_join (stroker, &stroker->current_face, &face); |
| if (unlikely (status)) |
| return status; |
| |
| stroker->current_face = face; |
| } |
| |
| stroker->style.line_join = line_join_save; |
| |
| return CAIRO_STATUS_SUCCESS; |
| } |
| |
| static cairo_status_t |
| _cairo_stroker_close_path (void *closure) |
| { |
| cairo_stroker_t *stroker = closure; |
| cairo_status_t status; |
| |
| if (stroker->dash.dashed) |
| status = _cairo_stroker_line_to_dashed (stroker, &stroker->first_point); |
| else |
| status = _cairo_stroker_line_to (stroker, &stroker->first_point); |
| if (unlikely (status)) |
| return status; |
| |
| if (stroker->has_first_face && stroker->has_current_face) { |
| /* Join first and final faces of sub path */ |
| status = _cairo_stroker_join (stroker, |
| &stroker->current_face, |
| &stroker->first_face); |
| if (unlikely (status)) |
| return status; |
| } else { |
| /* Cap the start and end of the sub path as needed */ |
| status = _cairo_stroker_add_caps (stroker); |
| if (unlikely (status)) |
| return status; |
| } |
| |
| stroker->has_initial_sub_path = FALSE; |
| stroker->has_first_face = FALSE; |
| stroker->has_current_face = FALSE; |
| |
| return CAIRO_STATUS_SUCCESS; |
| } |
| |
| cairo_status_t |
| _cairo_path_fixed_stroke_to_shaper (cairo_path_fixed_t *path, |
| const cairo_stroke_style_t *stroke_style, |
| const cairo_matrix_t *ctm, |
| const cairo_matrix_t *ctm_inverse, |
| double tolerance, |
| cairo_status_t (*add_triangle) (void *closure, |
| const cairo_point_t triangle[3]), |
| cairo_status_t (*add_triangle_fan) (void *closure, |
| const cairo_point_t *midpt, |
| const cairo_point_t *points, |
| int npoints), |
| cairo_status_t (*add_convex_quad) (void *closure, |
| const cairo_point_t quad[4]), |
| void *closure) |
| { |
| cairo_stroker_t stroker; |
| cairo_status_t status; |
| |
| status = _cairo_stroker_init (&stroker, path, stroke_style, |
| ctm, ctm_inverse, tolerance, |
| NULL, 0); |
| if (unlikely (status)) |
| return status; |
| |
| stroker.add_triangle = add_triangle; |
| stroker.add_triangle_fan = add_triangle_fan; |
| stroker.add_convex_quad = add_convex_quad; |
| stroker.closure = closure; |
| |
| status = _cairo_path_fixed_interpret (path, |
| _cairo_stroker_move_to, |
| stroker.dash.dashed ? |
| _cairo_stroker_line_to_dashed : |
| _cairo_stroker_line_to, |
| _cairo_stroker_curve_to, |
| _cairo_stroker_close_path, |
| &stroker); |
| |
| if (unlikely (status)) |
| goto BAIL; |
| |
| /* Cap the start and end of the final sub path as needed */ |
| status = _cairo_stroker_add_caps (&stroker); |
| |
| BAIL: |
| _cairo_stroker_fini (&stroker); |
| |
| return status; |
| } |
| |
| cairo_status_t |
| _cairo_path_fixed_stroke_dashed_to_polygon (const cairo_path_fixed_t *path, |
| const cairo_stroke_style_t *stroke_style, |
| const cairo_matrix_t *ctm, |
| const cairo_matrix_t *ctm_inverse, |
| double tolerance, |
| cairo_polygon_t *polygon) |
| { |
| cairo_stroker_t stroker; |
| cairo_status_t status; |
| |
| status = _cairo_stroker_init (&stroker, path, stroke_style, |
| ctm, ctm_inverse, tolerance, |
| polygon->limits, polygon->num_limits); |
| if (unlikely (status)) |
| return status; |
| |
| stroker.add_external_edge = _cairo_polygon_add_external_edge, |
| stroker.closure = polygon; |
| |
| status = _cairo_path_fixed_interpret (path, |
| _cairo_stroker_move_to, |
| stroker.dash.dashed ? |
| _cairo_stroker_line_to_dashed : |
| _cairo_stroker_line_to, |
| _cairo_stroker_curve_to, |
| _cairo_stroker_close_path, |
| &stroker); |
| |
| if (unlikely (status)) |
| goto BAIL; |
| |
| /* Cap the start and end of the final sub path as needed */ |
| status = _cairo_stroker_add_caps (&stroker); |
| |
| BAIL: |
| _cairo_stroker_fini (&stroker); |
| |
| return status; |
| } |
| |
| cairo_int_status_t |
| _cairo_path_fixed_stroke_polygon_to_traps (const cairo_path_fixed_t *path, |
| const cairo_stroke_style_t *stroke_style, |
| const cairo_matrix_t *ctm, |
| const cairo_matrix_t *ctm_inverse, |
| double tolerance, |
| cairo_traps_t *traps) |
| { |
| cairo_int_status_t status; |
| cairo_polygon_t polygon; |
| |
| _cairo_polygon_init (&polygon, traps->limits, traps->num_limits); |
| status = _cairo_path_fixed_stroke_to_polygon (path, |
| stroke_style, |
| ctm, |
| ctm_inverse, |
| tolerance, |
| &polygon); |
| if (unlikely (status)) |
| goto BAIL; |
| |
| status = _cairo_polygon_status (&polygon); |
| if (unlikely (status)) |
| goto BAIL; |
| |
| status = _cairo_bentley_ottmann_tessellate_polygon (traps, &polygon, |
| CAIRO_FILL_RULE_WINDING); |
| |
| BAIL: |
| _cairo_polygon_fini (&polygon); |
| |
| return status; |
| } |