blob: 274ddd17266aef6e4ad1f67af8a13a21500ff2af [file] [log] [blame]
/* readelf.c -- display contents of an ELF format file
Copyright (C) 1998-2016 Free Software Foundation, Inc.
Originally developed by Eric Youngdale <eric@andante.jic.com>
Modifications by Nick Clifton <nickc@redhat.com>
This file is part of GNU Binutils.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
/* The difference between readelf and objdump:
Both programs are capable of displaying the contents of ELF format files,
so why does the binutils project have two file dumpers ?
The reason is that objdump sees an ELF file through a BFD filter of the
world; if BFD has a bug where, say, it disagrees about a machine constant
in e_flags, then the odds are good that it will remain internally
consistent. The linker sees it the BFD way, objdump sees it the BFD way,
GAS sees it the BFD way. There was need for a tool to go find out what
the file actually says.
This is why the readelf program does not link against the BFD library - it
exists as an independent program to help verify the correct working of BFD.
There is also the case that readelf can provide more information about an
ELF file than is provided by objdump. In particular it can display DWARF
debugging information which (at the moment) objdump cannot. */
#include "sysdep.h"
#include <assert.h>
#include <time.h>
#include <zlib.h>
#ifdef HAVE_WCHAR_H
#include <wchar.h>
#endif
#if __GNUC__ >= 2
/* Define BFD64 here, even if our default architecture is 32 bit ELF
as this will allow us to read in and parse 64bit and 32bit ELF files.
Only do this if we believe that the compiler can support a 64 bit
data type. For now we only rely on GCC being able to do this. */
#define BFD64
#endif
#include "bfd.h"
#include "bucomm.h"
#include "elfcomm.h"
#include "dwarf.h"
#include "elf/common.h"
#include "elf/external.h"
#include "elf/internal.h"
/* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
we can obtain the H8 reloc numbers. We need these for the
get_reloc_size() function. We include h8.h again after defining
RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
#include "elf/h8.h"
#undef _ELF_H8_H
/* Undo the effects of #including reloc-macros.h. */
#undef START_RELOC_NUMBERS
#undef RELOC_NUMBER
#undef FAKE_RELOC
#undef EMPTY_RELOC
#undef END_RELOC_NUMBERS
#undef _RELOC_MACROS_H
/* The following headers use the elf/reloc-macros.h file to
automatically generate relocation recognition functions
such as elf_mips_reloc_type() */
#define RELOC_MACROS_GEN_FUNC
#include "elf/aarch64.h"
#include "elf/alpha.h"
#include "elf/arc.h"
#include "elf/arm.h"
#include "elf/avr.h"
#include "elf/bfin.h"
#include "elf/cr16.h"
#include "elf/cris.h"
#include "elf/crx.h"
#include "elf/d10v.h"
#include "elf/d30v.h"
#include "elf/dlx.h"
#include "elf/epiphany.h"
#include "elf/fr30.h"
#include "elf/frv.h"
#include "elf/ft32.h"
#include "elf/h8.h"
#include "elf/hppa.h"
#include "elf/i386.h"
#include "elf/i370.h"
#include "elf/i860.h"
#include "elf/i960.h"
#include "elf/ia64.h"
#include "elf/ip2k.h"
#include "elf/lm32.h"
#include "elf/iq2000.h"
#include "elf/m32c.h"
#include "elf/m32r.h"
#include "elf/m68k.h"
#include "elf/m68hc11.h"
#include "elf/mcore.h"
#include "elf/mep.h"
#include "elf/metag.h"
#include "elf/microblaze.h"
#include "elf/mips.h"
#include "elf/mmix.h"
#include "elf/mn10200.h"
#include "elf/mn10300.h"
#include "elf/moxie.h"
#include "elf/mt.h"
#include "elf/msp430.h"
#include "elf/nds32.h"
#include "elf/nios2.h"
#include "elf/or1k.h"
#include "elf/pj.h"
#include "elf/ppc.h"
#include "elf/ppc64.h"
#include "elf/rl78.h"
#include "elf/rx.h"
#include "elf/s390.h"
#include "elf/score.h"
#include "elf/sh.h"
#include "elf/sparc.h"
#include "elf/spu.h"
#include "elf/tic6x.h"
#include "elf/tilegx.h"
#include "elf/tilepro.h"
#include "elf/v850.h"
#include "elf/vax.h"
#include "elf/visium.h"
#include "elf/x86-64.h"
#include "elf/xc16x.h"
#include "elf/xgate.h"
#include "elf/xstormy16.h"
#include "elf/xtensa.h"
#include "getopt.h"
#include "libiberty.h"
#include "safe-ctype.h"
#include "filenames.h"
#ifndef offsetof
#define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
#endif
typedef struct elf_section_list
{
Elf_Internal_Shdr * hdr;
struct elf_section_list * next;
} elf_section_list;
char * program_name = "readelf";
static unsigned long archive_file_offset;
static unsigned long archive_file_size;
static bfd_size_type current_file_size;
static unsigned long dynamic_addr;
static bfd_size_type dynamic_size;
static size_t dynamic_nent;
static char * dynamic_strings;
static unsigned long dynamic_strings_length;
static char * string_table;
static unsigned long string_table_length;
static unsigned long num_dynamic_syms;
static Elf_Internal_Sym * dynamic_symbols;
static Elf_Internal_Syminfo * dynamic_syminfo;
static unsigned long dynamic_syminfo_offset;
static unsigned int dynamic_syminfo_nent;
static char program_interpreter[PATH_MAX];
static bfd_vma dynamic_info[DT_ENCODING];
static bfd_vma dynamic_info_DT_GNU_HASH;
static bfd_vma version_info[16];
static Elf_Internal_Ehdr elf_header;
static Elf_Internal_Shdr * section_headers;
static Elf_Internal_Phdr * program_headers;
static Elf_Internal_Dyn * dynamic_section;
static elf_section_list * symtab_shndx_list;
static int show_name;
static int do_dynamic;
static int do_syms;
static int do_dyn_syms;
static int do_reloc;
static int do_sections;
static int do_section_groups;
static int do_section_details;
static int do_segments;
static int do_unwind;
static int do_using_dynamic;
static int do_header;
static int do_dump;
static int do_version;
static int do_histogram;
static int do_debugging;
static int do_arch;
static int do_notes;
static int do_archive_index;
static int is_32bit_elf;
static int decompress_dumps;
struct group_list
{
struct group_list * next;
unsigned int section_index;
};
struct group
{
struct group_list * root;
unsigned int group_index;
};
static size_t group_count;
static struct group * section_groups;
static struct group ** section_headers_groups;
/* Flag bits indicating particular types of dump. */
#define HEX_DUMP (1 << 0) /* The -x command line switch. */
#define DISASS_DUMP (1 << 1) /* The -i command line switch. */
#define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
#define STRING_DUMP (1 << 3) /* The -p command line switch. */
#define RELOC_DUMP (1 << 4) /* The -R command line switch. */
typedef unsigned char dump_type;
/* A linked list of the section names for which dumps were requested. */
struct dump_list_entry
{
char * name;
dump_type type;
struct dump_list_entry * next;
};
static struct dump_list_entry * dump_sects_byname;
/* A dynamic array of flags indicating for which sections a dump
has been requested via command line switches. */
static dump_type * cmdline_dump_sects = NULL;
static unsigned int num_cmdline_dump_sects = 0;
/* A dynamic array of flags indicating for which sections a dump of
some kind has been requested. It is reset on a per-object file
basis and then initialised from the cmdline_dump_sects array,
the results of interpreting the -w switch, and the
dump_sects_byname list. */
static dump_type * dump_sects = NULL;
static unsigned int num_dump_sects = 0;
/* How to print a vma value. */
typedef enum print_mode
{
HEX,
DEC,
DEC_5,
UNSIGNED,
PREFIX_HEX,
FULL_HEX,
LONG_HEX
}
print_mode;
/* Versioned symbol info. */
enum versioned_symbol_info
{
symbol_undefined,
symbol_hidden,
symbol_public
};
static const char *get_symbol_version_string
(FILE *file, int is_dynsym, const char *strtab,
unsigned long int strtab_size, unsigned int si,
Elf_Internal_Sym *psym, enum versioned_symbol_info *sym_info,
unsigned short *vna_other);
#define UNKNOWN -1
#define SECTION_NAME(X) \
((X) == NULL ? _("<none>") \
: string_table == NULL ? _("<no-name>") \
: ((X)->sh_name >= string_table_length ? _("<corrupt>") \
: string_table + (X)->sh_name))
#define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
#define GET_ELF_SYMBOLS(file, section, sym_count) \
(is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
: get_64bit_elf_symbols (file, section, sym_count))
#define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
/* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
already been called and verified that the string exists. */
#define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
#define REMOVE_ARCH_BITS(ADDR) \
do \
{ \
if (elf_header.e_machine == EM_ARM) \
(ADDR) &= ~1; \
} \
while (0)
/* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET +
the offset of the current archive member, if we are examining an archive.
Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
using malloc and fill that. In either case return the pointer to the start of
the retrieved data or NULL if something went wrong. If something does go wrong
and REASON is not NULL then emit an error message using REASON as part of the
context. */
static void *
get_data (void * var, FILE * file, unsigned long offset, bfd_size_type size,
bfd_size_type nmemb, const char * reason)
{
void * mvar;
bfd_size_type amt = size * nmemb;
if (size == 0 || nmemb == 0)
return NULL;
/* If the size_t type is smaller than the bfd_size_type, eg because
you are building a 32-bit tool on a 64-bit host, then make sure
that when the sizes are cast to (size_t) no information is lost. */
if (sizeof (size_t) < sizeof (bfd_size_type)
&& ( (bfd_size_type) ((size_t) size) != size
|| (bfd_size_type) ((size_t) nmemb) != nmemb))
{
if (reason)
error (_("Size truncation prevents reading 0x%" BFD_VMA_FMT "x"
" elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
nmemb, size, reason);
return NULL;
}
/* Check for size overflow. */
if (amt < nmemb)
{
if (reason)
error (_("Size overflow prevents reading 0x%" BFD_VMA_FMT "x"
" elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
nmemb, size, reason);
return NULL;
}
/* Be kind to memory chekers (eg valgrind, address sanitizer) by not
attempting to allocate memory when the read is bound to fail. */
if (amt > current_file_size
|| offset + archive_file_offset + amt > current_file_size)
{
if (reason)
error (_("Reading 0x%" BFD_VMA_FMT "x"
" bytes extends past end of file for %s\n"),
amt, reason);
return NULL;
}
if (fseek (file, archive_file_offset + offset, SEEK_SET))
{
if (reason)
error (_("Unable to seek to 0x%lx for %s\n"),
archive_file_offset + offset, reason);
return NULL;
}
mvar = var;
if (mvar == NULL)
{
/* Check for overflow. */
if (nmemb < (~(bfd_size_type) 0 - 1) / size)
/* + 1 so that we can '\0' terminate invalid string table sections. */
mvar = malloc ((size_t) amt + 1);
if (mvar == NULL)
{
if (reason)
error (_("Out of memory allocating 0x%" BFD_VMA_FMT "x"
" bytes for %s\n"),
amt, reason);
return NULL;
}
((char *) mvar)[amt] = '\0';
}
if (fread (mvar, (size_t) size, (size_t) nmemb, file) != nmemb)
{
if (reason)
error (_("Unable to read in 0x%" BFD_VMA_FMT "x bytes of %s\n"),
amt, reason);
if (mvar != var)
free (mvar);
return NULL;
}
return mvar;
}
/* Print a VMA value. */
static int
print_vma (bfd_vma vma, print_mode mode)
{
int nc = 0;
switch (mode)
{
case FULL_HEX:
nc = printf ("0x");
/* Drop through. */
case LONG_HEX:
#ifdef BFD64
if (is_32bit_elf)
return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
#endif
printf_vma (vma);
return nc + 16;
case DEC_5:
if (vma <= 99999)
return printf ("%5" BFD_VMA_FMT "d", vma);
/* Drop through. */
case PREFIX_HEX:
nc = printf ("0x");
/* Drop through. */
case HEX:
return nc + printf ("%" BFD_VMA_FMT "x", vma);
case DEC:
return printf ("%" BFD_VMA_FMT "d", vma);
case UNSIGNED:
return printf ("%" BFD_VMA_FMT "u", vma);
}
return 0;
}
/* Display a symbol on stdout. Handles the display of control characters and
multibye characters (assuming the host environment supports them).
Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
padding as necessary.
Returns the number of emitted characters. */
static unsigned int
print_symbol (int width, const char *symbol)
{
bfd_boolean extra_padding = FALSE;
int num_printed = 0;
#ifdef HAVE_MBSTATE_T
mbstate_t state;
#endif
int width_remaining;
if (width < 0)
{
/* Keep the width positive. This also helps. */
width = - width;
extra_padding = TRUE;
}
assert (width != 0);
if (do_wide)
/* Set the remaining width to a very large value.
This simplifies the code below. */
width_remaining = INT_MAX;
else
width_remaining = width;
#ifdef HAVE_MBSTATE_T
/* Initialise the multibyte conversion state. */
memset (& state, 0, sizeof (state));
#endif
while (width_remaining)
{
size_t n;
const char c = *symbol++;
if (c == 0)
break;
/* Do not print control characters directly as they can affect terminal
settings. Such characters usually appear in the names generated
by the assembler for local labels. */
if (ISCNTRL (c))
{
if (width_remaining < 2)
break;
printf ("^%c", c + 0x40);
width_remaining -= 2;
num_printed += 2;
}
else if (ISPRINT (c))
{
putchar (c);
width_remaining --;
num_printed ++;
}
else
{
#ifdef HAVE_MBSTATE_T
wchar_t w;
#endif
/* Let printf do the hard work of displaying multibyte characters. */
printf ("%.1s", symbol - 1);
width_remaining --;
num_printed ++;
#ifdef HAVE_MBSTATE_T
/* Try to find out how many bytes made up the character that was
just printed. Advance the symbol pointer past the bytes that
were displayed. */
n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
#else
n = 1;
#endif
if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
symbol += (n - 1);
}
}
if (extra_padding && num_printed < width)
{
/* Fill in the remaining spaces. */
printf ("%-*s", width - num_printed, " ");
num_printed = width;
}
return num_printed;
}
/* Returns a pointer to a static buffer containing a printable version of
the given section's name. Like print_symbol, except that it does not try
to print multibyte characters, it just interprets them as hex values. */
static const char *
printable_section_name (const Elf_Internal_Shdr * sec)
{
#define MAX_PRINT_SEC_NAME_LEN 128
static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
const char * name = SECTION_NAME (sec);
char * buf = sec_name_buf;
char c;
unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
while ((c = * name ++) != 0)
{
if (ISCNTRL (c))
{
if (remaining < 2)
break;
* buf ++ = '^';
* buf ++ = c + 0x40;
remaining -= 2;
}
else if (ISPRINT (c))
{
* buf ++ = c;
remaining -= 1;
}
else
{
static char hex[17] = "0123456789ABCDEF";
if (remaining < 4)
break;
* buf ++ = '<';
* buf ++ = hex[(c & 0xf0) >> 4];
* buf ++ = hex[c & 0x0f];
* buf ++ = '>';
remaining -= 4;
}
if (remaining == 0)
break;
}
* buf = 0;
return sec_name_buf;
}
static const char *
printable_section_name_from_index (unsigned long ndx)
{
if (ndx >= elf_header.e_shnum)
return _("<corrupt>");
return printable_section_name (section_headers + ndx);
}
/* Return a pointer to section NAME, or NULL if no such section exists. */
static Elf_Internal_Shdr *
find_section (const char * name)
{
unsigned int i;
for (i = 0; i < elf_header.e_shnum; i++)
if (streq (SECTION_NAME (section_headers + i), name))
return section_headers + i;
return NULL;
}
/* Return a pointer to a section containing ADDR, or NULL if no such
section exists. */
static Elf_Internal_Shdr *
find_section_by_address (bfd_vma addr)
{
unsigned int i;
for (i = 0; i < elf_header.e_shnum; i++)
{
Elf_Internal_Shdr *sec = section_headers + i;
if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
return sec;
}
return NULL;
}
static Elf_Internal_Shdr *
find_section_by_type (unsigned int type)
{
unsigned int i;
for (i = 0; i < elf_header.e_shnum; i++)
{
Elf_Internal_Shdr *sec = section_headers + i;
if (sec->sh_type == type)
return sec;
}
return NULL;
}
/* Return a pointer to section NAME, or NULL if no such section exists,
restricted to the list of sections given in SET. */
static Elf_Internal_Shdr *
find_section_in_set (const char * name, unsigned int * set)
{
unsigned int i;
if (set != NULL)
{
while ((i = *set++) > 0)
if (streq (SECTION_NAME (section_headers + i), name))
return section_headers + i;
}
return find_section (name);
}
/* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
bytes read. */
static inline unsigned long
read_uleb128 (unsigned char *data,
unsigned int *length_return,
const unsigned char * const end)
{
return read_leb128 (data, length_return, FALSE, end);
}
/* Return true if the current file is for IA-64 machine and OpenVMS ABI.
This OS has so many departures from the ELF standard that we test it at
many places. */
static inline int
is_ia64_vms (void)
{
return elf_header.e_machine == EM_IA_64
&& elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
}
/* Guess the relocation size commonly used by the specific machines. */
static int
guess_is_rela (unsigned int e_machine)
{
switch (e_machine)
{
/* Targets that use REL relocations. */
case EM_386:
case EM_IAMCU:
case EM_960:
case EM_ARM:
case EM_D10V:
case EM_CYGNUS_D10V:
case EM_DLX:
case EM_MIPS:
case EM_MIPS_RS3_LE:
case EM_CYGNUS_M32R:
case EM_SCORE:
case EM_XGATE:
return FALSE;
/* Targets that use RELA relocations. */
case EM_68K:
case EM_860:
case EM_AARCH64:
case EM_ADAPTEVA_EPIPHANY:
case EM_ALPHA:
case EM_ALTERA_NIOS2:
case EM_ARC:
case EM_ARC_COMPACT:
case EM_ARC_COMPACT2:
case EM_AVR:
case EM_AVR_OLD:
case EM_BLACKFIN:
case EM_CR16:
case EM_CRIS:
case EM_CRX:
case EM_D30V:
case EM_CYGNUS_D30V:
case EM_FR30:
case EM_FT32:
case EM_CYGNUS_FR30:
case EM_CYGNUS_FRV:
case EM_H8S:
case EM_H8_300:
case EM_H8_300H:
case EM_IA_64:
case EM_IP2K:
case EM_IP2K_OLD:
case EM_IQ2000:
case EM_LATTICEMICO32:
case EM_M32C_OLD:
case EM_M32C:
case EM_M32R:
case EM_MCORE:
case EM_CYGNUS_MEP:
case EM_METAG:
case EM_MMIX:
case EM_MN10200:
case EM_CYGNUS_MN10200:
case EM_MN10300:
case EM_CYGNUS_MN10300:
case EM_MOXIE:
case EM_MSP430:
case EM_MSP430_OLD:
case EM_MT:
case EM_NDS32:
case EM_NIOS32:
case EM_OR1K:
case EM_PPC64:
case EM_PPC:
case EM_RL78:
case EM_RX:
case EM_S390:
case EM_S390_OLD:
case EM_SH:
case EM_SPARC:
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPU:
case EM_TI_C6000:
case EM_TILEGX:
case EM_TILEPRO:
case EM_V800:
case EM_V850:
case EM_CYGNUS_V850:
case EM_VAX:
case EM_VISIUM:
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
case EM_XSTORMY16:
case EM_XTENSA:
case EM_XTENSA_OLD:
case EM_MICROBLAZE:
case EM_MICROBLAZE_OLD:
return TRUE;
case EM_68HC05:
case EM_68HC08:
case EM_68HC11:
case EM_68HC16:
case EM_FX66:
case EM_ME16:
case EM_MMA:
case EM_NCPU:
case EM_NDR1:
case EM_PCP:
case EM_ST100:
case EM_ST19:
case EM_ST7:
case EM_ST9PLUS:
case EM_STARCORE:
case EM_SVX:
case EM_TINYJ:
default:
warn (_("Don't know about relocations on this machine architecture\n"));
return FALSE;
}
}
static int
slurp_rela_relocs (FILE * file,
unsigned long rel_offset,
unsigned long rel_size,
Elf_Internal_Rela ** relasp,
unsigned long * nrelasp)
{
Elf_Internal_Rela * relas;
size_t nrelas;
unsigned int i;
if (is_32bit_elf)
{
Elf32_External_Rela * erelas;
erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
rel_size, _("32-bit relocation data"));
if (!erelas)
return 0;
nrelas = rel_size / sizeof (Elf32_External_Rela);
relas = (Elf_Internal_Rela *) cmalloc (nrelas,
sizeof (Elf_Internal_Rela));
if (relas == NULL)
{
free (erelas);
error (_("out of memory parsing relocs\n"));
return 0;
}
for (i = 0; i < nrelas; i++)
{
relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
relas[i].r_info = BYTE_GET (erelas[i].r_info);
relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
}
free (erelas);
}
else
{
Elf64_External_Rela * erelas;
erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
rel_size, _("64-bit relocation data"));
if (!erelas)
return 0;
nrelas = rel_size / sizeof (Elf64_External_Rela);
relas = (Elf_Internal_Rela *) cmalloc (nrelas,
sizeof (Elf_Internal_Rela));
if (relas == NULL)
{
free (erelas);
error (_("out of memory parsing relocs\n"));
return 0;
}
for (i = 0; i < nrelas; i++)
{
relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
relas[i].r_info = BYTE_GET (erelas[i].r_info);
relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
/* The #ifdef BFD64 below is to prevent a compile time
warning. We know that if we do not have a 64 bit data
type that we will never execute this code anyway. */
#ifdef BFD64
if (elf_header.e_machine == EM_MIPS
&& elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
{
/* In little-endian objects, r_info isn't really a
64-bit little-endian value: it has a 32-bit
little-endian symbol index followed by four
individual byte fields. Reorder INFO
accordingly. */
bfd_vma inf = relas[i].r_info;
inf = (((inf & 0xffffffff) << 32)
| ((inf >> 56) & 0xff)
| ((inf >> 40) & 0xff00)
| ((inf >> 24) & 0xff0000)
| ((inf >> 8) & 0xff000000));
relas[i].r_info = inf;
}
#endif /* BFD64 */
}
free (erelas);
}
*relasp = relas;
*nrelasp = nrelas;
return 1;
}
static int
slurp_rel_relocs (FILE * file,
unsigned long rel_offset,
unsigned long rel_size,
Elf_Internal_Rela ** relsp,
unsigned long * nrelsp)
{
Elf_Internal_Rela * rels;
size_t nrels;
unsigned int i;
if (is_32bit_elf)
{
Elf32_External_Rel * erels;
erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
rel_size, _("32-bit relocation data"));
if (!erels)
return 0;
nrels = rel_size / sizeof (Elf32_External_Rel);
rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
if (rels == NULL)
{
free (erels);
error (_("out of memory parsing relocs\n"));
return 0;
}
for (i = 0; i < nrels; i++)
{
rels[i].r_offset = BYTE_GET (erels[i].r_offset);
rels[i].r_info = BYTE_GET (erels[i].r_info);
rels[i].r_addend = 0;
}
free (erels);
}
else
{
Elf64_External_Rel * erels;
erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
rel_size, _("64-bit relocation data"));
if (!erels)
return 0;
nrels = rel_size / sizeof (Elf64_External_Rel);
rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
if (rels == NULL)
{
free (erels);
error (_("out of memory parsing relocs\n"));
return 0;
}
for (i = 0; i < nrels; i++)
{
rels[i].r_offset = BYTE_GET (erels[i].r_offset);
rels[i].r_info = BYTE_GET (erels[i].r_info);
rels[i].r_addend = 0;
/* The #ifdef BFD64 below is to prevent a compile time
warning. We know that if we do not have a 64 bit data
type that we will never execute this code anyway. */
#ifdef BFD64
if (elf_header.e_machine == EM_MIPS
&& elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
{
/* In little-endian objects, r_info isn't really a
64-bit little-endian value: it has a 32-bit
little-endian symbol index followed by four
individual byte fields. Reorder INFO
accordingly. */
bfd_vma inf = rels[i].r_info;
inf = (((inf & 0xffffffff) << 32)
| ((inf >> 56) & 0xff)
| ((inf >> 40) & 0xff00)
| ((inf >> 24) & 0xff0000)
| ((inf >> 8) & 0xff000000));
rels[i].r_info = inf;
}
#endif /* BFD64 */
}
free (erels);
}
*relsp = rels;
*nrelsp = nrels;
return 1;
}
/* Returns the reloc type extracted from the reloc info field. */
static unsigned int
get_reloc_type (bfd_vma reloc_info)
{
if (is_32bit_elf)
return ELF32_R_TYPE (reloc_info);
switch (elf_header.e_machine)
{
case EM_MIPS:
/* Note: We assume that reloc_info has already been adjusted for us. */
return ELF64_MIPS_R_TYPE (reloc_info);
case EM_SPARCV9:
return ELF64_R_TYPE_ID (reloc_info);
default:
return ELF64_R_TYPE (reloc_info);
}
}
/* Return the symbol index extracted from the reloc info field. */
static bfd_vma
get_reloc_symindex (bfd_vma reloc_info)
{
return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
}
static inline bfd_boolean
uses_msp430x_relocs (void)
{
return
elf_header.e_machine == EM_MSP430 /* Paranoia. */
/* GCC uses osabi == ELFOSBI_STANDALONE. */
&& (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
/* TI compiler uses ELFOSABI_NONE. */
|| (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
}
/* Display the contents of the relocation data found at the specified
offset. */
static void
dump_relocations (FILE * file,
unsigned long rel_offset,
unsigned long rel_size,
Elf_Internal_Sym * symtab,
unsigned long nsyms,
char * strtab,
unsigned long strtablen,
int is_rela,
int is_dynsym)
{
unsigned int i;
Elf_Internal_Rela * rels;
if (is_rela == UNKNOWN)
is_rela = guess_is_rela (elf_header.e_machine);
if (is_rela)
{
if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
return;
}
else
{
if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
return;
}
if (is_32bit_elf)
{
if (is_rela)
{
if (do_wide)
printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
else
printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
}
else
{
if (do_wide)
printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
else
printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
}
}
else
{
if (is_rela)
{
if (do_wide)
printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
else
printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
}
else
{
if (do_wide)
printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
else
printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
}
}
for (i = 0; i < rel_size; i++)
{
const char * rtype;
bfd_vma offset;
bfd_vma inf;
bfd_vma symtab_index;
bfd_vma type;
offset = rels[i].r_offset;
inf = rels[i].r_info;
type = get_reloc_type (inf);
symtab_index = get_reloc_symindex (inf);
if (is_32bit_elf)
{
printf ("%8.8lx %8.8lx ",
(unsigned long) offset & 0xffffffff,
(unsigned long) inf & 0xffffffff);
}
else
{
#if BFD_HOST_64BIT_LONG
printf (do_wide
? "%16.16lx %16.16lx "
: "%12.12lx %12.12lx ",
offset, inf);
#elif BFD_HOST_64BIT_LONG_LONG
#ifndef __MSVCRT__
printf (do_wide
? "%16.16llx %16.16llx "
: "%12.12llx %12.12llx ",
offset, inf);
#else
printf (do_wide
? "%16.16I64x %16.16I64x "
: "%12.12I64x %12.12I64x ",
offset, inf);
#endif
#else
printf (do_wide
? "%8.8lx%8.8lx %8.8lx%8.8lx "
: "%4.4lx%8.8lx %4.4lx%8.8lx ",
_bfd_int64_high (offset),
_bfd_int64_low (offset),
_bfd_int64_high (inf),
_bfd_int64_low (inf));
#endif
}
switch (elf_header.e_machine)
{
default:
rtype = NULL;
break;
case EM_AARCH64:
rtype = elf_aarch64_reloc_type (type);
break;
case EM_M32R:
case EM_CYGNUS_M32R:
rtype = elf_m32r_reloc_type (type);
break;
case EM_386:
case EM_IAMCU:
rtype = elf_i386_reloc_type (type);
break;
case EM_68HC11:
case EM_68HC12:
rtype = elf_m68hc11_reloc_type (type);
break;
case EM_68K:
rtype = elf_m68k_reloc_type (type);
break;
case EM_960:
rtype = elf_i960_reloc_type (type);
break;
case EM_AVR:
case EM_AVR_OLD:
rtype = elf_avr_reloc_type (type);
break;
case EM_OLD_SPARCV9:
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPARC:
rtype = elf_sparc_reloc_type (type);
break;
case EM_SPU:
rtype = elf_spu_reloc_type (type);
break;
case EM_V800:
rtype = v800_reloc_type (type);
break;
case EM_V850:
case EM_CYGNUS_V850:
rtype = v850_reloc_type (type);
break;
case EM_D10V:
case EM_CYGNUS_D10V:
rtype = elf_d10v_reloc_type (type);
break;
case EM_D30V:
case EM_CYGNUS_D30V:
rtype = elf_d30v_reloc_type (type);
break;
case EM_DLX:
rtype = elf_dlx_reloc_type (type);
break;
case EM_SH:
rtype = elf_sh_reloc_type (type);
break;
case EM_MN10300:
case EM_CYGNUS_MN10300:
rtype = elf_mn10300_reloc_type (type);
break;
case EM_MN10200:
case EM_CYGNUS_MN10200:
rtype = elf_mn10200_reloc_type (type);
break;
case EM_FR30:
case EM_CYGNUS_FR30:
rtype = elf_fr30_reloc_type (type);
break;
case EM_CYGNUS_FRV:
rtype = elf_frv_reloc_type (type);
break;
case EM_FT32:
rtype = elf_ft32_reloc_type (type);
break;
case EM_MCORE:
rtype = elf_mcore_reloc_type (type);
break;
case EM_MMIX:
rtype = elf_mmix_reloc_type (type);
break;
case EM_MOXIE:
rtype = elf_moxie_reloc_type (type);
break;
case EM_MSP430:
if (uses_msp430x_relocs ())
{
rtype = elf_msp430x_reloc_type (type);
break;
}
case EM_MSP430_OLD:
rtype = elf_msp430_reloc_type (type);
break;
case EM_NDS32:
rtype = elf_nds32_reloc_type (type);
break;
case EM_PPC:
rtype = elf_ppc_reloc_type (type);
break;
case EM_PPC64:
rtype = elf_ppc64_reloc_type (type);
break;
case EM_MIPS:
case EM_MIPS_RS3_LE:
rtype = elf_mips_reloc_type (type);
break;
case EM_ALPHA:
rtype = elf_alpha_reloc_type (type);
break;
case EM_ARM:
rtype = elf_arm_reloc_type (type);
break;
case EM_ARC:
case EM_ARC_COMPACT:
case EM_ARC_COMPACT2:
rtype = elf_arc_reloc_type (type);
break;
case EM_PARISC:
rtype = elf_hppa_reloc_type (type);
break;
case EM_H8_300:
case EM_H8_300H:
case EM_H8S:
rtype = elf_h8_reloc_type (type);
break;
case EM_OR1K:
rtype = elf_or1k_reloc_type (type);
break;
case EM_PJ:
case EM_PJ_OLD:
rtype = elf_pj_reloc_type (type);
break;
case EM_IA_64:
rtype = elf_ia64_reloc_type (type);
break;
case EM_CRIS:
rtype = elf_cris_reloc_type (type);
break;
case EM_860:
rtype = elf_i860_reloc_type (type);
break;
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
rtype = elf_x86_64_reloc_type (type);
break;
case EM_S370:
rtype = i370_reloc_type (type);
break;
case EM_S390_OLD:
case EM_S390:
rtype = elf_s390_reloc_type (type);
break;
case EM_SCORE:
rtype = elf_score_reloc_type (type);
break;
case EM_XSTORMY16:
rtype = elf_xstormy16_reloc_type (type);
break;
case EM_CRX:
rtype = elf_crx_reloc_type (type);
break;
case EM_VAX:
rtype = elf_vax_reloc_type (type);
break;
case EM_VISIUM:
rtype = elf_visium_reloc_type (type);
break;
case EM_ADAPTEVA_EPIPHANY:
rtype = elf_epiphany_reloc_type (type);
break;
case EM_IP2K:
case EM_IP2K_OLD:
rtype = elf_ip2k_reloc_type (type);
break;
case EM_IQ2000:
rtype = elf_iq2000_reloc_type (type);
break;
case EM_XTENSA_OLD:
case EM_XTENSA:
rtype = elf_xtensa_reloc_type (type);
break;
case EM_LATTICEMICO32:
rtype = elf_lm32_reloc_type (type);
break;
case EM_M32C_OLD:
case EM_M32C:
rtype = elf_m32c_reloc_type (type);
break;
case EM_MT:
rtype = elf_mt_reloc_type (type);
break;
case EM_BLACKFIN:
rtype = elf_bfin_reloc_type (type);
break;
case EM_CYGNUS_MEP:
rtype = elf_mep_reloc_type (type);
break;
case EM_CR16:
rtype = elf_cr16_reloc_type (type);
break;
case EM_MICROBLAZE:
case EM_MICROBLAZE_OLD:
rtype = elf_microblaze_reloc_type (type);
break;
case EM_RL78:
rtype = elf_rl78_reloc_type (type);
break;
case EM_RX:
rtype = elf_rx_reloc_type (type);
break;
case EM_METAG:
rtype = elf_metag_reloc_type (type);
break;
case EM_XC16X:
case EM_C166:
rtype = elf_xc16x_reloc_type (type);
break;
case EM_TI_C6000:
rtype = elf_tic6x_reloc_type (type);
break;
case EM_TILEGX:
rtype = elf_tilegx_reloc_type (type);
break;
case EM_TILEPRO:
rtype = elf_tilepro_reloc_type (type);
break;
case EM_XGATE:
rtype = elf_xgate_reloc_type (type);
break;
case EM_ALTERA_NIOS2:
rtype = elf_nios2_reloc_type (type);
break;
}
if (rtype == NULL)
printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
else
printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
if (elf_header.e_machine == EM_ALPHA
&& rtype != NULL
&& streq (rtype, "R_ALPHA_LITUSE")
&& is_rela)
{
switch (rels[i].r_addend)
{
case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
default: rtype = NULL;
}
if (rtype)
printf (" (%s)", rtype);
else
{
putchar (' ');
printf (_("<unknown addend: %lx>"),
(unsigned long) rels[i].r_addend);
}
}
else if (symtab_index)
{
if (symtab == NULL || symtab_index >= nsyms)
printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
else
{
Elf_Internal_Sym * psym;
const char * version_string;
enum versioned_symbol_info sym_info;
unsigned short vna_other;
psym = symtab + symtab_index;
version_string
= get_symbol_version_string (file, is_dynsym,
strtab, strtablen,
symtab_index,
psym,
&sym_info,
&vna_other);
printf (" ");
if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
{
const char * name;
unsigned int len;
unsigned int width = is_32bit_elf ? 8 : 14;
/* Relocations against GNU_IFUNC symbols do not use the value
of the symbol as the address to relocate against. Instead
they invoke the function named by the symbol and use its
result as the address for relocation.
To indicate this to the user, do not display the value of
the symbol in the "Symbols's Value" field. Instead show
its name followed by () as a hint that the symbol is
invoked. */
if (strtab == NULL
|| psym->st_name == 0
|| psym->st_name >= strtablen)
name = "??";
else
name = strtab + psym->st_name;
len = print_symbol (width, name);
if (version_string)
printf (sym_info == symbol_public ? "@@%s" : "@%s",
version_string);
printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
}
else
{
print_vma (psym->st_value, LONG_HEX);
printf (is_32bit_elf ? " " : " ");
}
if (psym->st_name == 0)
{
const char * sec_name = "<null>";
char name_buf[40];
if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
{
if (psym->st_shndx < elf_header.e_shnum)
sec_name = SECTION_NAME (section_headers + psym->st_shndx);
else if (psym->st_shndx == SHN_ABS)
sec_name = "ABS";
else if (psym->st_shndx == SHN_COMMON)
sec_name = "COMMON";
else if ((elf_header.e_machine == EM_MIPS
&& psym->st_shndx == SHN_MIPS_SCOMMON)
|| (elf_header.e_machine == EM_TI_C6000
&& psym->st_shndx == SHN_TIC6X_SCOMMON))
sec_name = "SCOMMON";
else if (elf_header.e_machine == EM_MIPS
&& psym->st_shndx == SHN_MIPS_SUNDEFINED)
sec_name = "SUNDEF";
else if ((elf_header.e_machine == EM_X86_64
|| elf_header.e_machine == EM_L1OM
|| elf_header.e_machine == EM_K1OM)
&& psym->st_shndx == SHN_X86_64_LCOMMON)
sec_name = "LARGE_COMMON";
else if (elf_header.e_machine == EM_IA_64
&& elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
&& psym->st_shndx == SHN_IA_64_ANSI_COMMON)
sec_name = "ANSI_COM";
else if (is_ia64_vms ()
&& psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
sec_name = "VMS_SYMVEC";
else
{
sprintf (name_buf, "<section 0x%x>",
(unsigned int) psym->st_shndx);
sec_name = name_buf;
}
}
print_symbol (22, sec_name);
}
else if (strtab == NULL)
printf (_("<string table index: %3ld>"), psym->st_name);
else if (psym->st_name >= strtablen)
printf (_("<corrupt string table index: %3ld>"), psym->st_name);
else
{
print_symbol (22, strtab + psym->st_name);
if (version_string)
printf (sym_info == symbol_public ? "@@%s" : "@%s",
version_string);
}
if (is_rela)
{
bfd_vma off = rels[i].r_addend;
if ((bfd_signed_vma) off < 0)
printf (" - %" BFD_VMA_FMT "x", - off);
else
printf (" + %" BFD_VMA_FMT "x", off);
}
}
}
else if (is_rela)
{
bfd_vma off = rels[i].r_addend;
printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
if ((bfd_signed_vma) off < 0)
printf ("-%" BFD_VMA_FMT "x", - off);
else
printf ("%" BFD_VMA_FMT "x", off);
}
if (elf_header.e_machine == EM_SPARCV9
&& rtype != NULL
&& streq (rtype, "R_SPARC_OLO10"))
printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
putchar ('\n');
#ifdef BFD64
if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
{
bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
const char * rtype2 = elf_mips_reloc_type (type2);
const char * rtype3 = elf_mips_reloc_type (type3);
printf (" Type2: ");
if (rtype2 == NULL)
printf (_("unrecognized: %-7lx"),
(unsigned long) type2 & 0xffffffff);
else
printf ("%-17.17s", rtype2);
printf ("\n Type3: ");
if (rtype3 == NULL)
printf (_("unrecognized: %-7lx"),
(unsigned long) type3 & 0xffffffff);
else
printf ("%-17.17s", rtype3);
putchar ('\n');
}
#endif /* BFD64 */
}
free (rels);
}
static const char *
get_mips_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
case DT_MIPS_IVERSION: return "MIPS_IVERSION";
case DT_MIPS_FLAGS: return "MIPS_FLAGS";
case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
case DT_MIPS_MSYM: return "MIPS_MSYM";
case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
case DT_MIPS_RWPLT: return "MIPS_RWPLT";
default:
return NULL;
}
}
static const char *
get_sparc64_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_SPARC_REGISTER: return "SPARC_REGISTER";
default:
return NULL;
}
}
static const char *
get_ppc_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_PPC_GOT: return "PPC_GOT";
case DT_PPC_OPT: return "PPC_OPT";
default:
return NULL;
}
}
static const char *
get_ppc64_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_PPC64_GLINK: return "PPC64_GLINK";
case DT_PPC64_OPD: return "PPC64_OPD";
case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
case DT_PPC64_OPT: return "PPC64_OPT";
default:
return NULL;
}
}
static const char *
get_parisc_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
case DT_HP_UX10_INIT: return "HP_UX10_INIT";
case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
case DT_HP_PREINIT: return "HP_PREINIT";
case DT_HP_PREINITSZ: return "HP_PREINITSZ";
case DT_HP_NEEDED: return "HP_NEEDED";
case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
case DT_HP_CHECKSUM: return "HP_CHECKSUM";
case DT_HP_GST_SIZE: return "HP_GST_SIZE";
case DT_HP_GST_VERSION: return "HP_GST_VERSION";
case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
case DT_HP_FILTERED: return "HP_FILTERED";
case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
case DT_PLT: return "PLT";
case DT_PLT_SIZE: return "PLT_SIZE";
case DT_DLT: return "DLT";
case DT_DLT_SIZE: return "DLT_SIZE";
default:
return NULL;
}
}
static const char *
get_ia64_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
default:
return NULL;
}
}
static const char *
get_solaris_section_type (unsigned long type)
{
switch (type)
{
case 0x6fffffee: return "SUNW_ancillary";
case 0x6fffffef: return "SUNW_capchain";
case 0x6ffffff0: return "SUNW_capinfo";
case 0x6ffffff1: return "SUNW_symsort";
case 0x6ffffff2: return "SUNW_tlssort";
case 0x6ffffff3: return "SUNW_LDYNSYM";
case 0x6ffffff4: return "SUNW_dof";
case 0x6ffffff5: return "SUNW_cap";
case 0x6ffffff6: return "SUNW_SIGNATURE";
case 0x6ffffff7: return "SUNW_ANNOTATE";
case 0x6ffffff8: return "SUNW_DEBUGSTR";
case 0x6ffffff9: return "SUNW_DEBUG";
case 0x6ffffffa: return "SUNW_move";
case 0x6ffffffb: return "SUNW_COMDAT";
case 0x6ffffffc: return "SUNW_syminfo";
case 0x6ffffffd: return "SUNW_verdef";
case 0x6ffffffe: return "SUNW_verneed";
case 0x6fffffff: return "SUNW_versym";
case 0x70000000: return "SPARC_GOTDATA";
default: return NULL;
}
}
static const char *
get_alpha_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
default:
return NULL;
}
}
static const char *
get_score_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
default:
return NULL;
}
}
static const char *
get_tic6x_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
default:
return NULL;
}
}
static const char *
get_nios2_dynamic_type (unsigned long type)
{
switch (type)
{
case DT_NIOS2_GP: return "NIOS2_GP";
default:
return NULL;
}
}
static const char *
get_solaris_dynamic_type (unsigned long type)
{
switch (type)
{
case 0x6000000d: return "SUNW_AUXILIARY";
case 0x6000000e: return "SUNW_RTLDINF";
case 0x6000000f: return "SUNW_FILTER";
case 0x60000010: return "SUNW_CAP";
case 0x60000011: return "SUNW_SYMTAB";
case 0x60000012: return "SUNW_SYMSZ";
case 0x60000013: return "SUNW_SORTENT";
case 0x60000014: return "SUNW_SYMSORT";
case 0x60000015: return "SUNW_SYMSORTSZ";
case 0x60000016: return "SUNW_TLSSORT";
case 0x60000017: return "SUNW_TLSSORTSZ";
case 0x60000018: return "SUNW_CAPINFO";
case 0x60000019: return "SUNW_STRPAD";
case 0x6000001a: return "SUNW_CAPCHAIN";
case 0x6000001b: return "SUNW_LDMACH";
case 0x6000001d: return "SUNW_CAPCHAINENT";
case 0x6000001f: return "SUNW_CAPCHAINSZ";
case 0x60000021: return "SUNW_PARENT";
case 0x60000023: return "SUNW_ASLR";
case 0x60000025: return "SUNW_RELAX";
case 0x60000029: return "SUNW_NXHEAP";
case 0x6000002b: return "SUNW_NXSTACK";
case 0x70000001: return "SPARC_REGISTER";
case 0x7ffffffd: return "AUXILIARY";
case 0x7ffffffe: return "USED";
case 0x7fffffff: return "FILTER";
default: return NULL;
}
}
static const char *
get_dynamic_type (unsigned long type)
{
static char buff[64];
switch (type)
{
case DT_NULL: return "NULL";
case DT_NEEDED: return "NEEDED";
case DT_PLTRELSZ: return "PLTRELSZ";
case DT_PLTGOT: return "PLTGOT";
case DT_HASH: return "HASH";
case DT_STRTAB: return "STRTAB";
case DT_SYMTAB: return "SYMTAB";
case DT_RELA: return "RELA";
case DT_RELASZ: return "RELASZ";
case DT_RELAENT: return "RELAENT";
case DT_STRSZ: return "STRSZ";
case DT_SYMENT: return "SYMENT";
case DT_INIT: return "INIT";
case DT_FINI: return "FINI";
case DT_SONAME: return "SONAME";
case DT_RPATH: return "RPATH";
case DT_SYMBOLIC: return "SYMBOLIC";
case DT_REL: return "REL";
case DT_RELSZ: return "RELSZ";
case DT_RELENT: return "RELENT";
case DT_PLTREL: return "PLTREL";
case DT_DEBUG: return "DEBUG";
case DT_TEXTREL: return "TEXTREL";
case DT_JMPREL: return "JMPREL";
case DT_BIND_NOW: return "BIND_NOW";
case DT_INIT_ARRAY: return "INIT_ARRAY";
case DT_FINI_ARRAY: return "FINI_ARRAY";
case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
case DT_RUNPATH: return "RUNPATH";
case DT_FLAGS: return "FLAGS";
case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
case DT_CHECKSUM: return "CHECKSUM";
case DT_PLTPADSZ: return "PLTPADSZ";
case DT_MOVEENT: return "MOVEENT";
case DT_MOVESZ: return "MOVESZ";
case DT_FEATURE: return "FEATURE";
case DT_POSFLAG_1: return "POSFLAG_1";
case DT_SYMINSZ: return "SYMINSZ";
case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
case DT_ADDRRNGLO: return "ADDRRNGLO";
case DT_CONFIG: return "CONFIG";
case DT_DEPAUDIT: return "DEPAUDIT";
case DT_AUDIT: return "AUDIT";
case DT_PLTPAD: return "PLTPAD";
case DT_MOVETAB: return "MOVETAB";
case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
case DT_VERSYM: return "VERSYM";
case DT_TLSDESC_GOT: return "TLSDESC_GOT";
case DT_TLSDESC_PLT: return "TLSDESC_PLT";
case DT_RELACOUNT: return "RELACOUNT";
case DT_RELCOUNT: return "RELCOUNT";
case DT_FLAGS_1: return "FLAGS_1";
case DT_VERDEF: return "VERDEF";
case DT_VERDEFNUM: return "VERDEFNUM";
case DT_VERNEED: return "VERNEED";
case DT_VERNEEDNUM: return "VERNEEDNUM";
case DT_AUXILIARY: return "AUXILIARY";
case DT_USED: return "USED";
case DT_FILTER: return "FILTER";
case DT_GNU_PRELINKED: return "GNU_PRELINKED";
case DT_GNU_CONFLICT: return "GNU_CONFLICT";
case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
case DT_GNU_LIBLIST: return "GNU_LIBLIST";
case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
case DT_GNU_HASH: return "GNU_HASH";
default:
if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
{
const char * result;
switch (elf_header.e_machine)
{
case EM_MIPS:
case EM_MIPS_RS3_LE:
result = get_mips_dynamic_type (type);
break;
case EM_SPARCV9:
result = get_sparc64_dynamic_type (type);
break;
case EM_PPC:
result = get_ppc_dynamic_type (type);
break;
case EM_PPC64:
result = get_ppc64_dynamic_type (type);
break;
case EM_IA_64:
result = get_ia64_dynamic_type (type);
break;
case EM_ALPHA:
result = get_alpha_dynamic_type (type);
break;
case EM_SCORE:
result = get_score_dynamic_type (type);
break;
case EM_TI_C6000:
result = get_tic6x_dynamic_type (type);
break;
case EM_ALTERA_NIOS2:
result = get_nios2_dynamic_type (type);
break;
default:
if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
result = get_solaris_dynamic_type (type);
else
result = NULL;
break;
}
if (result != NULL)
return result;
snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
}
else if (((type >= DT_LOOS) && (type <= DT_HIOS))
|| (elf_header.e_machine == EM_PARISC
&& (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
{
const char * result;
switch (elf_header.e_machine)
{
case EM_PARISC:
result = get_parisc_dynamic_type (type);
break;
case EM_IA_64:
result = get_ia64_dynamic_type (type);
break;
default:
if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
result = get_solaris_dynamic_type (type);
else
result = NULL;
break;
}
if (result != NULL)
return result;
snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
type);
}
else
snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
return buff;
}
}
static char *
get_file_type (unsigned e_type)
{
static char buff[32];
switch (e_type)
{
case ET_NONE: return _("NONE (None)");
case ET_REL: return _("REL (Relocatable file)");
case ET_EXEC: return _("EXEC (Executable file)");
case ET_DYN: return _("DYN (Shared object file)");
case ET_CORE: return _("CORE (Core file)");
default:
if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
else
snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
return buff;
}
}
static char *
get_machine_name (unsigned e_machine)
{
static char buff[64]; /* XXX */
switch (e_machine)
{
case EM_NONE: return _("None");
case EM_AARCH64: return "AArch64";
case EM_M32: return "WE32100";
case EM_SPARC: return "Sparc";
case EM_SPU: return "SPU";
case EM_386: return "Intel 80386";
case EM_68K: return "MC68000";
case EM_88K: return "MC88000";
case EM_IAMCU: return "Intel MCU";
case EM_860: return "Intel 80860";
case EM_MIPS: return "MIPS R3000";
case EM_S370: return "IBM System/370";
case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
case EM_OLD_SPARCV9: return "Sparc v9 (old)";
case EM_PARISC: return "HPPA";
case EM_PPC_OLD: return "Power PC (old)";
case EM_SPARC32PLUS: return "Sparc v8+" ;
case EM_960: return "Intel 90860";
case EM_PPC: return "PowerPC";
case EM_PPC64: return "PowerPC64";
case EM_FR20: return "Fujitsu FR20";
case EM_FT32: return "FTDI FT32";
case EM_RH32: return "TRW RH32";
case EM_MCORE: return "MCORE";
case EM_ARM: return "ARM";
case EM_OLD_ALPHA: return "Digital Alpha (old)";
case EM_SH: return "Renesas / SuperH SH";
case EM_SPARCV9: return "Sparc v9";
case EM_TRICORE: return "Siemens Tricore";
case EM_ARC: return "ARC";
case EM_ARC_COMPACT: return "ARCompact";
case EM_ARC_COMPACT2: return "ARCv2";
case EM_H8_300: return "Renesas H8/300";
case EM_H8_300H: return "Renesas H8/300H";
case EM_H8S: return "Renesas H8S";
case EM_H8_500: return "Renesas H8/500";
case EM_IA_64: return "Intel IA-64";
case EM_MIPS_X: return "Stanford MIPS-X";
case EM_COLDFIRE: return "Motorola Coldfire";
case EM_ALPHA: return "Alpha";
case EM_CYGNUS_D10V:
case EM_D10V: return "d10v";
case EM_CYGNUS_D30V:
case EM_D30V: return "d30v";
case EM_CYGNUS_M32R:
case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
case EM_CYGNUS_V850:
case EM_V800: return "Renesas V850 (using RH850 ABI)";
case EM_V850: return "Renesas V850";
case EM_CYGNUS_MN10300:
case EM_MN10300: return "mn10300";
case EM_CYGNUS_MN10200:
case EM_MN10200: return "mn10200";
case EM_MOXIE: return "Moxie";
case EM_CYGNUS_FR30:
case EM_FR30: return "Fujitsu FR30";
case EM_CYGNUS_FRV: return "Fujitsu FR-V";
case EM_PJ_OLD:
case EM_PJ: return "picoJava";
case EM_MMA: return "Fujitsu Multimedia Accelerator";
case EM_PCP: return "Siemens PCP";
case EM_NCPU: return "Sony nCPU embedded RISC processor";
case EM_NDR1: return "Denso NDR1 microprocesspr";
case EM_STARCORE: return "Motorola Star*Core processor";
case EM_ME16: return "Toyota ME16 processor";
case EM_ST100: return "STMicroelectronics ST100 processor";
case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
case EM_PDSP: return "Sony DSP processor";
case EM_PDP10: return "Digital Equipment Corp. PDP-10";
case EM_PDP11: return "Digital Equipment Corp. PDP-11";
case EM_FX66: return "Siemens FX66 microcontroller";
case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
case EM_SVX: return "Silicon Graphics SVx";
case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
case EM_VAX: return "Digital VAX";
case EM_VISIUM: return "CDS VISIUMcore processor";
case EM_AVR_OLD:
case EM_AVR: return "Atmel AVR 8-bit microcontroller";
case EM_CRIS: return "Axis Communications 32-bit embedded processor";
case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
case EM_FIREPATH: return "Element 14 64-bit DSP processor";
case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
case EM_HUANY: return "Harvard Universitys's machine-independent object format";
case EM_PRISM: return "Vitesse Prism";
case EM_X86_64: return "Advanced Micro Devices X86-64";
case EM_L1OM: return "Intel L1OM";
case EM_K1OM: return "Intel K1OM";
case EM_S390_OLD:
case EM_S390: return "IBM S/390";
case EM_SCORE: return "SUNPLUS S+Core";
case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
case EM_OR1K: return "OpenRISC 1000";
case EM_CRX: return "National Semiconductor CRX microprocessor";
case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
case EM_DLX: return "OpenDLX";
case EM_IP2K_OLD:
case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
case EM_IQ2000: return "Vitesse IQ2000";
case EM_XTENSA_OLD:
case EM_XTENSA: return "Tensilica Xtensa Processor";
case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
case EM_NS32K: return "National Semiconductor 32000 series";
case EM_TPC: return "Tenor Network TPC processor";
case EM_ST200: return "STMicroelectronics ST200 microcontroller";
case EM_MAX: return "MAX Processor";
case EM_CR: return "National Semiconductor CompactRISC";
case EM_F2MC16: return "Fujitsu F2MC16";
case EM_MSP430: return "Texas Instruments msp430 microcontroller";
case EM_LATTICEMICO32: return "Lattice Mico32";
case EM_M32C_OLD:
case EM_M32C: return "Renesas M32c";
case EM_MT: return "Morpho Techologies MT processor";
case EM_BLACKFIN: return "Analog Devices Blackfin";
case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
case EM_SEP: return "Sharp embedded microprocessor";
case EM_ARCA: return "Arca RISC microprocessor";
case EM_UNICORE: return "Unicore";
case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
case EM_NIOS32: return "Altera Nios";
case EM_ALTERA_NIOS2: return "Altera Nios II";
case EM_C166:
case EM_XC16X: return "Infineon Technologies xc16x";
case EM_M16C: return "Renesas M16C series microprocessors";
case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
case EM_CE: return "Freescale Communication Engine RISC core";
case EM_TSK3000: return "Altium TSK3000 core";
case EM_RS08: return "Freescale RS08 embedded processor";
case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
case EM_SE_C17: return "Seiko Epson C17 family";
case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
case EM_R32C: return "Renesas R32C series microprocessors";
case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
case EM_QDSP6: return "QUALCOMM DSP6 Processor";
case EM_8051: return "Intel 8051 and variants";
case EM_STXP7X: return "STMicroelectronics STxP7x family";
case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
case EM_ECOG1X: return "Cyan Technology eCOG1X family";
case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
case EM_CR16:
case EM_MICROBLAZE:
case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
case EM_RL78: return "Renesas RL78";
case EM_RX: return "Renesas RX";
case EM_METAG: return "Imagination Technologies Meta processor architecture";
case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
case EM_ECOG16: return "Cyan Technology eCOG16 family";
case EM_ETPU: return "Freescale Extended Time Processing Unit";
case EM_SLE9X: return "Infineon Technologies SLE9X core";
case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
case EM_TILE64: return "Tilera TILE64 multicore architecture family";
case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
case EM_CUDA: return "NVIDIA CUDA architecture";
case EM_XGATE: return "Motorola XGATE embedded processor";
default:
snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
return buff;
}
}
static void
decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
{
/* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
other compilers don't a specific architecture type in the e_flags, and
instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
architectures.
Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
but also sets a specific architecture type in the e_flags field.
However, when decoding the flags we don't worry if we see an
unexpected pairing, for example EM_ARC_COMPACT machine type, with
ARCEM architecture type. */
switch (e_flags & EF_ARC_MACH_MSK)
{
/* We only expect these to occur for EM_ARC_COMPACT2. */
case EF_ARC_CPU_ARCV2EM:
strcat (buf, ", ARC EM");
break;
case EF_ARC_CPU_ARCV2HS:
strcat (buf, ", ARC HS");
break;
/* We only expect these to occur for EM_ARC_COMPACT. */
case E_ARC_MACH_ARC600:
strcat (buf, ", ARC600");
break;
case E_ARC_MACH_ARC601:
strcat (buf, ", ARC601");
break;
case E_ARC_MACH_ARC700:
strcat (buf, ", ARC700");
break;
/* The only times we should end up here are (a) A corrupt ELF, (b) A
new ELF with new architecture being read by an old version of
readelf, or (c) An ELF built with non-GNU compiler that does not
set the architecture in the e_flags. */
default:
if (e_machine == EM_ARC_COMPACT)
strcat (buf, ", Unknown ARCompact");
else
strcat (buf, ", Unknown ARC");
break;
}
switch (e_flags & EF_ARC_OSABI_MSK)
{
case E_ARC_OSABI_ORIG:
strcat (buf, ", (ABI:legacy)");
break;
case E_ARC_OSABI_V2:
strcat (buf, ", (ABI:v2)");
break;
/* Only upstream 3.9+ kernels will support ARCv2 ISA. */
case E_ARC_OSABI_V3:
strcat (buf, ", v3 no-legacy-syscalls ABI");
break;
default:
strcat (buf, ", unrecognised ARC OSABI flag");
break;
}
}
static void
decode_ARM_machine_flags (unsigned e_flags, char buf[])
{
unsigned eabi;
int unknown = 0;
eabi = EF_ARM_EABI_VERSION (e_flags);
e_flags &= ~ EF_ARM_EABIMASK;
/* Handle "generic" ARM flags. */
if (e_flags & EF_ARM_RELEXEC)
{
strcat (buf, ", relocatable executable");
e_flags &= ~ EF_ARM_RELEXEC;
}
/* Now handle EABI specific flags. */
switch (eabi)
{
default:
strcat (buf, ", <unrecognized EABI>");
if (e_flags)
unknown = 1;
break;
case EF_ARM_EABI_VER1:
strcat (buf, ", Version1 EABI");
while (e_flags)
{
unsigned flag;
/* Process flags one bit at a time. */
flag = e_flags & - e_flags;
e_flags &= ~ flag;
switch (flag)
{
case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
strcat (buf, ", sorted symbol tables");
break;
default:
unknown = 1;
break;
}
}
break;
case EF_ARM_EABI_VER2:
strcat (buf, ", Version2 EABI");
while (e_flags)
{
unsigned flag;
/* Process flags one bit at a time. */
flag = e_flags & - e_flags;
e_flags &= ~ flag;
switch (flag)
{
case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
strcat (buf, ", sorted symbol tables");
break;
case EF_ARM_DYNSYMSUSESEGIDX:
strcat (buf, ", dynamic symbols use segment index");
break;
case EF_ARM_MAPSYMSFIRST:
strcat (buf, ", mapping symbols precede others");
break;
default:
unknown = 1;
break;
}
}
break;
case EF_ARM_EABI_VER3:
strcat (buf, ", Version3 EABI");
break;
case EF_ARM_EABI_VER4:
strcat (buf, ", Version4 EABI");
while (e_flags)
{
unsigned flag;
/* Process flags one bit at a time. */
flag = e_flags & - e_flags;
e_flags &= ~ flag;
switch (flag)
{
case EF_ARM_BE8:
strcat (buf, ", BE8");
break;
case EF_ARM_LE8:
strcat (buf, ", LE8");
break;
default:
unknown = 1;
break;
}
break;
}
break;
case EF_ARM_EABI_VER5:
strcat (buf, ", Version5 EABI");
while (e_flags)
{
unsigned flag;
/* Process flags one bit at a time. */
flag = e_flags & - e_flags;
e_flags &= ~ flag;
switch (flag)
{
case EF_ARM_BE8:
strcat (buf, ", BE8");
break;
case EF_ARM_LE8:
strcat (buf, ", LE8");
break;
case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
strcat (buf, ", soft-float ABI");
break;
case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
strcat (buf, ", hard-float ABI");
break;
default:
unknown = 1;
break;
}
}
break;
case EF_ARM_EABI_UNKNOWN:
strcat (buf, ", GNU EABI");
while (e_flags)
{
unsigned flag;
/* Process flags one bit at a time. */
flag = e_flags & - e_flags;
e_flags &= ~ flag;
switch (flag)
{
case EF_ARM_INTERWORK:
strcat (buf, ", interworking enabled");
break;
case EF_ARM_APCS_26:
strcat (buf, ", uses APCS/26");
break;
case EF_ARM_APCS_FLOAT:
strcat (buf, ", uses APCS/float");
break;
case EF_ARM_PIC:
strcat (buf, ", position independent");
break;
case EF_ARM_ALIGN8:
strcat (buf, ", 8 bit structure alignment");
break;
case EF_ARM_NEW_ABI:
strcat (buf, ", uses new ABI");
break;
case EF_ARM_OLD_ABI:
strcat (buf, ", uses old ABI");
break;
case EF_ARM_SOFT_FLOAT:
strcat (buf, ", software FP");
break;
case EF_ARM_VFP_FLOAT:
strcat (buf, ", VFP");
break;
case EF_ARM_MAVERICK_FLOAT:
strcat (buf, ", Maverick FP");
break;
default:
unknown = 1;
break;
}
}
}
if (unknown)
strcat (buf,_(", <unknown>"));
}
static void
decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
{
--size; /* Leave space for null terminator. */
switch (e_flags & EF_AVR_MACH)
{
case E_AVR_MACH_AVR1:
strncat (buf, ", avr:1", size);
break;
case E_AVR_MACH_AVR2:
strncat (buf, ", avr:2", size);
break;
case E_AVR_MACH_AVR25:
strncat (buf, ", avr:25", size);
break;
case E_AVR_MACH_AVR3:
strncat (buf, ", avr:3", size);
break;
case E_AVR_MACH_AVR31:
strncat (buf, ", avr:31", size);
break;
case E_AVR_MACH_AVR35:
strncat (buf, ", avr:35", size);
break;
case E_AVR_MACH_AVR4:
strncat (buf, ", avr:4", size);
break;
case E_AVR_MACH_AVR5:
strncat (buf, ", avr:5", size);
break;
case E_AVR_MACH_AVR51:
strncat (buf, ", avr:51", size);
break;
case E_AVR_MACH_AVR6:
strncat (buf, ", avr:6", size);
break;
case E_AVR_MACH_AVRTINY:
strncat (buf, ", avr:100", size);
break;
case E_AVR_MACH_XMEGA1:
strncat (buf, ", avr:101", size);
break;
case E_AVR_MACH_XMEGA2:
strncat (buf, ", avr:102", size);
break;
case E_AVR_MACH_XMEGA3:
strncat (buf, ", avr:103", size);
break;
case E_AVR_MACH_XMEGA4:
strncat (buf, ", avr:104", size);
break;
case E_AVR_MACH_XMEGA5:
strncat (buf, ", avr:105", size);
break;
case E_AVR_MACH_XMEGA6:
strncat (buf, ", avr:106", size);
break;
case E_AVR_MACH_XMEGA7:
strncat (buf, ", avr:107", size);
break;
default:
strncat (buf, ", avr:<unknown>", size);
break;
}
size -= strlen (buf);
if (e_flags & EF_AVR_LINKRELAX_PREPARED)
strncat (buf, ", link-relax", size);
}
static void
decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
{
unsigned abi;
unsigned arch;
unsigned config;
unsigned version;
int has_fpu = 0;
int r = 0;
static const char *ABI_STRINGS[] =
{
"ABI v0", /* use r5 as return register; only used in N1213HC */
"ABI v1", /* use r0 as return register */
"ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
"ABI v2fp", /* for FPU */
"AABI",
"ABI2 FP+"
};
static const char *VER_STRINGS[] =
{
"Andes ELF V1.3 or older",
"Andes ELF V1.3.1",
"Andes ELF V1.4"
};
static const char *ARCH_STRINGS[] =
{
"",
"Andes Star v1.0",
"Andes Star v2.0",
"Andes Star v3.0",
"Andes Star v3.0m"
};
abi = EF_NDS_ABI & e_flags;
arch = EF_NDS_ARCH & e_flags;
config = EF_NDS_INST & e_flags;
version = EF_NDS32_ELF_VERSION & e_flags;
memset (buf, 0, size);
switch (abi)
{
case E_NDS_ABI_V0:
case E_NDS_ABI_V1:
case E_NDS_ABI_V2:
case E_NDS_ABI_V2FP:
case E_NDS_ABI_AABI:
case E_NDS_ABI_V2FP_PLUS:
/* In case there are holes in the array. */
r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
break;
default:
r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
break;
}
switch (version)
{
case E_NDS32_ELF_VER_1_2:
case E_NDS32_ELF_VER_1_3:
case E_NDS32_ELF_VER_1_4:
r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
break;
default:
r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
break;
}
if (E_NDS_ABI_V0 == abi)
{
/* OLD ABI; only used in N1213HC, has performance extension 1. */
r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
if (arch == E_NDS_ARCH_STAR_V1_0)
r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
return;
}
switch (arch)
{
case E_NDS_ARCH_STAR_V1_0:
case E_NDS_ARCH_STAR_V2_0:
case E_NDS_ARCH_STAR_V3_0:
case E_NDS_ARCH_STAR_V3_M:
r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
break;
default:
r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
/* ARCH version determines how the e_flags are interpreted.
If it is unknown, we cannot proceed. */
return;
}
/* Newer ABI; Now handle architecture specific flags. */
if (arch == E_NDS_ARCH_STAR_V1_0)
{
if (config & E_NDS32_HAS_MFUSR_PC_INST)
r += snprintf (buf + r, size -r, ", MFUSR_PC");
if (!(config & E_NDS32_HAS_NO_MAC_INST))
r += snprintf (buf + r, size -r, ", MAC");
if (config & E_NDS32_HAS_DIV_INST)
r += snprintf (buf + r, size -r, ", DIV");
if (config & E_NDS32_HAS_16BIT_INST)
r += snprintf (buf + r, size -r, ", 16b");
}
else
{
if (config & E_NDS32_HAS_MFUSR_PC_INST)
{
if (version <= E_NDS32_ELF_VER_1_3)
r += snprintf (buf + r, size -r, ", [B8]");
else
r += snprintf (buf + r, size -r, ", EX9");
}
if (config & E_NDS32_HAS_MAC_DX_INST)
r += snprintf (buf + r, size -r, ", MAC_DX");
if (config & E_NDS32_HAS_DIV_DX_INST)
r += snprintf (buf + r, size -r, ", DIV_DX");
if (config & E_NDS32_HAS_16BIT_INST)
{
if (version <= E_NDS32_ELF_VER_1_3)
r += snprintf (buf + r, size -r, ", 16b");
else
r += snprintf (buf + r, size -r, ", IFC");
}
}
if (config & E_NDS32_HAS_EXT_INST)
r += snprintf (buf + r, size -r, ", PERF1");
if (config & E_NDS32_HAS_EXT2_INST)
r += snprintf (buf + r, size -r, ", PERF2");
if (config & E_NDS32_HAS_FPU_INST)
{
has_fpu = 1;
r += snprintf (buf + r, size -r, ", FPU_SP");
}
if (config & E_NDS32_HAS_FPU_DP_INST)
{
has_fpu = 1;
r += snprintf (buf + r, size -r, ", FPU_DP");
}
if (config & E_NDS32_HAS_FPU_MAC_INST)
{
has_fpu = 1;
r += snprintf (buf + r, size -r, ", FPU_MAC");
}
if (has_fpu)
{
switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
{
case E_NDS32_FPU_REG_8SP_4DP:
r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
break;
case E_NDS32_FPU_REG_16SP_8DP:
r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
break;
case E_NDS32_FPU_REG_32SP_16DP:
r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
break;
case E_NDS32_FPU_REG_32SP_32DP:
r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
break;
}
}
if (config & E_NDS32_HAS_AUDIO_INST)
r += snprintf (buf + r, size -r, ", AUDIO");
if (config & E_NDS32_HAS_STRING_INST)
r += snprintf (buf + r, size -r, ", STR");
if (config & E_NDS32_HAS_REDUCED_REGS)
r += snprintf (buf + r, size -r, ", 16REG");
if (config & E_NDS32_HAS_VIDEO_INST)
{
if (version <= E_NDS32_ELF_VER_1_3)
r += snprintf (buf + r, size -r, ", VIDEO");
else
r += snprintf (buf + r, size -r, ", SATURATION");
}
if (config & E_NDS32_HAS_ENCRIPT_INST)
r += snprintf (buf + r, size -r, ", ENCRP");
if (config & E_NDS32_HAS_L2C_INST)
r += snprintf (buf + r, size -r, ", L2C");
}
static char *
get_machine_flags (unsigned e_flags, unsigned e_machine)
{
static char buf[1024];
buf[0] = '\0';
if (e_flags)
{
switch (e_machine)
{
default:
break;
case EM_ARC_COMPACT2:
case EM_ARC_COMPACT:
decode_ARC_machine_flags (e_flags, e_machine, buf);
break;
case EM_ARM:
decode_ARM_machine_flags (e_flags, buf);
break;
case EM_AVR:
decode_AVR_machine_flags (e_flags, buf, sizeof buf);
break;
case EM_BLACKFIN:
if (e_flags & EF_BFIN_PIC)
strcat (buf, ", PIC");
if (e_flags & EF_BFIN_FDPIC)
strcat (buf, ", FDPIC");
if (e_flags & EF_BFIN_CODE_IN_L1)
strcat (buf, ", code in L1");
if (e_flags & EF_BFIN_DATA_IN_L1)
strcat (buf, ", data in L1");
break;
case EM_CYGNUS_FRV:
switch (e_flags & EF_FRV_CPU_MASK)
{
case EF_FRV_CPU_GENERIC:
break;
default:
strcat (buf, ", fr???");
break;
case EF_FRV_CPU_FR300:
strcat (buf, ", fr300");
break;
case EF_FRV_CPU_FR400:
strcat (buf, ", fr400");
break;
case EF_FRV_CPU_FR405:
strcat (buf, ", fr405");
break;
case EF_FRV_CPU_FR450:
strcat (buf, ", fr450");
break;
case EF_FRV_CPU_FR500:
strcat (buf, ", fr500");
break;
case EF_FRV_CPU_FR550:
strcat (buf, ", fr550");
break;
case EF_FRV_CPU_SIMPLE:
strcat (buf, ", simple");
break;
case EF_FRV_CPU_TOMCAT:
strcat (buf, ", tomcat");
break;
}
break;
case EM_68K:
if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
strcat (buf, ", m68000");
else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
strcat (buf, ", cpu32");
else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
strcat (buf, ", fido_a");
else
{
char const * isa = _("unknown");
char const * mac = _("unknown mac");
char const * additional = NULL;
switch (e_flags & EF_M68K_CF_ISA_MASK)
{
case EF_M68K_CF_ISA_A_NODIV:
isa = "A";
additional = ", nodiv";
break;
case EF_M68K_CF_ISA_A:
isa = "A";
break;
case EF_M68K_CF_ISA_A_PLUS:
isa = "A+";
break;
case EF_M68K_CF_ISA_B_NOUSP:
isa = "B";
additional = ", nousp";
break;
case EF_M68K_CF_ISA_B:
isa = "B";
break;
case EF_M68K_CF_ISA_C:
isa = "C";
break;
case EF_M68K_CF_ISA_C_NODIV:
isa = "C";
additional = ", nodiv";
break;
}
strcat (buf, ", cf, isa ");
strcat (buf, isa);
if (additional)
strcat (buf, additional);
if (e_flags & EF_M68K_CF_FLOAT)
strcat (buf, ", float");
switch (e_flags & EF_M68K_CF_MAC_MASK)
{
case 0:
mac = NULL;
break;
case EF_M68K_CF_MAC:
mac = "mac";
break;
case EF_M68K_CF_EMAC:
mac = "emac";
break;
case EF_M68K_CF_EMAC_B:
mac = "emac_b";
break;
}
if (mac)
{
strcat (buf, ", ");
strcat (buf, mac);
}
}
break;
case EM_CYGNUS_MEP:
switch (e_flags & EF_MEP_CPU_MASK)
{
case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
default: strcat (buf, _(", <unknown MeP cpu type>")); break;
}
switch (e_flags & EF_MEP_COP_MASK)
{
case EF_MEP_COP_NONE: break;
case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
default: strcat (buf, _("<unknown MeP copro type>")); break;
}
if (e_flags & EF_MEP_LIBRARY)
strcat (buf, ", Built for Library");
if (e_flags & EF_MEP_INDEX_MASK)
sprintf (buf + strlen (buf), ", Configuration Index: %#x",
e_flags & EF_MEP_INDEX_MASK);
if (e_flags & ~ EF_MEP_ALL_FLAGS)
sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
e_flags & ~ EF_MEP_ALL_FLAGS);
break;
case EM_PPC:
if (e_flags & EF_PPC_EMB)
strcat (buf, ", emb");
if (e_flags & EF_PPC_RELOCATABLE)
strcat (buf, _(", relocatable"));
if (e_flags & EF_PPC_RELOCATABLE_LIB)
strcat (buf, _(", relocatable-lib"));
break;
case EM_PPC64:
if (e_flags & EF_PPC64_ABI)
{
char abi[] = ", abiv0";
abi[6] += e_flags & EF_PPC64_ABI;
strcat (buf, abi);
}
break;
case EM_V800:
if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
strcat (buf, ", RH850 ABI");
if (e_flags & EF_V800_850E3)
strcat (buf, ", V3 architecture");
if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
strcat (buf, ", FPU not used");
if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
strcat (buf, ", regmode: COMMON");
if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
strcat (buf, ", r4 not used");
if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
strcat (buf, ", r30 not used");
if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
strcat (buf, ", r5 not used");
if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
strcat (buf, ", r2 not used");
for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
{
switch (e_flags & - e_flags)
{
case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
default: break;
}
}
break;
case EM_V850:
case EM_CYGNUS_V850:
switch (e_flags & EF_V850_ARCH)
{
case E_V850E3V5_ARCH:
strcat (buf, ", v850e3v5");
break;
case E_V850E2V3_ARCH:
strcat (buf, ", v850e2v3");
break;
case E_V850E2_ARCH:
strcat (buf, ", v850e2");
break;
case E_V850E1_ARCH:
strcat (buf, ", v850e1");
break;
case E_V850E_ARCH:
strcat (buf, ", v850e");
break;
case E_V850_ARCH:
strcat (buf, ", v850");
break;
default:
strcat (buf, _(", unknown v850 architecture variant"));
break;
}
break;
case EM_M32R:
case EM_CYGNUS_M32R:
if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
strcat (buf, ", m32r");
break;
case EM_MIPS:
case EM_MIPS_RS3_LE:
if (e_flags & EF_MIPS_NOREORDER)
strcat (buf, ", noreorder");
if (e_flags & EF_MIPS_PIC)
strcat (buf, ", pic");
if (e_flags & EF_MIPS_CPIC)
strcat (buf, ", cpic");
if (e_flags & EF_MIPS_UCODE)
strcat (buf, ", ugen_reserved");
if (e_flags & EF_MIPS_ABI2)
strcat (buf, ", abi2");
if (e_flags & EF_MIPS_OPTIONS_FIRST)
strcat (buf, ", odk first");
if (e_flags & EF_MIPS_32BITMODE)
strcat (buf, ", 32bitmode");
if (e_flags & EF_MIPS_NAN2008)
strcat (buf, ", nan2008");
if (e_flags & EF_MIPS_FP64)
strcat (buf, ", fp64");
switch ((e_flags & EF_MIPS_MACH))
{
case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
case 0:
/* We simply ignore the field in this case to avoid confusion:
MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
extension. */
break;
default: strcat (buf, _(", unknown CPU")); break;
}
switch ((e_flags & EF_MIPS_ABI))
{
case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
case 0:
/* We simply ignore the field in this case to avoid confusion:
MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
This means it is likely to be an o32 file, but not for
sure. */
break;
default: strcat (buf, _(", unknown ABI")); break;
}
if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
strcat (buf, ", mdmx");
if (e_flags & EF_MIPS_ARCH_ASE_M16)
strcat (buf, ", mips16");
if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
strcat (buf, ", micromips");
switch ((e_flags & EF_MIPS_ARCH))
{
case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
default: strcat (buf, _(", unknown ISA")); break;
}
break;
case EM_NDS32:
decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
break;
case EM_SH:
switch ((e_flags & EF_SH_MACH_MASK))
{
case EF_SH1: strcat (buf, ", sh1"); break;
case EF_SH2: strcat (buf, ", sh2"); break;
case EF_SH3: strcat (buf, ", sh3"); break;
case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
case EF_SH3E: strcat (buf, ", sh3e"); break;
case EF_SH4: strcat (buf, ", sh4"); break;
case EF_SH5: strcat (buf, ", sh5"); break;
case EF_SH2E: strcat (buf, ", sh2e"); break;
case EF_SH4A: strcat (buf, ", sh4a"); break;
case EF_SH2A: strcat (buf, ", sh2a"); break;
case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
default: strcat (buf, _(", unknown ISA")); break;
}
if (e_flags & EF_SH_PIC)
strcat (buf, ", pic");
if (e_flags & EF_SH_FDPIC)
strcat (buf, ", fdpic");
break;
case EM_OR1K:
if (e_flags & EF_OR1K_NODELAY)
strcat (buf, ", no delay");
break;
case EM_SPARCV9:
if (e_flags & EF_SPARC_32PLUS)
strcat (buf, ", v8+");
if (e_flags & EF_SPARC_SUN_US1)
strcat (buf, ", ultrasparcI");
if (e_flags & EF_SPARC_SUN_US3)
strcat (buf, ", ultrasparcIII");
if (e_flags & EF_SPARC_HAL_R1)
strcat (buf, ", halr1");
if (e_flags & EF_SPARC_LEDATA)
strcat (buf, ", ledata");
if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
strcat (buf, ", tso");
if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
strcat (buf, ", pso");
if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
strcat (buf, ", rmo");
break;
case EM_PARISC:
switch (e_flags & EF_PARISC_ARCH)
{
case EFA_PARISC_1_0:
strcpy (buf, ", PA-RISC 1.0");
break;
case EFA_PARISC_1_1:
strcpy (buf, ", PA-RISC 1.1");
break;
case EFA_PARISC_2_0:
strcpy (buf, ", PA-RISC 2.0");
break;
default:
break;
}
if (e_flags & EF_PARISC_TRAPNIL)
strcat (buf, ", trapnil");
if (e_flags & EF_PARISC_EXT)
strcat (buf, ", ext");
if (e_flags & EF_PARISC_LSB)
strcat (buf, ", lsb");
if (e_flags & EF_PARISC_WIDE)
strcat (buf, ", wide");
if (e_flags & EF_PARISC_NO_KABP)
strcat (buf, ", no kabp");
if (e_flags & EF_PARISC_LAZYSWAP)
strcat (buf, ", lazyswap");
break;
case EM_PJ:
case EM_PJ_OLD:
if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
strcat (buf, ", new calling convention");
if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
strcat (buf, ", gnu calling convention");
break;
case EM_IA_64:
if ((e_flags & EF_IA_64_ABI64))
strcat (buf, ", 64-bit");
else
strcat (buf, ", 32-bit");
if ((e_flags & EF_IA_64_REDUCEDFP))
strcat (buf, ", reduced fp model");
if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
strcat (buf, ", no function descriptors, constant gp");
else if ((e_flags & EF_IA_64_CONS_GP))
strcat (buf, ", constant gp");
if ((e_flags & EF_IA_64_ABSOLUTE))
strcat (buf, ", absolute");
if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
{
if ((e_flags & EF_IA_64_VMS_LINKAGES))
strcat (buf, ", vms_linkages");
switch ((e_flags & EF_IA_64_VMS_COMCOD))
{
case EF_IA_64_VMS_COMCOD_SUCCESS:
break;
case EF_IA_64_VMS_COMCOD_WARNING:
strcat (buf, ", warning");
break;
case EF_IA_64_VMS_COMCOD_ERROR:
strcat (buf, ", error");
break;
case EF_IA_64_VMS_COMCOD_ABORT:
strcat (buf, ", abort");
break;
default:
warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
e_flags & EF_IA_64_VMS_COMCOD);
strcat (buf, ", <unknown>");
}
}
break;
case EM_VAX:
if ((e_flags & EF_VAX_NONPIC))
strcat (buf, ", non-PIC");
if ((e_flags & EF_VAX_DFLOAT))
strcat (buf, ", D-Float");
if ((e_flags & EF_VAX_GFLOAT))
strcat (buf, ", G-Float");
break;
case EM_VISIUM:
if (e_flags & EF_VISIUM_ARCH_MCM)
strcat (buf, ", mcm");
else if (e_flags & EF_VISIUM_ARCH_MCM24)
strcat (buf, ", mcm24");
if (e_flags & EF_VISIUM_ARCH_GR6)
strcat (buf, ", gr6");
break;
case EM_RL78:
switch (e_flags & E_FLAG_RL78_CPU_MASK)
{
case E_FLAG_RL78_ANY_CPU: break;
case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
}
if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
strcat (buf, ", 64-bit doubles");
break;
case EM_RX:
if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
strcat (buf, ", 64-bit doubles");
if (e_flags & E_FLAG_RX_DSP)
strcat (buf, ", dsp");
if (e_flags & E_FLAG_RX_PID)
strcat (buf, ", pid");
if (e_flags & E_FLAG_RX_ABI)
strcat (buf, ", RX ABI");
if (e_flags & E_FLAG_RX_SINSNS_SET)
strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
? ", uses String instructions" : ", bans String instructions");
if (e_flags & E_FLAG_RX_V2)
strcat (buf, ", V2");
break;
case EM_S390:
if (e_flags & EF_S390_HIGH_GPRS)
strcat (buf, ", highgprs");
break;
case EM_TI_C6000:
if ((e_flags & EF_C6000_REL))
strcat (buf, ", relocatable module");
break;
case EM_MSP430:
strcat (buf, _(": architecture variant: "));
switch (e_flags & EF_MSP430_MACH)
{
case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
default:
strcat (buf, _(": unknown")); break;
}
if (e_flags & ~ EF_MSP430_MACH)
strcat (buf, _(": unknown extra flag bits also present"));
}
}
return buf;
}
static const char *
get_osabi_name (unsigned int osabi)
{
static char buff[32];
switch (osabi)
{
case ELFOSABI_NONE: return "UNIX - System V";
case ELFOSABI_HPUX: return "UNIX - HP-UX";
case ELFOSABI_NETBSD: return "UNIX - NetBSD";
case ELFOSABI_GNU: return "UNIX - GNU";
case ELFOSABI_SOLARIS: return "UNIX - Solaris";
case ELFOSABI_AIX: return "UNIX - AIX";
case ELFOSABI_IRIX: return "UNIX - IRIX";
case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
case ELFOSABI_TRU64: return "UNIX - TRU64";
case ELFOSABI_MODESTO: return "Novell - Modesto";
case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
case ELFOSABI_AROS: return "AROS";
case ELFOSABI_FENIXOS: return "FenixOS";
default:
if (osabi >= 64)
switch (elf_header.e_machine)
{
case EM_ARM:
switch (osabi)
{
case ELFOSABI_ARM: return "ARM";
default:
break;
}
break;
case EM_MSP430:
case EM_MSP430_OLD:
case EM_VISIUM:
switch (osabi)
{
case ELFOSABI_STANDALONE: return _("Standalone App");
default:
break;
}
break;
case EM_TI_C6000:
switch (osabi)
{
case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
case ELFOSABI_C6000_LINUX: return "Linux C6000";
default:
break;
}
break;
default:
break;
}
snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
return buff;
}
}
static const char *
get_aarch64_segment_type (unsigned long type)
{
switch (type)
{
case PT_AARCH64_ARCHEXT:
return "AARCH64_ARCHEXT";
default:
break;
}
return NULL;
}
static const char *
get_arm_segment_type (unsigned long type)
{
switch (type)
{
case PT_ARM_EXIDX:
return "EXIDX";
default:
break;
}
return NULL;
}
static const char *
get_mips_segment_type (unsigned long type)
{
switch (type)
{
case PT_MIPS_REGINFO:
return "REGINFO";
case PT_MIPS_RTPROC:
return "RTPROC";
case PT_MIPS_OPTIONS:
return "OPTIONS";
case PT_MIPS_ABIFLAGS:
return "ABIFLAGS";
default:
break;
}
return NULL;
}
static const char *
get_parisc_segment_type (unsigned long type)
{
switch (type)
{
case PT_HP_TLS: return "HP_TLS";
case PT_HP_CORE_NONE: return "HP_CORE_NONE";
case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
case PT_HP_CORE_COMM: return "HP_CORE_COMM";
case PT_HP_CORE_PROC: return "HP_CORE_PROC";
case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
case PT_HP_CORE_STACK: return "HP_CORE_STACK";
case PT_HP_CORE_SHM: return "HP_CORE_SHM";
case PT_HP_CORE_MMF: return "HP_CORE_MMF";
case PT_HP_PARALLEL: return "HP_PARALLEL";
case PT_HP_FASTBIND: return "HP_FASTBIND";
case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
case PT_HP_STACK: return "HP_STACK";
case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
case PT_PARISC_UNWIND: return "PARISC_UNWIND";
case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
default:
break;
}
return NULL;
}
static const char *
get_ia64_segment_type (unsigned long type)
{
switch (type)
{
case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
case PT_IA_64_UNWIND: return "IA_64_UNWIND";
case PT_HP_TLS: return "HP_TLS";
case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
case PT_IA_64_HP_STACK: return "HP_STACK";
default:
break;
}
return NULL;
}
static const char *
get_tic6x_segment_type (unsigned long type)
{
switch (type)
{
case PT_C6000_PHATTR: return "C6000_PHATTR";
default:
break;
}
return NULL;
}
static const char *
get_solaris_segment_type (unsigned long type)
{
switch (type)
{
case 0x6464e550: return "PT_SUNW_UNWIND";
case 0x6474e550: return "PT_SUNW_EH_FRAME";
case 0x6ffffff7: return "PT_LOSUNW";
case 0x6ffffffa: return "PT_SUNWBSS";
case 0x6ffffffb: return "PT_SUNWSTACK";
case 0x6ffffffc: return "PT_SUNWDTRACE";
case 0x6ffffffd: return "PT_SUNWCAP";
case 0x6fffffff: return "PT_HISUNW";
default: return NULL;
}
}
static const char *
get_segment_type (unsigned long p_type)
{
static char buff[32];
switch (p_type)
{
case PT_NULL: return "NULL";
case PT_LOAD: return "LOAD";
case PT_DYNAMIC: return "DYNAMIC";
case PT_INTERP: return "INTERP";
case PT_NOTE: return "NOTE";
case PT_SHLIB: return "SHLIB";
case PT_PHDR: return "PHDR";
case PT_TLS: return "TLS";
case PT_GNU_EH_FRAME:
return "GNU_EH_FRAME";
case PT_GNU_STACK: return "GNU_STACK";
case PT_GNU_RELRO: return "GNU_RELRO";
default:
if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
{
const char * result;
switch (elf_header.e_machine)
{
case EM_AARCH64:
result = get_aarch64_segment_type (p_type);
break;
case EM_ARM:
result = get_arm_segment_type (p_type);
break;
case EM_MIPS:
case EM_MIPS_RS3_LE:
result = get_mips_segment_type (p_type);
break;
case EM_PARISC:
result = get_parisc_segment_type (p_type);
break;
case EM_IA_64:
result = get_ia64_segment_type (p_type);
break;
case EM_TI_C6000:
result = get_tic6x_segment_type (p_type);
break;
default:
result = NULL;
break;
}
if (result != NULL)
return result;
sprintf (buff, "LOPROC+%lx", p_type - PT_LOPROC);
}
else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
{
const char * result;
switch (elf_header.e_machine)
{
case EM_PARISC:
result = get_parisc_segment_type (p_type);
break;
case EM_IA_64:
result = get_ia64_segment_type (p_type);
break;
default:
if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
result = get_solaris_segment_type (p_type);
else
result = NULL;
break;
}
if (result != NULL)
return result;
sprintf (buff, "LOOS+%lx", p_type - PT_LOOS);
}
else
snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
return buff;
}
}
static const char *
get_mips_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
case SHT_MIPS_MSYM: return "MIPS_MSYM";
case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
case SHT_MIPS_UCODE: return "MIPS_UCODE";
case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
case SHT_MIPS_RELD: return "MIPS_RELD";
case SHT_MIPS_IFACE: return "MIPS_IFACE";
case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
case SHT_MIPS_SHDR: return "MIPS_SHDR";
case SHT_MIPS_FDESC: return "MIPS_FDESC";
case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
case SHT_MIPS_DENSE: return "MIPS_DENSE";
case SHT_MIPS_PDESC: return "MIPS_PDESC";
case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
case SHT_MIPS_LINE: return "MIPS_LINE";
case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
case SHT_MIPS_DWARF: return "MIPS_DWARF";
case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
case SHT_MIPS_XLATE: return "MIPS_XLATE";
case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
default:
break;
}
return NULL;
}
static const char *
get_parisc_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_PARISC_EXT: return "PARISC_EXT";
case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
case SHT_PARISC_DOC: return "PARISC_DOC";
case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
case SHT_PARISC_STUBS: return "PARISC_STUBS";
case SHT_PARISC_DLKM: return "PARISC_DLKM";
default:
break;
}
return NULL;
}
static const char *
get_ia64_section_type_name (unsigned int sh_type)
{
/* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
switch (sh_type)
{
case SHT_IA_64_EXT: return "IA_64_EXT";
case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
default:
break;
}
return NULL;
}
static const char *
get_x86_64_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
default:
break;
}
return NULL;
}
static const char *
get_aarch64_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_AARCH64_ATTRIBUTES:
return "AARCH64_ATTRIBUTES";
default:
break;
}
return NULL;
}
static const char *
get_arm_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_ARM_EXIDX: return "ARM_EXIDX";
case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
default:
break;
}
return NULL;
}
static const char *
get_tic6x_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_C6000_UNWIND:
return "C6000_UNWIND";
case SHT_C6000_PREEMPTMAP:
return "C6000_PREEMPTMAP";
case SHT_C6000_ATTRIBUTES:
return "C6000_ATTRIBUTES";
case SHT_TI_ICODE:
return "TI_ICODE";
case SHT_TI_XREF:
return "TI_XREF";
case SHT_TI_HANDLER:
return "TI_HANDLER";
case SHT_TI_INITINFO:
return "TI_INITINFO";
case SHT_TI_PHATTRS:
return "TI_PHATTRS";
default:
break;
}
return NULL;
}
static const char *
get_msp430x_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
default: return NULL;
}
}
static const char *
get_v850_section_type_name (unsigned int sh_type)
{
switch (sh_type)
{
case SHT_V850_SCOMMON: return "V850 Small Common";
case SHT_V850_TCOMMON: return "V850 Tiny Common";
case SHT_V850_ZCOMMON: return "V850 Zero Common";
case SHT_RENESAS_IOP: return "RENESAS IOP";
case SHT_RENESAS_INFO: return "RENESAS INFO";
default: return NULL;
}
}
static const char *
get_section_type_name (unsigned int sh_type)
{
static char buff[32];
const char * result;
switch (sh_type)
{
case SHT_NULL: return "NULL";
case SHT_PROGBITS: return "PROGBITS";
case SHT_SYMTAB: return "SYMTAB";
case SHT_STRTAB: return "STRTAB";
case SHT_RELA: return "RELA";
case SHT_HASH: return "HASH";
case SHT_DYNAMIC: return "DYNAMIC";
case SHT_NOTE: return "NOTE";
case SHT_NOBITS: return "NOBITS";
case SHT_REL: return "REL";
case SHT_SHLIB: return "SHLIB";
case SHT_DYNSYM: return "DYNSYM";
case SHT_INIT_ARRAY: return "INIT_ARRAY";
case SHT_FINI_ARRAY: return "FINI_ARRAY";
case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
case SHT_GNU_HASH: return "GNU_HASH";
case SHT_GROUP: return "GROUP";
case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
case SHT_GNU_verdef: return "VERDEF";
case SHT_GNU_verneed: return "VERNEED";
case SHT_GNU_versym: return "VERSYM";
case 0x6ffffff0: return "VERSYM";
case 0x6ffffffc: return "VERDEF";
case 0x7ffffffd: return "AUXILIARY";
case 0x7fffffff: return "FILTER";
case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
default:
if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
{
switch (elf_header.e_machine)
{
case EM_MIPS:
case EM_MIPS_RS3_LE:
result = get_mips_section_type_name (sh_type);
break;
case EM_PARISC:
result = get_parisc_section_type_name (sh_type);
break;
case EM_IA_64:
result = get_ia64_section_type_name (sh_type);
break;
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
result = get_x86_64_section_type_name (sh_type);
break;
case EM_AARCH64:
result = get_aarch64_section_type_name (sh_type);
break;
case EM_ARM:
result = get_arm_section_type_name (sh_type);
break;
case EM_TI_C6000:
result = get_tic6x_section_type_name (sh_type);
break;
case EM_MSP430:
result = get_msp430x_section_type_name (sh_type);
break;
case EM_V800:
case EM_V850:
case EM_CYGNUS_V850:
result = get_v850_section_type_name (sh_type);
break;
default:
result = NULL;
break;
}
if (result != NULL)
return result;
sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
}
else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
{
switch (elf_header.e_machine)
{
case EM_IA_64:
result = get_ia64_section_type_name (sh_type);
break;
default:
if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
result = get_solaris_section_type (sh_type);
else
result = NULL;
break;
}
if (result != NULL)
return result;
sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
}
else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
{
switch (elf_header.e_machine)
{
case EM_V800:
case EM_V850:
case EM_CYGNUS_V850:
result = get_v850_section_type_name (sh_type);
break;
default:
result = NULL;
break;
}
if (result != NULL)
return result;
sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
}
else
/* This message is probably going to be displayed in a 15
character wide field, so put the hex value first. */
snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
return buff;
}
}
#define OPTION_DEBUG_DUMP 512
#define OPTION_DYN_SYMS 513
#define OPTION_DWARF_DEPTH 514
#define OPTION_DWARF_START 515
#define OPTION_DWARF_CHECK 516
static struct option options[] =
{
{"all", no_argument, 0, 'a'},
{"file-header", no_argument, 0, 'h'},
{"program-headers", no_argument, 0, 'l'},
{"headers", no_argument, 0, 'e'},
{"histogram", no_argument, 0, 'I'},
{"segments", no_argument, 0, 'l'},
{"sections", no_argument, 0, 'S'},
{"section-headers", no_argument, 0, 'S'},
{"section-groups", no_argument, 0, 'g'},
{"section-details", no_argument, 0, 't'},
{"full-section-name",no_argument, 0, 'N'},
{"symbols", no_argument, 0, 's'},
{"syms", no_argument, 0, 's'},
{"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
{"relocs", no_argument, 0, 'r'},
{"notes", no_argument, 0, 'n'},
{"dynamic", no_argument, 0, 'd'},
{"arch-specific", no_argument, 0, 'A'},
{"version-info", no_argument, 0, 'V'},
{"use-dynamic", no_argument, 0, 'D'},
{"unwind", no_argument, 0, 'u'},
{"archive-index", no_argument, 0, 'c'},
{"hex-dump", required_argument, 0, 'x'},
{"relocated-dump", required_argument, 0, 'R'},
{"string-dump", required_argument, 0, 'p'},
{"decompress", no_argument, 0, 'z'},
#ifdef SUPPORT_DISASSEMBLY
{"instruction-dump", required_argument, 0, 'i'},
#endif
{"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
{"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
{"dwarf-start", required_argument, 0, OPTION_DWARF_START},
{"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
{"version", no_argument, 0, 'v'},
{"wide", no_argument, 0, 'W'},
{"help", no_argument, 0, 'H'},
{0, no_argument, 0, 0}
};
static void
usage (FILE * stream)
{
fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
fprintf (stream, _(" Display information about the contents of ELF format files\n"));
fprintf (stream, _(" Options are:\n\
-a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
-h --file-header Display the ELF file header\n\
-l --program-headers Display the program headers\n\
--segments An alias for --program-headers\n\
-S --section-headers Display the sections' header\n\
--sections An alias for --section-headers\n\
-g --section-groups Display the section groups\n\
-t --section-details Display the section details\n\
-e --headers Equivalent to: -h -l -S\n\
-s --syms Display the symbol table\n\
--symbols An alias for --syms\n\
--dyn-syms Display the dynamic symbol table\n\
-n --notes Display the core notes (if present)\n\
-r --relocs Display the relocations (if present)\n\
-u --unwind Display the unwind info (if present)\n\
-d --dynamic Display the dynamic section (if present)\n\
-V --version-info Display the version sections (if present)\n\
-A --arch-specific Display architecture specific information (if any)\n\
-c --archive-index Display the symbol/file index in an archive\n\
-D --use-dynamic Use the dynamic section info when displaying symbols\n\
-x --hex-dump=<number|name>\n\
Dump the contents of section <number|name> as bytes\n\
-p --string-dump=<number|name>\n\
Dump the contents of section <number|name> as strings\n\
-R --relocated-dump=<number|name>\n\
Dump the contents of section <number|name> as relocated bytes\n\
-z --decompress Decompress section before dumping it\n\
-w[lLiaprmfFsoRt] or\n\
--debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
=frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
=gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
=addr,=cu_index]\n\
Display the contents of DWARF2 debug sections\n"));
fprintf (stream, _("\
--dwarf-depth=N Do not display DIEs at depth N or greater\n\
--dwarf-start=N Display DIEs starting with N, at the same depth\n\
or deeper\n"));
#ifdef SUPPORT_DISASSEMBLY
fprintf (stream, _("\
-i --instruction-dump=<number|name>\n\
Disassemble the contents of section <number|name>\n"));
#endif
fprintf (stream, _("\
-I --histogram Display histogram of bucket list lengths\n\
-W --wide Allow output width to exceed 80 characters\n\
@<file> Read options from <file>\n\
-H --help Display this information\n\
-v --version Display the version number of readelf\n"));
if (REPORT_BUGS_TO[0] && stream == stdout)
fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
exit (stream == stdout ? 0 : 1);
}
/* Record the fact that the user wants the contents of section number
SECTION to be displayed using the method(s) encoded as flags bits
in TYPE. Note, TYPE can be zero if we are creating the array for
the first time. */
static void
request_dump_bynumber (unsigned int section, dump_type type)
{
if (section >= num_dump_sects)
{
dump_type * new_dump_sects;
new_dump_sects = (dump_type *) calloc (section + 1,
sizeof (* dump_sects));
if (new_dump_sects == NULL)
error (_("Out of memory allocating dump request table.\n"));
else
{
/* Copy current flag settings. */
memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
free (dump_sects);
dump_sects = new_dump_sects;
num_dump_sects = section + 1;
}
}
if (dump_sects)
dump_sects[section] |= type;
return;
}
/* Request a dump by section name. */
static void
request_dump_byname (const char * section, dump_type type)
{
struct dump_list_entry * new_request;
new_request = (struct dump_list_entry *)
malloc (sizeof (struct dump_list_entry));
if (!new_request)
error (_("Out of memory allocating dump request table.\n"));
new_request->name = strdup (section);
if (!new_request->name)
error (_("Out of memory allocating dump request table.\n"));
new_request->type = type;
new_request->next = dump_sects_byname;
dump_sects_byname = new_request;
}
static inline void
request_dump (dump_type type)
{
int section;
char * cp;
do_dump++;
section = strtoul (optarg, & cp, 0);
if (! *cp && section >= 0)
request_dump_bynumber (section, type);
else
request_dump_byname (optarg, type);
}
static void
parse_args (int argc, char ** argv)
{
int c;
if (argc < 2)
usage (stderr);
while ((c = getopt_long
(argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
{
switch (c)
{
case 0:
/* Long options. */
break;
case 'H':
usage (stdout);
break;
case 'a':
do_syms++;
do_reloc++;
do_unwind++;
do_dynamic++;
do_header++;
do_sections++;
do_section_groups++;
do_segments++;
do_version++;
do_histogram++;
do_arch++;
do_notes++;
break;
case 'g':
do_section_groups++;
break;
case 't':
case 'N':
do_sections++;
do_section_details++;
break;
case 'e':
do_header++;
do_sections++;
do_segments++;
break;
case 'A':
do_arch++;
break;
case 'D':
do_using_dynamic++;
break;
case 'r':
do_reloc++;
break;
case 'u':
do_unwind++;
break;
case 'h':
do_header++;
break;
case 'l':
do_segments++;
break;
case 's':
do_syms++;
break;
case 'S':
do_sections++;
break;
case 'd':
do_dynamic++;
break;
case 'I':
do_histogram++;
break;
case 'n':
do_notes++;
break;
case 'c':
do_archive_index++;
break;
case 'x':
request_dump (HEX_DUMP);
break;
case 'p':
request_dump (STRING_DUMP);
break;
case 'R':
request_dump (RELOC_DUMP);
break;
case 'z':
decompress_dumps++;
break;
case 'w':
do_dump++;
if (optarg == 0)
{
do_debugging = 1;
dwarf_select_sections_all ();
}
else
{
do_debugging = 0;
dwarf_select_sections_by_letters (optarg);
}
break;
case OPTION_DEBUG_DUMP:
do_dump++;
if (optarg == 0)
do_debugging = 1;
else
{
do_debugging = 0;
dwarf_select_sections_by_names (optarg);
}
break;
case OPTION_DWARF_DEPTH:
{
char *cp;
dwarf_cutoff_level = strtoul (optarg, & cp, 0);
}
break;
case OPTION_DWARF_START:
{
char *cp;
dwarf_start_die = strtoul (optarg, & cp, 0);
}
break;
case OPTION_DWARF_CHECK:
dwarf_check = 1;
break;
case OPTION_DYN_SYMS:
do_dyn_syms++;
break;
#ifdef SUPPORT_DISASSEMBLY
case 'i':
request_dump (DISASS_DUMP);
break;
#endif
case 'v':
print_version (program_name);
break;
case 'V':
do_version++;
break;
case 'W':
do_wide++;
break;
default:
/* xgettext:c-format */
error (_("Invalid option '-%c'\n"), c);
/* Drop through. */
case '?':
usage (stderr);
}
}
if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
&& !do_segments && !do_header && !do_dump && !do_version
&& !do_histogram && !do_debugging && !do_arch && !do_notes
&& !do_section_groups && !do_archive_index
&& !do_dyn_syms)
usage (stderr);
}
static const char *
get_elf_class (unsigned int elf_class)
{
static char buff[32];
switch (elf_class)
{
case ELFCLASSNONE: return _("none");
case ELFCLASS32: return "ELF32";
case ELFCLASS64: return "ELF64";
default:
snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
return buff;
}
}
static const char *
get_data_encoding (unsigned int encoding)
{
static char buff[32];
switch (encoding)
{
case ELFDATANONE: return _("none");
case ELFDATA2LSB: return _("2's complement, little endian");
case ELFDATA2MSB: return _("2's complement, big endian");
default:
snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
return buff;
}
}
/* Decode the data held in 'elf_header'. */
static int
process_file_header (void)
{
if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
|| elf_header.e_ident[EI_MAG1] != ELFMAG1
|| elf_header.e_ident[EI_MAG2] != ELFMAG2
|| elf_header.e_ident[EI_MAG3] != ELFMAG3)
{
error
(_("Not an ELF file - it has the wrong magic bytes at the start\n"));
return 0;
}
init_dwarf_regnames (elf_header.e_machine);
if (do_header)
{
int i;
printf (_("ELF Header:\n"));
printf (_(" Magic: "));
for (i = 0; i < EI_NIDENT; i++)
printf ("%2.2x ", elf_header.e_ident[i]);
printf ("\n");
printf (_(" Class: %s\n"),
get_elf_class (elf_header.e_ident[EI_CLASS]));
printf (_(" Data: %s\n"),
get_data_encoding (elf_header.e_ident[EI_DATA]));
printf (_(" Version: %d %s\n"),
elf_header.e_ident[EI_VERSION],
(elf_header.e_ident[EI_VERSION] == EV_CURRENT
? "(current)"
: (elf_header.e_ident[EI_VERSION] != EV_NONE
? _("<unknown: %lx>")
: "")));
printf (_(" OS/ABI: %s\n"),
get_osabi_name (elf_header.e_ident[EI_OSABI]));
printf (_(" ABI Version: %d\n"),
elf_header.e_ident[EI_ABIVERSION]);
printf (_(" Type: %s\n"),
get_file_type (elf_header.e_type));
printf (_(" Machine: %s\n"),
get_machine_name (elf_header.e_machine));
printf (_(" Version: 0x%lx\n"),
(unsigned long) elf_header.e_version);
printf (_(" Entry point address: "));
print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
printf (_("\n Start of program headers: "));
print_vma ((bfd_vma) elf_header.e_phoff, DEC);
printf (_(" (bytes into file)\n Start of section headers: "));
print_vma ((bfd_vma) elf_header.e_shoff, DEC);
printf (_(" (bytes into file)\n"));
printf (_(" Flags: 0x%lx%s\n"),
(unsigned long) elf_header.e_flags,
get_machine_flags (elf_header.e_flags, elf_header.e_machine));
printf (_(" Size of this header: %ld (bytes)\n"),
(long) elf_header.e_ehsize);
printf (_(" Size of program headers: %ld (bytes)\n"),
(long) elf_header.e_phentsize);
printf (_(" Number of program headers: %ld"),
(long) elf_header.e_phnum);
if (section_headers != NULL
&& elf_header.e_phnum == PN_XNUM
&& section_headers[0].sh_info != 0)
printf (" (%ld)", (long) section_headers[0].sh_info);
putc ('\n', stdout);
printf (_(" Size of section headers: %ld (bytes)\n"),
(long) elf_header.e_shentsize);
printf (_(" Number of section headers: %ld"),
(long) elf_header.e_shnum);
if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
printf (" (%ld)", (long) section_headers[0].sh_size);
putc ('\n', stdout);
printf (_(" Section header string table index: %ld"),
(long) elf_header.e_shstrndx);
if (section_headers != NULL
&& elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
printf (" (%u)", section_headers[0].sh_link);
else if (elf_header.e_shstrndx != SHN_UNDEF
&& elf_header.e_shstrndx >= elf_header.e_shnum)
printf (_(" <corrupt: out of range>"));
putc ('\n', stdout);
}
if (section_headers != NULL)
{
if (elf_header.e_phnum == PN_XNUM
&& section_headers[0].sh_info != 0)
elf_header.e_phnum = section_headers[0].sh_info;
if (elf_header.e_shnum == SHN_UNDEF)
elf_header.e_shnum = section_headers[0].sh_size;
if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
elf_header.e_shstrndx = section_headers[0].sh_link;
else if (elf_header.e_shstrndx >= elf_header.e_shnum)
elf_header.e_shstrndx = SHN_UNDEF;
free (section_headers);
section_headers = NULL;
}
return 1;
}
static bfd_boolean
get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
{
Elf32_External_Phdr * phdrs;
Elf32_External_Phdr * external;
Elf_Internal_Phdr * internal;
unsigned int i;
unsigned int size = elf_header.e_phentsize;
unsigned int num = elf_header.e_phnum;
/* PR binutils/17531: Cope with unexpected section header sizes. */
if (size == 0 || num == 0)
return FALSE;
if (size < sizeof * phdrs)
{
error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
return FALSE;
}
if (size > sizeof * phdrs)
warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
size, num, _("program headers"));
if (phdrs == NULL)
return FALSE;
for (i = 0, internal = pheaders, external = phdrs;
i < elf_header.e_phnum;
i++, internal++, external++)
{
internal->p_type = BYTE_GET (external->p_type);
internal->p_offset = BYTE_GET (external->p_offset);
internal->p_vaddr = BYTE_GET (external->p_vaddr);
internal->p_paddr = BYTE_GET (external->p_paddr);
internal->p_filesz = BYTE_GET (external->p_filesz);
internal->p_memsz = BYTE_GET (external->p_memsz);
internal->p_flags = BYTE_GET (external->p_flags);
internal->p_align = BYTE_GET (external->p_align);
}
free (phdrs);
return TRUE;
}
static bfd_boolean
get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
{
Elf64_External_Phdr * phdrs;
Elf64_External_Phdr * external;
Elf_Internal_Phdr * internal;
unsigned int i;
unsigned int size = elf_header.e_phentsize;
unsigned int num = elf_header.e_phnum;
/* PR binutils/17531: Cope with unexpected section header sizes. */
if (size == 0 || num == 0)
return FALSE;
if (size < sizeof * phdrs)
{
error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
return FALSE;
}
if (size > sizeof * phdrs)
warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
size, num, _("program headers"));
if (!phdrs)
return FALSE;
for (i = 0, internal = pheaders, external = phdrs;
i < elf_header.e_phnum;
i++, internal++, external++)
{
internal->p_type = BYTE_GET (external->p_type);
internal->p_flags = BYTE_GET (external->p_flags);
internal->p_offset = BYTE_GET (external->p_offset);
internal->p_vaddr = BYTE_GET (external->p_vaddr);
internal->p_paddr = BYTE_GET (external->p_paddr);
internal->p_filesz = BYTE_GET (external->p_filesz);
internal->p_memsz = BYTE_GET (external->p_memsz);
internal->p_align = BYTE_GET (external->p_align);
}
free (phdrs);
return TRUE;
}
/* Returns 1 if the program headers were read into `program_headers'. */
static int
get_program_headers (FILE * file)
{
Elf_Internal_Phdr * phdrs;
/* Check cache of prior read. */
if (program_headers != NULL)
return 1;
phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
sizeof (Elf_Internal_Phdr));
if (phdrs == NULL)
{
error (_("Out of memory reading %u program headers\n"),
elf_header.e_phnum);
return 0;
}
if (is_32bit_elf
? get_32bit_program_headers (file, phdrs)
: get_64bit_program_headers (file, phdrs))
{
program_headers = phdrs;
return 1;
}
free (phdrs);
return 0;
}
/* Returns 1 if the program headers were loaded. */
static int
process_program_headers (FILE * file)
{
Elf_Internal_Phdr * segment;
unsigned int i;
if (elf_header.e_phnum == 0)
{
/* PR binutils/12467. */
if (elf_header.e_phoff != 0)
warn (_("possibly corrupt ELF header - it has a non-zero program"
" header offset, but no program headers\n"));
else if (do_segments)
printf (_("\nThere are no program headers in this file.\n"));
return 0;
}
if (do_segments && !do_header)
{
printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
printf (_("Entry point "));
print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
printf (_("\nThere are %d program headers, starting at offset "),
elf_header.e_phnum);
print_vma ((bfd_vma) elf_header.e_phoff, DEC);
printf ("\n");
}
if (! get_program_headers (file))
return 0;
if (do_segments)
{
if (elf_header.e_phnum > 1)
printf (_("\nProgram Headers:\n"));
else
printf (_("\nProgram Headers:\n"));
if (is_32bit_elf)
printf
(_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
else if (do_wide)
printf
(_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
else
{
printf
(_(" Type Offset VirtAddr PhysAddr\n"));
printf
(_(" FileSiz MemSiz Flags Align\n"));
}
}
dynamic_addr = 0;
dynamic_size = 0;
for (i = 0, segment = program_headers;
i < elf_header.e_phnum;
i++, segment++)
{
if (do_segments)
{
printf (" %-14.14s ", get_segment_type (segment->p_type));
if (is_32bit_elf)
{
printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
printf ("%c%c%c ",
(segment->p_flags & PF_R ? 'R' : ' '),
(segment->p_flags & PF_W ? 'W' : ' '),
(segment->p_flags & PF_X ? 'E' : ' '));
printf ("%#lx", (unsigned long) segment->p_align);
}
else if (do_wide)
{
if ((unsigned long) segment->p_offset == segment->p_offset)
printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
else
{
print_vma (segment->p_offset, FULL_HEX);
putchar (' ');
}
print_vma (segment->p_vaddr, FULL_HEX);
putchar (' ');
print_vma (segment->p_paddr, FULL_HEX);
putchar (' ');
if ((unsigned long) segment->p_filesz == segment->p_filesz)
printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
else
{
print_vma (segment->p_filesz, FULL_HEX);
putchar (' ');
}
if ((unsigned long) segment->p_memsz == segment->p_memsz)
printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
else
{
print_vma (segment->p_memsz, FULL_HEX);
}
printf (" %c%c%c ",
(segment->p_flags & PF_R ? 'R' : ' '),
(segment->p_flags & PF_W ? 'W' : ' '),
(segment->p_flags & PF_X ? 'E' : ' '));
if ((unsigned long) segment->p_align == segment->p_align)
printf ("%#lx", (unsigned long) segment->p_align);
else
{
print_vma (segment->p_align, PREFIX_HEX);
}
}
else
{
print_vma (segment->p_offset, FULL_HEX);
putchar (' ');
print_vma (segment->p_vaddr, FULL_HEX);
putchar (' ');
print_vma (segment->p_paddr, FULL_HEX);
printf ("\n ");
print_vma (segment->p_filesz, FULL_HEX);
putchar (' ');
print_vma (segment->p_memsz, FULL_HEX);
printf (" %c%c%c ",
(segment->p_flags & PF_R ? 'R' : ' '),
(segment->p_flags & PF_W ? 'W' : ' '),
(segment->p_flags & PF_X ? 'E' : ' '));
print_vma (segment->p_align, HEX);
}
}
if (do_segments)
putc ('\n', stdout);
switch (segment->p_type)
{
case PT_DYNAMIC:
if (dynamic_addr)
error (_("more than one dynamic segment\n"));
/* By default, assume that the .dynamic section is the first
section in the DYNAMIC segment. */
dynamic_addr = segment->p_offset;
dynamic_size = segment->p_filesz;
/* PR binutils/17512: Avoid corrupt dynamic section info in the segment. */
if (dynamic_addr + dynamic_size >= current_file_size)
{
error (_("the dynamic segment offset + size exceeds the size of the file\n"));
dynamic_addr = dynamic_size = 0;
}
/* Try to locate the .dynamic section. If there is
a section header table, we can easily locate it. */
if (section_headers != NULL)
{
Elf_Internal_Shdr * sec;
sec = find_section (".dynamic");
if (sec == NULL || sec->sh_size == 0)
{
/* A corresponding .dynamic section is expected, but on
IA-64/OpenVMS it is OK for it to be missing. */
if (!is_ia64_vms ())
error (_("no .dynamic section in the dynamic segment\n"));
break;
}
if (sec->sh_type == SHT_NOBITS)
{
dynamic_size = 0;
break;
}
dynamic_addr = sec->sh_offset;
dynamic_size = sec->sh_size;
if (dynamic_addr < segment->p_offset
|| dynamic_addr > segment->p_offset + segment->p_filesz)
warn (_("the .dynamic section is not contained"
" within the dynamic segment\n"));
else if (dynamic_addr > segment->p_offset)
warn (_("the .dynamic section is not the first section"
" in the dynamic segment.\n"));
}
break;
case PT_INTERP:
if (fseek (file, archive_file_offset + (long) segment->p_offset,
SEEK_SET))
error (_("Unable to find program interpreter name\n"));
else
{
char fmt [32];
int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
if (ret >= (int) sizeof (fmt) || ret < 0)
error (_("Internal error: failed to create format string to display program interpreter\n"));
program_interpreter[0] = 0;
if (fscanf (file, fmt, program_interpreter) <= 0)
error (_("Unable to read program interpreter name\n"));
if (do_segments)
printf (_(" [Requesting program interpreter: %s]\n"),
program_interpreter);
}
break;
}
}
if (do_segments && section_headers != NULL && string_table != NULL)
{
printf (_("\n Section to Segment mapping:\n"));
printf (_(" Segment Sections...\n"));
for (i = 0; i < elf_header.e_phnum; i++)
{
unsigned int j;
Elf_Internal_Shdr * section;
segment = program_headers + i;
section = section_headers + 1;
printf (" %2.2d ", i);
for (j = 1; j < elf_header.e_shnum; j++, section++)
{
if (!ELF_TBSS_SPECIAL (section, segment)
&& ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
printf ("%s ", printable_section_name (section));
}
putc ('\n',stdout);
}
}
return 1;
}
/* Find the file offset corresponding to VMA by using the program headers. */
static long
offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
{
Elf_Internal_Phdr * seg;
if (! get_program_headers (file))
{
warn (_("Cannot interpret virtual addresses without program headers.\n"));
return (long) vma;
}
for (seg = program_headers;
seg < program_headers + elf_header.e_phnum;
++seg)
{
if (seg->p_type != PT_LOAD)
continue;
if (vma >= (seg->p_vaddr & -seg->p_align)
&& vma + size <= seg->p_vaddr + seg->p_filesz)
return vma - seg->p_vaddr + seg->p_offset;
}
warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
(unsigned long) vma);
return (long) vma;
}
/* Allocate memory and load the sections headers into the global pointer
SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
generate any error messages if the load fails. */
static bfd_boolean
get_32bit_section_headers (FILE * file, bfd_boolean probe)
{
Elf32_External_Shdr * shdrs;
Elf_Internal_Shdr * internal;
unsigned int i;
unsigned int size = elf_header.e_shentsize;
unsigned int num = probe ? 1 : elf_header.e_shnum;
/* PR binutils/17531: Cope with unexpected section header sizes. */
if (size == 0 || num == 0)
return FALSE;
if (size < sizeof * shdrs)
{
if (! probe)
error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
return FALSE;
}
if (!probe && size > sizeof * shdrs)
warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
size, num,
probe ? NULL : _("section headers"));
if (shdrs == NULL)
return FALSE;
if (section_headers != NULL)
free (section_headers);
section_headers = (Elf_Internal_Shdr *) cmalloc (num,
sizeof (Elf_Internal_Shdr));
if (section_headers == NULL)
{
if (!probe)
error (_("Out of memory reading %u section headers\n"), num);
return FALSE;
}
for (i = 0, internal = section_headers;
i < num;
i++, internal++)
{
internal->sh_name = BYTE_GET (shdrs[i].sh_name);
internal->sh_type = BYTE_GET (shdrs[i].sh_type);
internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
internal->sh_size = BYTE_GET (shdrs[i].sh_size);
internal->sh_link = BYTE_GET (shdrs[i].sh_link);
internal->sh_info = BYTE_GET (shdrs[i].sh_info);
internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
if (!probe && internal->sh_link > num)
warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
}
free (shdrs);
return TRUE;
}
static bfd_boolean
get_64bit_section_headers (FILE * file, bfd_boolean probe)
{
Elf64_External_Shdr * shdrs;
Elf_Internal_Shdr * internal;
unsigned int i;
unsigned int size = elf_header.e_shentsize;
unsigned int num = probe ? 1 : elf_header.e_shnum;
/* PR binutils/17531: Cope with unexpected section header sizes. */
if (size == 0 || num == 0)
return FALSE;
if (size < sizeof * shdrs)
{
if (! probe)
error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
return FALSE;
}
if (! probe && size > sizeof * shdrs)
warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
size, num,
probe ? NULL : _("section headers"));
if (shdrs == NULL)
return FALSE;
if (section_headers != NULL)
free (section_headers);
section_headers = (Elf_Internal_Shdr *) cmalloc (num,
sizeof (Elf_Internal_Shdr));
if (section_headers == NULL)
{
if (! probe)
error (_("Out of memory reading %u section headers\n"), num);
return FALSE;
}
for (i = 0, internal = section_headers;
i < num;
i++, internal++)
{
internal->sh_name = BYTE_GET (shdrs[i].sh_name);
internal->sh_type = BYTE_GET (shdrs[i].sh_type);
internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
internal->sh_size = BYTE_GET (shdrs[i].sh_size);
internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
internal->sh_link = BYTE_GET (shdrs[i].sh_link);
internal->sh_info = BYTE_GET (shdrs[i].sh_info);
internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
if (!probe && internal->sh_link > num)
warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
}
free (shdrs);
return TRUE;
}
static Elf_Internal_Sym *
get_32bit_elf_symbols (FILE * file,
Elf_Internal_Shdr * section,
unsigned long * num_syms_return)
{
unsigned long number = 0;
Elf32_External_Sym * esyms = NULL;
Elf_External_Sym_Shndx * shndx = NULL;
Elf_Internal_Sym * isyms = NULL;
Elf_Internal_Sym * psym;
unsigned int j;
if (section->sh_size == 0)
{
if (num_syms_return != NULL)
* num_syms_return = 0;
return NULL;
}
/* Run some sanity checks first. */
if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
{
error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
printable_section_name (section), (unsigned long) section->sh_entsize);
goto exit_point;
}
if (section->sh_size > current_file_size)
{
error (_("Section %s has an invalid sh_size of 0x%lx\n"),
printable_section_name (section), (unsigned long) section->sh_size);
goto exit_point;
}
number = section->sh_size / section->sh_entsize;
if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
{
error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
(unsigned long) section->sh_size,
printable_section_name (section),
(unsigned long) section->sh_entsize);
goto exit_point;
}
esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
section->sh_size, _("symbols"));
if (esyms == NULL)
goto exit_point;
{
elf_section_list * entry;
shndx = NULL;
for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
{
shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
entry->hdr->sh_offset,
1, entry->hdr->sh_size,
_("symbol table section indicies"));
if (shndx == NULL)
goto exit_point;
/* PR17531: file: heap-buffer-overflow */
else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
{
error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
printable_section_name (entry->hdr),
(unsigned long) entry->hdr->sh_size,
(unsigned long) section->sh_size);
goto exit_point;
}
}
}
isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
if (isyms == NULL)
{
error (_("Out of memory reading %lu symbols\n"),
(unsigned long) number);
goto exit_point;
}
for (j = 0, psym = isyms; j < number; j++, psym++)
{
psym->st_name = BYTE_GET (esyms[j].st_name);
psym->st_value = BYTE_GET (esyms[j].st_value);
psym->st_size = BYTE_GET (esyms[j].st_size);
psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
psym->st_shndx
= byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
psym->st_info = BYTE_GET (esyms[j].st_info);
psym->st_other = BYTE_GET (esyms[j].st_other);
}
exit_point:
if (shndx != NULL)
free (shndx);
if (esyms != NULL)
free (esyms);
if (num_syms_return != NULL)
* num_syms_return = isyms == NULL ? 0 : number;
return isyms;
}
static Elf_Internal_Sym *
get_64bit_elf_symbols (FILE * file,
Elf_Internal_Shdr * section,
unsigned long * num_syms_return)
{
unsigned long number = 0;
Elf64_External_Sym * esyms = NULL;
Elf_External_Sym_Shndx * shndx = NULL;
Elf_Internal_Sym * isyms = NULL;
Elf_Internal_Sym * psym;
unsigned int j;
if (section->sh_size == 0)
{
if (num_syms_return != NULL)
* num_syms_return = 0;
return NULL;
}
/* Run some sanity checks first. */
if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
{
error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
printable_section_name (section),
(unsigned long) section->sh_entsize);
goto exit_point;
}
if (section->sh_size > current_file_size)
{
error (_("Section %s has an invalid sh_size of 0x%lx\n"),
printable_section_name (section),
(unsigned long) section->sh_size);
goto exit_point;
}
number = section->sh_size / section->sh_entsize;
if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
{
error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
(unsigned long) section->sh_size,
printable_section_name (section),
(unsigned long) section->sh_entsize);
goto exit_point;
}
esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
section->sh_size, _("symbols"));
if (!esyms)
goto exit_point;
{
elf_section_list * entry;
shndx = NULL;
for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
{
shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
entry->hdr->sh_offset,
1, entry->hdr->sh_size,
_("symbol table section indicies"));
if (shndx == NULL)
goto exit_point;
/* PR17531: file: heap-buffer-overflow */
else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
{
error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
printable_section_name (entry->hdr),
(unsigned long) entry->hdr->sh_size,
(unsigned long) section->sh_size);
goto exit_point;
}
}
}
isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
if (isyms == NULL)
{
error (_("Out of memory reading %lu symbols\n"),
(unsigned long) number);
goto exit_point;
}
for (j = 0, psym = isyms; j < number; j++, psym++)
{
psym->st_name = BYTE_GET (esyms[j].st_name);
psym->st_info = BYTE_GET (esyms[j].st_info);
psym->st_other = BYTE_GET (esyms[j].st_other);
psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
psym->st_shndx
= byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
psym->st_value = BYTE_GET (esyms[j].st_value);
psym->st_size = BYTE_GET (esyms[j].st_size);
}
exit_point:
if (shndx != NULL)
free (shndx);
if (esyms != NULL)
free (esyms);
if (num_syms_return != NULL)
* num_syms_return = isyms == NULL ? 0 : number;
return isyms;
}
static const char *
get_elf_section_flags (bfd_vma sh_flags)
{
static char buff[1024];
char * p = buff;
int field_size = is_32bit_elf ? 8 : 16;
int sindex;
int size = sizeof (buff) - (field_size + 4 + 1);
bfd_vma os_flags = 0;
bfd_vma proc_flags = 0;
bfd_vma unknown_flags = 0;
static const struct
{
const char * str;
int len;
}
flags [] =
{
/* 0 */ { STRING_COMMA_LEN ("WRITE") },
/* 1 */ { STRING_COMMA_LEN ("ALLOC") },
/* 2 */ { STRING_COMMA_LEN ("EXEC") },
/* 3 */ { STRING_COMMA_LEN ("MERGE") },
/* 4 */ { STRING_COMMA_LEN ("STRINGS") },
/* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
/* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
/* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
/* 8 */ { STRING_COMMA_LEN ("GROUP") },
/* 9 */ { STRING_COMMA_LEN ("TLS") },
/* IA-64 specific. */
/* 10 */ { STRING_COMMA_LEN ("SHORT") },
/* 11 */ { STRING_COMMA_LEN ("NORECOV") },
/* IA-64 OpenVMS specific. */
/* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
/* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
/* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
/* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
/* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
/* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
/* Generic. */
/* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
/* SPARC specific. */
/* 19 */ { STRING_COMMA_LEN ("ORDERED") },
/* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
/* ARM specific. */
/* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
/* 22 */ { STRING_COMMA_LEN ("ARM_NOREAD") },
/* 23 */ { STRING_COMMA_LEN ("COMDEF") }
};
if (do_section_details)
{
sprintf (buff, "[%*.*lx]: ",
field_size, field_size, (unsigned long) sh_flags);
p += field_size + 4;
}
while (sh_flags)
{
bfd_vma flag;
flag = sh_flags & - sh_flags;
sh_flags &= ~ flag;
if (do_section_details)
{
switch (flag)
{
case SHF_WRITE: sindex = 0; break;
case SHF_ALLOC: sindex = 1; break;
case SHF_EXECINSTR: sindex = 2; break;
case SHF_MERGE: sindex = 3; break;
case SHF_STRINGS: sindex = 4; break;
case SHF_INFO_LINK: sindex = 5; break;
case SHF_LINK_ORDER: sindex = 6; break;
case SHF_OS_NONCONFORMING: sindex = 7; break;
case SHF_GROUP: sindex = 8; break;
case SHF_TLS: sindex = 9; break;
case SHF_EXCLUDE: sindex = 18; break;
case SHF_COMPRESSED: sindex = 20; break;
default:
sindex = -1;
switch (elf_header.e_machine)
{
case EM_IA_64:
if (flag == SHF_IA_64_SHORT)
sindex = 10;
else if (flag == SHF_IA_64_NORECOV)
sindex = 11;
#ifdef BFD64
else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
switch (flag)
{
case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
case SHF_IA_64_VMS_SHARED: sindex = 14; break;
case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
default: break;
}
#endif
break;
case EM_386:
case EM_IAMCU:
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
case EM_OLD_SPARCV9:
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPARC:
if (flag == SHF_ORDERED)
sindex = 19;
break;
case EM_ARM:
switch (flag)
{
case SHF_ENTRYSECT: sindex = 21; break;
case SHF_ARM_NOREAD: sindex = 22; break;
case SHF_COMDEF: sindex = 23; break;
default: break;
}
break;
default:
break;
}
}
if (sindex != -1)
{
if (p != buff + field_size + 4)
{
if (size < (10 + 2))
{
warn (_("Internal error: not enough buffer room for section flag info"));
return _("<unknown>");
}
size -= 2;
*p++ = ',';
*p++ = ' ';
}
size -= flags [sindex].len;
p = stpcpy (p, flags [sindex].str);
}
else if (flag & SHF_MASKOS)
os_flags |= flag;
else if (flag & SHF_MASKPROC)
proc_flags |= flag;
else
unknown_flags |= flag;
}
else
{
switch (flag)
{
case SHF_WRITE: *p = 'W'; break;
case SHF_ALLOC: *p = 'A'; break;
case SHF_EXECINSTR: *p = 'X'; break;
case SHF_MERGE: *p = 'M'; break;
case SHF_STRINGS: *p = 'S'; break;
case SHF_INFO_LINK: *p = 'I'; break;
case SHF_LINK_ORDER: *p = 'L'; break;
case SHF_OS_NONCONFORMING: *p = 'O'; break;
case SHF_GROUP: *p = 'G'; break;
case SHF_TLS: *p = 'T'; break;
case SHF_EXCLUDE: *p = 'E'; break;
case SHF_COMPRESSED: *p = 'C'; break;
default:
if ((elf_header.e_machine == EM_X86_64
|| elf_header.e_machine == EM_L1OM
|| elf_header.e_machine == EM_K1OM)
&& flag == SHF_X86_64_LARGE)
*p = 'l';
else if (elf_header.e_machine == EM_ARM
&& flag == SHF_ARM_NOREAD)
*p = 'y';
else if (flag & SHF_MASKOS)
{
*p = 'o';
sh_flags &= ~ SHF_MASKOS;
}
else if (flag & SHF_MASKPROC)
{
*p = 'p';
sh_flags &= ~ SHF_MASKPROC;
}
else
*p = 'x';
break;
}
p++;
}
}
if (do_section_details)
{
if (os_flags)
{
size -= 5 + field_size;
if (p != buff + field_size + 4)
{
if (size < (2 + 1))
{
warn (_("Internal error: not enough buffer room for section flag info"));
return _("<unknown>");
}
size -= 2;
*p++ = ',';
*p++ = ' ';
}
sprintf (p, "OS (%*.*lx)", field_size, field_size,
(unsigned long) os_flags);
p += 5 + field_size;
}
if (proc_flags)
{
size -= 7 + field_size;
if (p != buff + field_size + 4)
{
if (size < (2 + 1))
{
warn (_("Internal error: not enough buffer room for section flag info"));
return _("<unknown>");
}
size -= 2;
*p++ = ',';
*p++ = ' ';
}
sprintf (p, "PROC (%*.*lx)", field_size, field_size,
(unsigned long) proc_flags);
p += 7 + field_size;
}
if (unknown_flags)
{
size -= 10 + field_size;
if (p != buff + field_size + 4)
{
if (size < (2 + 1))
{
warn (_("Internal error: not enough buffer room for section flag info"));
return _("<unknown>");
}
size -= 2;
*p++ = ',';
*p++ = ' ';
}
sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
(unsigned long) unknown_flags);
p += 10 + field_size;
}
}
*p = '\0';
return buff;
}
static unsigned int
get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf)
{
if (is_32bit_elf)
{
Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
chdr->ch_type = BYTE_GET (echdr->ch_type);
chdr->ch_size = BYTE_GET (echdr->ch_size);
chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
return sizeof (*echdr);
}
else
{
Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
chdr->ch_type = BYTE_GET (echdr->ch_type);
chdr->ch_size = BYTE_GET (echdr->ch_size);
chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
return sizeof (*echdr);
}
}
static int
process_section_headers (FILE * file)
{
Elf_Internal_Shdr * section;
unsigned int i;
section_headers = NULL;
if (elf_header.e_shnum == 0)
{
/* PR binutils/12467. */
if (elf_header.e_shoff != 0)
warn (_("possibly corrupt ELF file header - it has a non-zero"
" section header offset, but no section headers\n"));
else if (do_sections)
printf (_("\nThere are no sections in this file.\n"));
return 1;
}
if (do_sections && !do_header)
printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
if (is_32bit_elf)
{
if (! get_32bit_section_headers (file, FALSE))
return 0;
}
else if (! get_64bit_section_headers (file, FALSE))
return 0;
/* Read in the string table, so that we have names to display. */
if (elf_header.e_shstrndx != SHN_UNDEF
&& elf_header.e_shstrndx < elf_header.e_shnum)
{
section = section_headers + elf_header.e_shstrndx;
if (section->sh_size != 0)
{
string_table = (char *) get_data (NULL, file, section->sh_offset,
1, section->sh_size,
_("string table"));
string_table_length = string_table != NULL ? section->sh_size : 0;
}
}
/* Scan the sections for the dynamic symbol table
and dynamic string table and debug sections. */
dynamic_symbols = NULL;
dynamic_strings = NULL;
dynamic_syminfo = NULL;
symtab_shndx_list = NULL;
eh_addr_size = is_32bit_elf ? 4 : 8;
switch (elf_header.e_machine)
{
case EM_MIPS:
case EM_MIPS_RS3_LE:
/* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
FDE addresses. However, the ABI also has a semi-official ILP32
variant for which the normal FDE address size rules apply.
GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
section, where XX is the size of longs in bits. Unfortunately,
earlier compilers provided no way of distinguishing ILP32 objects
from LP64 objects, so if there's any doubt, we should assume that
the official LP64 form is being used. */
if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
&& find_section (".gcc_compiled_long32") == NULL)
eh_addr_size = 8;
break;
case EM_H8_300:
case EM_H8_300H:
switch (elf_header.e_flags & EF_H8_MACH)
{
case E_H8_MACH_H8300:
case E_H8_MACH_H8300HN:
case E_H8_MACH_H8300SN:
case E_H8_MACH_H8300SXN:
eh_addr_size = 2;
break;
case E_H8_MACH_H8300H:
case E_H8_MACH_H8300S:
case E_H8_MACH_H8300SX:
eh_addr_size = 4;
break;
}
break;
case EM_M32C_OLD:
case EM_M32C:
switch (elf_header.e_flags & EF_M32C_CPU_MASK)
{
case EF_M32C_CPU_M16C:
eh_addr_size = 2;
break;
}
break;
}
#define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
do \
{ \
bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
if (section->sh_entsize != expected_entsize) \
{ \
char buf[40]; \
sprintf_vma (buf, section->sh_entsize); \
/* Note: coded this way so that there is a single string for \
translation. */ \
error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
error (_("(Using the expected size of %u for the rest of this dump)\n"), \
(unsigned) expected_entsize); \
section->sh_entsize = expected_entsize; \
} \
} \
while (0)
#define CHECK_ENTSIZE(section, i, type) \
CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
sizeof (Elf64_External_##type))
for (i = 0, section = section_headers;
i < elf_header.e_shnum;
i++, section++)
{
char * name = SECTION_NAME (section);
if (section->sh_type == SHT_DYNSYM)
{
if (dynamic_symbols != NULL)
{
error (_("File contains multiple dynamic symbol tables\n"));
continue;
}
CHECK_ENTSIZE (section, i, Sym);
dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
}
else if (section->sh_type == SHT_STRTAB
&& streq (name, ".dynstr"))
{
if (dynamic_strings != NULL)
{
error (_("File contains multiple dynamic string tables\n"));
continue;
}
dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
1, section->sh_size,
_("dynamic strings"));
dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
}
else if (section->sh_type == SHT_SYMTAB_SHNDX)
{
elf_section_list * entry = xmalloc (sizeof * entry);
entry->hdr = section;
entry->next = symtab_shndx_list;
symtab_shndx_list = entry;
}
else if (section->sh_type == SHT_SYMTAB)
CHECK_ENTSIZE (section, i, Sym);
else if (section->sh_type == SHT_GROUP)
CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
else if (section->sh_type == SHT_REL)
CHECK_ENTSIZE (section, i, Rel);
else if (section->sh_type == SHT_RELA)
CHECK_ENTSIZE (section, i, Rela);
else if ((do_debugging || do_debug_info || do_debug_abbrevs
|| do_debug_lines || do_debug_pubnames || do_debug_pubtypes
|| do_debug_aranges || do_debug_frames || do_debug_macinfo
|| do_debug_str || do_debug_loc || do_debug_ranges
|| do_debug_addr || do_debug_cu_index)
&& (const_strneq (name, ".debug_")
|| const_strneq (name, ".zdebug_")))
{
if (name[1] == 'z')
name += sizeof (".zdebug_") - 1;
else
name += sizeof (".debug_") - 1;
if (do_debugging
|| (do_debug_info && const_strneq (name, "info"))
|| (do_debug_info && const_strneq (name, "types"))
|| (do_debug_abbrevs && const_strneq (name, "abbrev"))
|| (do_debug_lines && strcmp (name, "line") == 0)
|| (do_debug_lines && const_strneq (name, "line."))
|| (do_debug_pubnames && const_strneq (name, "pubnames"))
|| (do_debug_pubtypes && const_strneq (name, "pubtypes"))
|| (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
|| (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
|| (do_debug_aranges && const_strneq (name, "aranges"))
|| (do_debug_ranges && const_strneq (name, "ranges"))
|| (do_debug_frames && const_strneq (name, "frame"))
|| (do_debug_macinfo && const_strneq (name, "macinfo"))
|| (do_debug_macinfo && const_strneq (name, "macro"))
|| (do_debug_str && const_strneq (name, "str"))
|| (do_debug_loc && const_strneq (name, "loc"))
|| (do_debug_addr && const_strneq (name, "addr"))
|| (do_debug_cu_index && const_strneq (name, "cu_index"))
|| (do_debug_cu_index && const_strneq (name, "tu_index"))
)
request_dump_bynumber (i, DEBUG_DUMP);
}
/* Linkonce section to be combined with .debug_info at link time. */
else if ((do_debugging || do_debug_info)
&& const_strneq (name, ".gnu.linkonce.wi."))
request_dump_bynumber (i, DEBUG_DUMP);
else if (do_debug_frames && streq (name, ".eh_frame"))
request_dump_bynumber (i, DEBUG_DUMP);
else if (do_gdb_index && streq (name, ".gdb_index"))
request_dump_bynumber (i, DEBUG_DUMP);
/* Trace sections for Itanium VMS. */
else if ((do_debugging || do_trace_info || do_trace_abbrevs
|| do_trace_aranges)
&& const_strneq (name, ".trace_"))
{
name += sizeof (".trace_") - 1;
if (do_debugging
|| (do_trace_info && streq (name, "info"))
|| (do_trace_abbrevs && streq (name, "abbrev"))
|| (do_trace_aranges && streq (name, "aranges"))
)
request_dump_bynumber (i, DEBUG_DUMP);
}
}
if (! do_sections)
return 1;
if (elf_header.e_shnum > 1)
printf (_("\nSection Headers:\n"));
else
printf (_("\nSection Header:\n"));
if (is_32bit_elf)
{
if (do_section_details)
{
printf (_(" [Nr] Name\n"));
printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
}
else
printf
(_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
}
else if (do_wide)
{
if (do_section_details)
{
printf (_(" [Nr] Name\n"));
printf (_(" Type Address Off Size ES Lk Inf Al\n"));
}
else
printf
(_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
}
else
{
if (do_section_details)
{
printf (_(" [Nr] Name\n"));
printf (_(" Type Address Offset Link\n"));
printf (_(" Size EntSize Info Align\n"));
}
else
{
printf (_(" [Nr] Name Type Address Offset\n"));
printf (_(" Size EntSize Flags Link Info Align\n"));
}
}
if (do_section_details)
printf (_(" Flags\n"));
for (i = 0, section = section_headers;
i < elf_header.e_shnum;
i++, section++)
{
printf (" [%2u] ", i);
if (do_section_details)
printf ("%s\n ", printable_section_name (section));
else
print_symbol (-17, SECTION_NAME (section));
printf (do_wide ? " %-15s " : " %-15.15s ",
get_section_type_name (section->sh_type));
if (is_32bit_elf)
{
const char * link_too_big = NULL;
print_vma (section->sh_addr, LONG_HEX);
printf ( " %6.6lx %6.6lx %2.2lx",
(unsigned long) section->sh_offset,
(unsigned long) section->sh_size,
(unsigned long) section->sh_entsize);
if (do_section_details)
fputs (" ", stdout);
else
printf (" %3s ", get_elf_section_flags (section->sh_flags));
if (section->sh_link >= elf_header.e_shnum)
{
link_too_big = "";
/* The sh_link value is out of range. Normally this indicates
an error but it can have special values in Solaris binaries. */
switch (elf_header.e_machine)
{
case EM_386:
case EM_IAMCU:
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
case EM_OLD_SPARCV9:
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPARC:
if (section->sh_link == (SHN_BEFORE & 0xffff))
link_too_big = "BEFORE";
else if (section->sh_link == (SHN_AFTER & 0xffff))
link_too_big = "AFTER";
break;
default:
break;
}
}
if (do_section_details)
{
if (link_too_big != NULL && * link_too_big)
printf ("<%s> ", link_too_big);
else
printf ("%2u ", section->sh_link);
printf ("%3u %2lu\n", section->sh_info,
(unsigned long) section->sh_addralign);
}
else
printf ("%2u %3u %2lu\n",
section->sh_link,
section->sh_info,
(unsigned long) section->sh_addralign);
if (link_too_big && ! * link_too_big)
warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
i, section->sh_link);
}
else if (do_wide)
{
print_vma (section->sh_addr, LONG_HEX);
if ((long) section->sh_offset == section->sh_offset)
printf (" %6.6lx", (unsigned long) section->sh_offset);
else
{
putchar (' ');
print_vma (section->sh_offset, LONG_HEX);
}
if ((unsigned long) section->sh_size == section->sh_size)
printf (" %6.6lx", (unsigned long) section->sh_size);
else
{
putchar (' ');
print_vma (section->sh_size, LONG_HEX);
}
if ((unsigned long) section->sh_entsize == section->sh_entsize)
printf (" %2.2lx", (unsigned long) section->sh_entsize);
else
{
putchar (' ');
print_vma (section->sh_entsize, LONG_HEX);
}
if (do_section_details)
fputs (" ", stdout);
else
printf (" %3s ", get_elf_section_flags (section->sh_flags));
printf ("%2u %3u ", section->sh_link, section->sh_info);
if ((unsigned long) section->sh_addralign == section->sh_addralign)
printf ("%2lu\n", (unsigned long) section->sh_addralign);
else
{
print_vma (section->sh_addralign, DEC);
putchar ('\n');
}
}
else if (do_section_details)
{
printf (" %-15.15s ",
get_section_type_name (section->sh_type));
print_vma (section->sh_addr, LONG_HEX);
if ((long) section->sh_offset == section->sh_offset)
printf (" %16.16lx", (unsigned long) section->sh_offset);
else
{
printf (" ");
print_vma (section->sh_offset, LONG_HEX);
}
printf (" %u\n ", section->sh_link);
print_vma (section->sh_size, LONG_HEX);
putchar (' ');
print_vma (section->sh_entsize, LONG_HEX);
printf (" %-16u %lu\n",
section->sh_info,
(unsigned long) section->sh_addralign);
}
else
{
putchar (' ');
print_vma (section->sh_addr, LONG_HEX);
if ((long) section->sh_offset == section->sh_offset)
printf (" %8.8lx", (unsigned long) section->sh_offset);
else
{
printf (" ");
print_vma (section->sh_offset, LONG_HEX);
}
printf ("\n ");
print_vma (section->sh_size, LONG_HEX);
printf (" ");
print_vma (section->sh_entsize, LONG_HEX);
printf (" %3s ", get_elf_section_flags (section->sh_flags));
printf (" %2u %3u %lu\n",
section->sh_link,
section->sh_info,
(unsigned long) section->sh_addralign);
}
if (do_section_details)
{
printf (" %s\n", get_elf_section_flags (section->sh_flags));
if ((section->sh_flags & SHF_COMPRESSED) != 0)
{
/* Minimum section size is 12 bytes for 32-bit compression
header + 12 bytes for compressed data header. */
unsigned char buf[24];
assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
if (get_data (&buf, (FILE *) file, section->sh_offset, 1,
sizeof (buf), _("compression header")))
{
Elf_Internal_Chdr chdr;
get_compression_header (&chdr, buf);
if (chdr.ch_type == ELFCOMPRESS_ZLIB)
printf (" ZLIB, ");
else
printf (_(" [<unknown>: 0x%x], "),
chdr.ch_type);
print_vma (chdr.ch_size, LONG_HEX);
printf (", %lu\n", (unsigned long) chdr.ch_addralign);
}
}
}
}
if (!do_section_details)
{
/* The ordering of the letters shown here matches the ordering of the
corresponding SHF_xxx values, and hence the order in which these
letters will be displayed to the user. */
printf (_("Key to Flags:\n\
W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
L (link order), O (extra OS processing required), G (group), T (TLS),\n\
C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
if (elf_header.e_machine == EM_X86_64
|| elf_header.e_machine == EM_L1OM
|| elf_header.e_machine == EM_K1OM)
printf (_("l (large), "));
else if (elf_header.e_machine == EM_ARM)
printf (_("y (noread), "));
printf ("p (processor specific)\n");
}
return 1;
}
static const char *
get_group_flags (unsigned int flags)
{
static char buff[32];
switch (flags)
{
case 0:
return "";
case GRP_COMDAT:
return "COMDAT ";
default:
snprintf (buff, sizeof (buff), _("[<unknown>: 0x%x] "), flags);
break;
}
return buff;
}
static int
process_section_groups (FILE * file)
{
Elf_Internal_Shdr * section;
unsigned int i;
struct group * group;
Elf_Internal_Shdr * symtab_sec;
Elf_Internal_Shdr * strtab_sec;
Elf_Internal_Sym * symtab;
unsigned long num_syms;
char * strtab;
size_t strtab_size;
/* Don't process section groups unless needed. */
if (!do_unwind && !do_section_groups)
return 1;
if (elf_header.e_shnum == 0)
{
if (do_section_groups)
printf (_("\nThere are no sections to group in this file.\n"));
return 1;
}
if (section_headers == NULL)
{
error (_("Section headers are not available!\n"));
/* PR 13622: This can happen with a corrupt ELF header. */
return 0;
}
section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
sizeof (struct group *));
if (section_headers_groups == NULL)
{
error (_("Out of memory reading %u section group headers\n"),
elf_header.e_shnum);
return 0;
}
/* Scan the sections for the group section. */
group_count = 0;
for (i = 0, section = section_headers;
i < elf_header.e_shnum;
i++, section++)
if (section->sh_type == SHT_GROUP)
group_count++;
if (group_count == 0)
{
if (do_section_groups)
printf (_("\nThere are no section groups in this file.\n"));
return 1;
}
section_groups = (struct group *) calloc (group_count, sizeof (struct group));
if (section_groups == NULL)
{
error (_("Out of memory reading %lu groups\n"),
(unsigned long) group_count);
return 0;
}
symtab_sec = NULL;
strtab_sec = NULL;
symtab = NULL;
num_syms = 0;
strtab = NULL;
strtab_size = 0;
for (i = 0, section = section_headers, group = section_groups;
i < elf_header.e_shnum;
i++, section++)
{
if (section->sh_type == SHT_GROUP)
{
const char * name = printable_section_name (section);
const char * group_name;
unsigned char * start;
unsigned char * indices;
unsigned int entry, j, size;
Elf_Internal_Shdr * sec;
Elf_Internal_Sym * sym;
/* Get the symbol table. */
if (section->sh_link >= elf_header.e_shnum
|| ((sec = section_headers + section->sh_link)->sh_type
!= SHT_SYMTAB))
{
error (_("Bad sh_link in group section `%s'\n"), name);
continue;
}
if (symtab_sec != sec)
{
symtab_sec = sec;
if (symtab)
free (symtab);
symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
}
if (symtab == NULL)
{
error (_("Corrupt header in group section `%s'\n"), name);
continue;
}
if (section->sh_info >= num_syms)
{
error (_("Bad sh_info in group section `%s'\n"), name);
continue;
}
sym = symtab + section->sh_info;
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
{
if (sym->st_shndx == 0
|| sym->st_shndx >= elf_header.e_shnum)
{
error (_("Bad sh_info in group section `%s'\n"), name);
continue;
}
group_name = SECTION_NAME (section_headers + sym->st_shndx);
strtab_sec = NULL;
if (strtab)
free (strtab);
strtab = NULL;
strtab_size = 0;
}
else
{
/* Get the string table. */
if (symtab_sec->sh_link >= elf_header.e_shnum)
{
strtab_sec = NULL;
if (strtab)
free (strtab);
strtab = NULL;
strtab_size = 0;
}
else if (strtab_sec
!= (sec = section_headers + symtab_sec->sh_link))
{
strtab_sec = sec;
if (strtab)
free (strtab);
strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
1, strtab_sec->sh_size,
_("string table"));
strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
}
group_name = sym->st_name < strtab_size
? strtab + sym->st_name : _("<corrupt>");
}
/* PR 17531: file: loop. */
if (section->sh_entsize > section->sh_size)
{
error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
printable_section_name (section),
(unsigned long) section->sh_entsize,
(unsigned long) section->sh_size);
break;
}
start = (unsigned char *) get_data (NULL, file, section->sh_offset,
1, section->sh_size,
_("section data"));
if (start == NULL)
continue;
indices = start;
size = (section->sh_size / section->sh_entsize) - 1;
entry = byte_get (indices, 4);
indices += 4;
if (do_section_groups)
{
printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
get_group_flags (entry), i, name, group_name, size);
printf (_(" [Index] Name\n"));
}
group->group_index = i;
for (j = 0; j < size; j++)
{
struct group_list * g;
entry = byte_get (indices, 4);
indices += 4;
if (entry >= elf_header.e_shnum)
{
static unsigned num_group_errors = 0;
if (num_group_errors ++ < 10)
{
error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
entry, i, elf_header.e_shnum - 1);
if (num_group_errors == 10)
warn (_("Futher error messages about overlarge group section indicies suppressed\n"));
}
continue;
}
if (section_headers_groups [entry] != NULL)
{
if (entry)
{
static unsigned num_errs = 0;
if (num_errs ++ < 10)
{
error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
entry, i,
section_headers_groups [entry]->group_index);
if (num_errs == 10)
warn (_("Further error messages about already contained group sections suppressed\n"));
}
continue;
}
else
{
/* Intel C/C++ compiler may put section 0 in a
section group. We just warn it the first time
and ignore it afterwards. */
static int warned = 0;
if (!warned)
{
error (_("section 0 in group section [%5u]\n"),
section_headers_groups [entry]->group_index);
warned++;
}
}
}
section_headers_groups [entry] = group;
if (do_section_groups)
{
sec = section_headers + entry;
printf (" [%5u] %s\n", entry, printable_section_name (sec));
}
g = (struct group_list *) xmalloc (sizeof (struct group_list));
g->section_index = entry;
g->next = group->root;
group->root = g;
}
if (start)
free (start);
group++;
}
}
if (symtab)
free (symtab);
if (strtab)
free (strtab);
return 1;
}
/* Data used to display dynamic fixups. */
struct ia64_vms_dynfixup
{
bfd_vma needed_ident; /* Library ident number. */
bfd_vma needed; /* Index in the dstrtab of the library name. */
bfd_vma fixup_needed; /* Index of the library. */
bfd_vma fixup_rela_cnt; /* Number of fixups. */
bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
};
/* Data used to display dynamic relocations. */
struct ia64_vms_dynimgrela
{
bfd_vma img_rela_cnt; /* Number of relocations. */
bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
};
/* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
library). */
static void
dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
const char *strtab, unsigned int strtab_sz)
{
Elf64_External_VMS_IMAGE_FIXUP *imfs;
long i;
const char *lib_name;
imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
1, fixup->fixup_rela_cnt * sizeof (*imfs),
_("dynamic section image fixups"));
if (!imfs)
return;
if (fixup->needed < strtab_sz)
lib_name = strtab + fixup->needed;
else
{
warn ("corrupt library name index of 0x%lx found in dynamic entry",
(unsigned long) fixup->needed);
lib_name = "???";
}
printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
(int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
printf
(_("Seg Offset Type SymVec DataType\n"));
for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
{
unsigned int type;
const char *rtype;
printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
type = BYTE_GET (imfs [i].type);
rtype = elf_ia64_reloc_type (type);
if (rtype == NULL)
printf (" 0x%08x ", type);
else
printf (" %-32s ", rtype);
printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
}
free (imfs);
}
/* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
static void
dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
{
Elf64_External_VMS_IMAGE_RELA *imrs;
long i;
imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
1, imgrela->img_rela_cnt * sizeof (*imrs),
_("dynamic section image relocations"));
if (!imrs)
return;
printf (_("\nImage relocs\n"));
printf
(_("Seg Offset Type Addend Seg Sym Off\n"));
for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
{
unsigned int type;
const char *rtype;
printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
printf ("%08" BFD_VMA_FMT "x ",
(bfd_vma) BYTE_GET (imrs [i].rela_offset));
type = BYTE_GET (imrs [i].type);
rtype = elf_ia64_reloc_type (type);
if (rtype == NULL)
printf ("0x%08x ", type);
else
printf ("%-31s ", rtype);
print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
printf ("%08" BFD_VMA_FMT "x\n",
(bfd_vma) BYTE_GET (imrs [i].sym_offset));
}
free (imrs);
}
/* Display IA-64 OpenVMS dynamic relocations and fixups. */
static int
process_ia64_vms_dynamic_relocs (FILE *file)
{
struct ia64_vms_dynfixup fixup;
struct ia64_vms_dynimgrela imgrela;
Elf_Internal_Dyn *entry;
int res = 0;
bfd_vma strtab_off = 0;
bfd_vma strtab_sz = 0;
char *strtab = NULL;
memset (&fixup, 0, sizeof (fixup));
memset (&imgrela, 0, sizeof (imgrela));
/* Note: the order of the entries is specified by the OpenVMS specs. */
for (entry = dynamic_section;
entry < dynamic_section + dynamic_nent;
entry++)
{
switch (entry->d_tag)
{
case DT_IA_64_VMS_STRTAB_OFFSET:
strtab_off = entry->d_un.d_val;
break;
case DT_STRSZ:
strtab_sz = entry->d_un.d_val;
if (strtab == NULL)
strtab = get_data (NULL, file, dynamic_addr + strtab_off,
1, strtab_sz, _("dynamic string section"));
break;
case DT_IA_64_VMS_NEEDED_IDENT:
fixup.needed_ident = entry->d_un.d_val;
break;
case DT_NEEDED:
fixup.needed = entry->d_un.d_val;
break;
case DT_IA_64_VMS_FIXUP_NEEDED:
fixup.fixup_needed = entry->d_un.d_val;
break;
case DT_IA_64_VMS_FIXUP_RELA_CNT:
fixup.fixup_rela_cnt = entry->d_un.d_val;
break;
case DT_IA_64_VMS_FIXUP_RELA_OFF:
fixup.fixup_rela_off = entry->d_un.d_val;
res++;
dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
break;
case DT_IA_64_VMS_IMG_RELA_CNT:
imgrela.img_rela_cnt = entry->d_un.d_val;
break;
case DT_IA_64_VMS_IMG_RELA_OFF:
imgrela.img_rela_off = entry->d_un.d_val;
res++;
dump_ia64_vms_dynamic_relocs (file, &imgrela);
break;
default:
break;
}
}
if (strtab != NULL)
free (strtab);
return res;
}
static struct
{
const char * name;
int reloc;
int size;
int rela;
} dynamic_relocations [] =
{
{ "REL", DT_REL, DT_RELSZ, FALSE },
{ "RELA", DT_RELA, DT_RELASZ, TRUE },
{ "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
};
/* Process the reloc section. */
static int
process_relocs (FILE * file)
{
unsigned long rel_size;
unsigned long rel_offset;
if (!do_reloc)
return 1;
if (do_using_dynamic)
{
int is_rela;
const char * name;
int has_dynamic_reloc;
unsigned int i;
has_dynamic_reloc = 0;
for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
{
is_rela = dynamic_relocations [i].rela;
name = dynamic_relocations [i].name;
rel_size = dynamic_info [dynamic_relocations [i].size];
rel_offset = dynamic_info [dynamic_relocations [i].reloc];
has_dynamic_reloc |= rel_size;
if (is_rela == UNKNOWN)
{
if (dynamic_relocations [i].reloc == DT_JMPREL)
switch (dynamic_info[DT_PLTREL])
{
case DT_REL:
is_rela = FALSE;
break;
case DT_RELA:
is_rela = TRUE;
break;
}
}
if (rel_size)
{
printf
(_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
name, rel_offset, rel_size);
dump_relocations (file,
offset_from_vma (file, rel_offset, rel_size),
rel_size,
dynamic_symbols, num_dynamic_syms,
dynamic_strings, dynamic_strings_length,
is_rela, 1);
}
}
if (is_ia64_vms ())
has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
if (! has_dynamic_reloc)
printf (_("\nThere are no dynamic relocations in this file.\n"));
}
else
{
Elf_Internal_Shdr * section;
unsigned long i;
int found = 0;
for (i = 0, section = section_headers;
i < elf_header.e_shnum;
i++, section++)
{
if ( section->sh_type != SHT_RELA
&& section->sh_type != SHT_REL)
continue;
rel_offset = section->sh_offset;
rel_size = section->sh_size;
if (rel_size)
{
Elf_Internal_Shdr * strsec;
int is_rela;
printf (_("\nRelocation section "));
if (string_table == NULL)
printf ("%d", section->sh_name);
else
printf ("'%s'", printable_section_name (section));
printf (_(" at offset 0x%lx contains %lu entries:\n"),
rel_offset, (unsigned long) (rel_size / section->sh_entsize));
is_rela = section->sh_type == SHT_RELA;
if (section->sh_link != 0
&& section->sh_link < elf_header.e_shnum)
{
Elf_Internal_Shdr * symsec;
Elf_Internal_Sym * symtab;
unsigned long nsyms;
unsigned long strtablen = 0;
char * strtab = NULL;
symsec = section_headers + section->sh_link;
if (symsec->sh_type != SHT_SYMTAB
&& symsec->sh_type != SHT_DYNSYM)
continue;
symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
if (symtab == NULL)
continue;
if (symsec->sh_link != 0
&& symsec->sh_link < elf_header.e_shnum)
{
strsec = section_headers + symsec->sh_link;
strtab = (char *) get_data (NULL, file, strsec->sh_offset,
1, strsec->sh_size,
_("string table"));
strtablen = strtab == NULL ? 0 : strsec->sh_size;
}
dump_relocations (file, rel_offset, rel_size,
symtab, nsyms, strtab, strtablen,
is_rela,
symsec->sh_type == SHT_DYNSYM);
if (strtab)
free (strtab);
free (symtab);
}
else
dump_relocations (file, rel_offset, rel_size,
NULL, 0, NULL, 0, is_rela, 0);
found = 1;
}
}
if (! found)
printf (_("\nThere are no relocations in this file.\n"));
}
return 1;
}
/* An absolute address consists of a section and an offset. If the
section is NULL, the offset itself is the address, otherwise, the
address equals to LOAD_ADDRESS(section) + offset. */
struct absaddr
{
unsigned short section;
bfd_vma offset;
};
#define ABSADDR(a) \
((a).section \
? section_headers [(a).section].sh_addr + (a).offset \
: (a).offset)
/* Find the nearest symbol at or below ADDR. Returns the symbol
name, if found, and the offset from the symbol to ADDR. */
static void
find_symbol_for_address (Elf_Internal_Sym * symtab,
unsigned long nsyms,
const char * strtab,
unsigned long strtab_size,
struct absaddr addr,
const char ** symname,
bfd_vma * offset)
{
bfd_vma dist = 0x100000;
Elf_Internal_Sym * sym;
Elf_Internal_Sym * beg;
Elf_Internal_Sym * end;
Elf_Internal_Sym * best = NULL;
REMOVE_ARCH_BITS (addr.offset);
beg = symtab;
end = symtab + nsyms;
while (beg < end)
{
bfd_vma value;
sym = beg + (end - beg) / 2;
value = sym->st_value;
REMOVE_ARCH_BITS (value);
if (sym->st_name != 0
&& (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
&& addr.offset >= value
&& addr.offset - value < dist)
{
best = sym;
dist = addr.offset - value;
if (!dist)
break;
}
if (addr.offset < value)
end = sym;
else
beg = sym + 1;
}
if (best)
{
*symname = (best->st_name >= strtab_size
? _("<corrupt>") : strtab + best->st_name);
*offset = dist;
return;
}
*symname = NULL;
*offset = addr.offset;
}
static int
symcmp (const void *p, const void *q)
{
Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
}
/* Process the unwind section. */
#include "unwind-ia64.h"
struct ia64_unw_table_entry
{
struct absaddr start;
struct absaddr end;
struct absaddr info;
};
struct ia64_unw_aux_info
{
struct ia64_unw_table_entry *table; /* Unwind table. */
unsigned long table_len; /* Length of unwind table. */
unsigned char * info; /* Unwind info. */
unsigned long info_size; /* Size of unwind info. */
bfd_vma info_addr; /* Starting address of unwind info. */
bfd_vma seg_base; /* Starting address of segment. */
Elf_Internal_Sym * symtab; /* The symbol table. */
unsigned long nsyms; /* Number of symbols. */
Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
unsigned long nfuns; /* Number of entries in funtab. */
char * strtab; /* The string table. */
unsigned long strtab_size; /* Size of string table. */
};
static void
dump_ia64_unwind (struct ia64_unw_aux_info * aux)
{
struct ia64_unw_table_entry * tp;
unsigned long j, nfuns;
int in_body;
aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
for (nfuns = 0, j = 0; j < aux->nsyms; j++)
if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
aux->funtab[nfuns++] = aux->symtab[j];
aux->nfuns = nfuns;
qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
{
bfd_vma stamp;
bfd_vma offset;
const unsigned char * dp;
const unsigned char * head;
const unsigned char * end;
const char * procname;
find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
aux->strtab_size, tp->start, &procname, &offset);
fputs ("\n<", stdout);
if (procname)
{
fputs (procname, stdout);
if (offset)
printf ("+%lx", (unsigned long) offset);
}
fputs (">: [", stdout);
print_vma (tp->start.offset, PREFIX_HEX);
fputc ('-', stdout);
print_vma (tp->end.offset, PREFIX_HEX);
printf ("], info at +0x%lx\n",
(unsigned long) (tp->info.offset - aux->seg_base));
/* PR 17531: file: 86232b32. */
if (aux->info == NULL)
continue;
/* PR 17531: file: 0997b4d1. */
if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
{
warn (_("Invalid offset %lx in table entry %ld\n"),
(long) tp->info.offset, (long) (tp - aux->table));
continue;
}
head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
stamp = byte_get ((unsigned char *) head, sizeof (stamp));
printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
(unsigned) UNW_VER (stamp),
(unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
(unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
if (UNW_VER (stamp) != 1)
{
printf (_("\tUnknown version.\n"));
continue;
}
in_body = 0;
end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
/* PR 17531: file: 16ceda89. */
if (end > aux->info + aux->info_size)
end = aux->info + aux->info_size;
for (dp = head + 8; dp < end;)
dp = unw_decode (dp, in_body, & in_body, end);
}
free (aux->funtab);
}
static bfd_boolean
slurp_ia64_unwind_table (FILE * file,
struct ia64_unw_aux_info * aux,
Elf_Internal_Shdr * sec)
{
unsigned long size, nrelas, i;
Elf_Internal_Phdr * seg;
struct ia64_unw_table_entry * tep;
Elf_Internal_Shdr * relsec;
Elf_Internal_Rela * rela;
Elf_Internal_Rela * rp;
unsigned char * table;
unsigned char * tp;
Elf_Internal_Sym * sym;
const char * relname;
aux->table_len = 0;
/* First, find the starting address of the segment that includes
this section: */
if (elf_header.e_phnum)
{
if (! get_program_headers (file))
return FALSE;
for (seg = program_headers;
seg < program_headers + elf_header.e_phnum;
++seg)
{
if (seg->p_type != PT_LOAD)
continue;
if (sec->sh_addr >= seg->p_vaddr
&& (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
{
aux->seg_base = seg->p_vaddr;
break;
}
}
}
/* Second, build the unwind table from the contents of the unwind section: */
size = sec->sh_size;
table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
_("unwind table"));
if (!table)
return FALSE;
aux->table_len = size / (3 * eh_addr_size);
aux->table = (struct ia64_unw_table_entry *)
xcmalloc (aux->table_len, sizeof (aux->table[0]));
tep = aux->table;
for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
{
tep->start.section = SHN_UNDEF;
tep->end.section = SHN_UNDEF;
tep->info.section = SHN_UNDEF;
tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
tep->start.offset += aux->seg_base;
tep->end.offset += aux->seg_base;
tep->info.offset += aux->seg_base;
}
free (table);
/* Third, apply any relocations to the unwind table: */
for (relsec = section_headers;
relsec < section_headers + elf_header.e_shnum;
++relsec)
{
if (relsec->sh_type != SHT_RELA
|| relsec->sh_info >= elf_header.e_shnum
|| section_headers + relsec->sh_info != sec)
continue;
if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
& rela, & nrelas))
{
free (aux->table);
aux->table = NULL;
aux->table_len = 0;
return FALSE;
}
for (rp = rela; rp < rela + nrelas; ++rp)
{
relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
sym = aux->symtab + get_reloc_symindex (rp->r_info);
/* PR 17531: file: 9fa67536. */
if (relname == NULL)
{
warn (_("Skipping unknown relocation type: %u\n"), get_reloc_type (rp->r_info));
continue;
}
if (! const_strneq (relname, "R_IA64_SEGREL"))
{
warn (_("Skipping unexpected relocation type: %s\n"), relname);
continue;
}
i = rp->r_offset / (3 * eh_addr_size);
/* PR 17531: file: 5bc8d9bf. */
if (i >= aux->table_len)
{
warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
continue;
}
switch (rp->r_offset / eh_addr_size % 3)
{
case 0:
aux->table[i].start.section = sym->st_shndx;
aux->table[i].start.offset = rp->r_addend + sym->st_value;
break;
case 1:
aux->table[i].end.section = sym->st_shndx;
aux->table[i].end.offset = rp->r_addend + sym->st_value;
break;
case 2:
aux->table[i].info.section = sym->st_shndx;
aux->table[i].info.offset = rp->r_addend + sym->st_value;
break;
default:
break;
}
}
free (rela);
}
return TRUE;
}
static void
ia64_process_unwind (FILE * file)
{
Elf_Internal_Shdr * sec;
Elf_Internal_Shdr * unwsec = NULL;
Elf_Internal_Shdr * strsec;
unsigned long i, unwcount = 0, unwstart = 0;
struct ia64_unw_aux_info aux;
memset (& aux, 0, sizeof (aux));
for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
{
if (sec->sh_type == SHT_SYMTAB
&& sec->sh_link < elf_header.e_shnum)
{
aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
strsec = section_headers + sec->sh_link;
if (aux.strtab != NULL)
{
error (_("Multiple auxillary string tables encountered\n"));
free (aux.strtab);
}
aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
1, strsec->sh_size,
_("string table"));
aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
}
else if (sec->sh_type == SHT_IA_64_UNWIND)
unwcount++;
}
if (!unwcount)
printf (_("\nThere are no unwind sections in this file.\n"));
while (unwcount-- > 0)
{
char * suffix;
size_t len, len2;
for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
i < elf_header.e_shnum; ++i, ++sec)
if (sec->sh_type == SHT_IA_64_UNWIND)
{
unwsec = sec;
break;
}
/* We have already counted the number of SHT_IA64_UNWIND
sections so the loop above should never fail. */
assert (unwsec != NULL);
unwstart = i + 1;
len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
if ((unwsec->sh_flags & SHF_GROUP) != 0)
{
/* We need to find which section group it is in. */
struct group_list * g;
if (section_headers_groups == NULL
|| section_headers_groups [i] == NULL)
i = elf_header.e_shnum;
else
{
g = section_headers_groups [i]->root;
for (; g != NULL; g = g->next)
{
sec = section_headers + g->section_index;
if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
break;
}
if (g == NULL)
i = elf_header.e_shnum;
}
}
else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
{
/* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
suffix = SECTION_NAME (unwsec) + len;
for (i = 0, sec = section_headers; i < elf_header.e_shnum;
++i, ++sec)
if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
&& streq (SECTION_NAME (sec) + len2, suffix))
break;
}
else
{
/* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
.IA_64.unwind or BAR -> .IA_64.unwind_info. */
len = sizeof (ELF_STRING_ia64_unwind) - 1;
len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
suffix = "";
if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
suffix = SECTION_NAME (unwsec) + len;
for (i = 0, sec = section_headers; i < elf_header.e_shnum;
++i, ++sec)
if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
&& streq (SECTION_NAME (sec) + len2, suffix))
break;
}
if (i == elf_header.e_shnum)
{
printf (_("\nCould not find unwind info section for "));
if (string_table == NULL)
printf ("%d", unwsec->sh_name);
else
printf ("'%s'", printable_section_name (unwsec));
}
else
{
aux.info_addr = sec->sh_addr;
aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
sec->sh_size,
_("unwind info"));
aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
printf (_("\nUnwind section "));
if (string_table == NULL)
printf ("%d", unwsec->sh_name);
else
printf ("'%s'", printable_section_name (unwsec));
printf (_(" at offset 0x%lx contains %lu entries:\n"),
(unsigned long) unwsec->sh_offset,
(unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
if (slurp_ia64_unwind_table (file, & aux, unwsec)
&& aux.table_len > 0)
dump_ia64_unwind (& aux);
if (aux.table)
free ((char *) aux.table);
if (aux.info)
free ((char *) aux.info);
aux.table = NULL;
aux.info = NULL;
}
}
if (aux.symtab)
free (aux.symtab);
if (aux.strtab)
free ((char *) aux.strtab);
}
struct hppa_unw_table_entry
{
struct absaddr start;
struct absaddr end;
unsigned int Cannot_unwind:1; /* 0 */
unsigned int Millicode:1; /* 1 */
unsigned int Millicode_save_sr0:1; /* 2 */
unsigned int Region_description:2; /* 3..4 */
unsigned int reserved1:1; /* 5 */
unsigned int Entry_SR:1; /* 6 */
unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
unsigned int Args_stored:1; /* 16 */
unsigned int Variable_Frame:1; /* 17 */
unsigned int Separate_Package_Body:1; /* 18 */
unsigned int Frame_Extension_Millicode:1; /* 19 */
unsigned int Stack_Overflow_Check:1; /* 20 */
unsigned int Two_Instruction_SP_Increment:1;/* 21 */
unsigned int Ada_Region:1; /* 22 */
unsigned int cxx_info:1; /* 23 */
unsigned int cxx_try_catch:1; /* 24 */
unsigned int sched_entry_seq:1; /* 25 */
unsigned int reserved2:1; /* 26 */
unsigned int Save_SP:1; /* 27 */
unsigned int Save_RP:1; /* 28 */
unsigned int Save_MRP_in_frame:1; /* 29 */
unsigned int extn_ptr_defined:1; /* 30 */
unsigned int Cleanup_defined:1; /* 31 */
unsigned int MPE_XL_interrupt_marker:1; /* 0 */
unsigned int HP_UX_interrupt_marker:1; /* 1 */
unsigned int Large_frame:1; /* 2 */
unsigned int Pseudo_SP_Set:1; /* 3 */
unsigned int reserved4:1; /* 4 */
unsigned int Total_frame_size:27; /* 5..31 */
};
struct hppa_unw_aux_info
{
struct hppa_unw_table_entry * table; /* Unwind table. */
unsigned long table_len; /* Length of unwind table. */
bfd_vma seg_base; /* Starting address of segment. */
Elf_Internal_Sym * symtab; /* The symbol table. */
unsigned long nsyms; /* Number of symbols. */
Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
unsigned long nfuns; /* Number of entries in funtab. */
char * strtab; /* The string table. */
unsigned long strtab_size; /* Size of string table. */
};
static void
dump_hppa_unwind (struct hppa_unw_aux_info * aux)
{
struct hppa_unw_table_entry * tp;
unsigned long j, nfuns;
aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
for (nfuns = 0, j = 0; j < aux->nsyms; j++)
if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
aux->funtab[nfuns++] = aux->symtab[j];
aux->nfuns = nfuns;
qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
{
bfd_vma offset;
const char * procname;
find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
aux->strtab_size, tp->start, &procname,
&offset);
fputs ("\n<", stdout);
if (procname)
{
fputs (procname, stdout);
if (offset)
printf ("+%lx", (unsigned long) offset);
}
fputs (">: [", stdout);
print_vma (tp->start.offset, PREFIX_HEX);
fputc ('-', stdout);
print_vma (tp->end.offset, PREFIX_HEX);
printf ("]\n\t");
#define PF(_m) if (tp->_m) printf (#_m " ");
#define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
PF(Cannot_unwind);
PF(Millicode);
PF(Millicode_save_sr0);
/* PV(Region_description); */
PF(Entry_SR);
PV(Entry_FR);
PV(Entry_GR);
PF(Args_stored);
PF(Variable_Frame);
PF(Separate_Package_Body);
PF(Frame_Extension_Millicode);
PF(Stack_Overflow_Check);
PF(Two_Instruction_SP_Increment);
PF(Ada_Region);
PF(cxx_info);
PF(cxx_try_catch);
PF(sched_entry_seq);
PF(Save_SP);
PF(Save_RP);
PF(Save_MRP_in_frame);
PF(extn_ptr_defined);
PF(Cleanup_defined);
PF(MPE_XL_interrupt_marker);
PF(HP_UX_interrupt_marker);
PF(Large_frame);
PF(Pseudo_SP_Set);
PV(Total_frame_size);
#undef PF
#undef PV
}
printf ("\n");
free (aux->funtab);
}
static int
slurp_hppa_unwind_table (FILE * file,
struct hppa_unw_aux_info * aux,
Elf_Internal_Shdr * sec)
{
unsigned long size, unw_ent_size, nentries, nrelas, i;
Elf_Internal_Phdr * seg;
struct hppa_unw_table_entry * tep;
Elf_Internal_Shdr * relsec;
Elf_Internal_Rela * rela;
Elf_Internal_Rela * rp;
unsigned char * table;
unsigned char * tp;
Elf_Internal_Sym * sym;
const char * relname;
/* First, find the starting address of the segment that includes
this section. */
if (elf_header.e_phnum)
{
if (! get_program_headers (file))
return 0;
for (seg = program_headers;
seg < program_headers + elf_header.e_phnum;
++seg)
{
if (seg->p_type != PT_LOAD)
continue;
if (sec->sh_addr >= seg->p_vaddr
&& (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
{
aux->seg_base = seg->p_vaddr;
break;
}
}
}
/* Second, build the unwind table from the contents of the unwind
section. */
size = sec->sh_size;
table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
_("unwind table"));
if (!table)
return 0;
unw_ent_size = 16;
nentries = size / unw_ent_size;
size = unw_ent_size * nentries;
tep = aux->table = (struct hppa_unw_table_entry *)
xcmalloc (nentries, sizeof (aux->table[0]));
for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
{
unsigned int tmp1, tmp2;
tep->start.section = SHN_UNDEF;
tep->end.section = SHN_UNDEF;
tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
tmp1 = byte_get ((unsigned char *) tp + 8, 4);
tmp2 = byte_get ((unsigned char *) tp + 12, 4);
tep->start.offset += aux->seg_base;
tep->end.offset += aux->seg_base;
tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
tep->Millicode = (tmp1 >> 30) & 0x1;
tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
tep->Region_description = (tmp1 >> 27) & 0x3;
tep->reserved1 = (tmp1 >> 26) & 0x1;
tep->Entry_SR = (tmp1 >> 25) & 0x1;
tep->Entry_FR = (tmp1 >> 21) & 0xf;
tep->Entry_GR = (tmp1 >> 16) & 0x1f;
tep->Args_stored = (tmp1 >> 15) & 0x1;
tep->Variable_Frame = (tmp1 >> 14) & 0x1;
tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
tep->Ada_Region = (tmp1 >> 9) & 0x1;
tep->cxx_info = (tmp1 >> 8) & 0x1;
tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
tep->reserved2 = (tmp1 >> 5) & 0x1;
tep->Save_SP = (tmp1 >> 4) & 0x1;
tep->Save_RP = (tmp1 >> 3) & 0x1;
tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
tep->Cleanup_defined = tmp1 & 0x1;
tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
tep->Large_frame = (tmp2 >> 29) & 0x1;
tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
tep->reserved4 = (tmp2 >> 27) & 0x1;
tep->Total_frame_size = tmp2 & 0x7ffffff;
}
free (table);
/* Third, apply any relocations to the unwind table. */
for (relsec = section_headers;
relsec < section_headers + elf_header.e_shnum;
++relsec)
{
if (relsec->sh_type != SHT_RELA
|| relsec->sh_info >= elf_header.e_shnum
|| section_headers + relsec->sh_info != sec)
continue;
if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
& rela, & nrelas))
return 0;
for (rp = rela; rp < rela + nrelas; ++rp)
{
relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
sym = aux->symtab + get_reloc_symindex (rp->r_info);
/* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
if (! const_strneq (relname, "R_PARISC_SEGREL"))
{
warn (_("Skipping unexpected relocation type %s\n"), relname);
continue;
}
i = rp->r_offset / unw_ent_size;
switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
{
case 0:
aux->table[i].start.section = sym->st_shndx;
aux->table[i].start.offset = sym->st_value + rp->r_addend;
break;
case 1:
aux->table[i].end.section = sym->st_shndx;
aux->table[i].end.offset = sym->st_value + rp->r_addend;
break;
default:
break;
}
}
free (rela);
}
aux->table_len = nentries;
return 1;
}
static void
hppa_process_unwind (FILE * file)
{
struct hppa_unw_aux_info aux;
Elf_Internal_Shdr * unwsec = NULL;
Elf_Internal_Shdr * strsec;
Elf_Internal_Shdr * sec;
unsigned long i;
if (string_table == NULL)
return;
memset (& aux, 0, sizeof (aux));
for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
{
if (sec->sh_type == SHT_SYMTAB
&& sec->sh_link < elf_header.e_shnum)
{
aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
strsec = section_headers + sec->sh_link;
if (aux.strtab != NULL)
{
error (_("Multiple auxillary string tables encountered\n"));
free (aux.strtab);
}
aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
1, strsec->sh_size,
_("string table"));
aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
}
else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
unwsec = sec;
}
if (!unwsec)
printf (_("\nThere are no unwind sections in this file.\n"));
for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
{
if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
{
printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
printable_section_name (sec),
(unsigned long) sec->sh_offset,
(unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
slurp_hppa_unwind_table (file, &aux, sec);
if (aux.table_len > 0)
dump_hppa_unwind (&aux);
if (aux.table)
free ((char *) aux.table);
aux.table = NULL;
}
}
if (aux.symtab)
free (aux.symtab);
if (aux.strtab)
free ((char *) aux.strtab);
}
struct arm_section
{
unsigned char * data; /* The unwind data. */
Elf_Internal_Shdr * sec; /* The cached unwind section header. */
Elf_Internal_Rela * rela; /* The cached relocations for this section. */
unsigned long nrelas; /* The number of relocations. */
unsigned int rel_type; /* REL or RELA ? */
Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
};
struct arm_unw_aux_info
{
FILE * file; /* The file containing the unwind sections. */
Elf_Internal_Sym * symtab; /* The file's symbol table. */
unsigned long nsyms; /* Number of symbols. */
Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
unsigned long nfuns; /* Number of these symbols. */
char * strtab; /* The file's string table. */
unsigned long strtab_size; /* Size of string table. */
};
static const char *
arm_print_vma_and_name (struct arm_unw_aux_info *aux,
bfd_vma fn, struct absaddr addr)
{
const char *procname;
bfd_vma sym_offset;
if (addr.section == SHN_UNDEF)
addr.offset = fn;
find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
aux->strtab_size, addr, &procname,
&sym_offset);
print_vma (fn, PREFIX_HEX);
if (procname)
{
fputs (" <", stdout);
fputs (procname, stdout);
if (sym_offset)
printf ("+0x%lx", (unsigned long) sym_offset);
fputc ('>', stdout);
}
return procname;
}
static void
arm_free_section (struct arm_section *arm_sec)
{
if (arm_sec->data != NULL)
free (arm_sec->data);
if (arm_sec->rela != NULL)
free (arm_sec->rela);
}
/* 1) If SEC does not match the one cached in ARM_SEC, then free the current
cached section and install SEC instead.
2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
and return its valued in * WORDP, relocating if necessary.
3) Update the NEXT_RELA field in ARM_SEC and store the section index and
relocation's offset in ADDR.
4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
into the string table of the symbol associated with the reloc. If no
reloc was applied store -1 there.
5) Return TRUE upon success, FALSE otherwise. */
static bfd_boolean
get_unwind_section_word (struct arm_unw_aux_info * aux,
struct arm_section * arm_sec,
Elf_Internal_Shdr * sec,
bfd_vma word_offset,
unsigned int * wordp,
struct absaddr * addr,
bfd_vma * sym_name)
{
Elf_Internal_Rela *rp;
Elf_Internal_Sym *sym;
const char * relname;
unsigned int word;
bfd_boolean wrapped;
if (sec == NULL || arm_sec == NULL)
return FALSE;
addr->section = SHN_UNDEF;
addr->offset = 0;
if (sym_name != NULL)
*sym_name = (bfd_vma) -1;
/* If necessary, update the section cache. */
if (sec != arm_sec->sec)
{
Elf_Internal_Shdr *relsec;
arm_free_section (arm_sec);
arm_sec->sec = sec;
arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
sec->sh_size, _("unwind data"));
arm_sec->rela = NULL;
arm_sec->nrelas = 0;
for (relsec = section_headers;
relsec < section_headers + elf_header.e_shnum;
++relsec)
{
if (relsec->sh_info >= elf_header.e_shnum
|| section_headers + relsec->sh_info != sec
/* PR 15745: Check the section type as well. */
|| (relsec->sh_type != SHT_REL
&& relsec->sh_type != SHT_RELA))
continue;
arm_sec->rel_type = relsec->sh_type;
if (relsec->sh_type == SHT_REL)
{
if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
relsec->sh_size,
& arm_sec->rela, & arm_sec->nrelas))
return FALSE;
}
else /* relsec->sh_type == SHT_RELA */
{
if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
relsec->sh_size,
& arm_sec->rela, & arm_sec->nrelas))
return FALSE;
}
break;
}
arm_sec->next_rela = arm_sec->rela;
}
/* If there is no unwind data we can do nothing. */
if (arm_sec->data == NULL)
return FALSE;
/* If the offset is invalid then fail. */
if (word_offset > (sec->sh_size - 4)
/* PR 18879 */
|| (sec->sh_size < 5 && word_offset >= sec->sh_size)
|| ((bfd_signed_vma) word_offset) < 0)
return FALSE;
/* Get the word at the required offset. */
word = byte_get (arm_sec->data + word_offset, 4);
/* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
if (arm_sec->rela == NULL)
{
* wordp = word;
return TRUE;
}
/* Look through the relocs to find the one that applies to the provided offset. */
wrapped = FALSE;
for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
{
bfd_vma prelval, offset;
if (rp->r_offset > word_offset && !wrapped)
{
rp = arm_sec->rela;
wrapped = TRUE;
}
if (rp->r_offset > word_offset)
break;
if (rp->r_offset & 3)
{
warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
(unsigned long) rp->r_offset);
continue;
}
if (rp->r_offset < word_offset)
continue;
/* PR 17531: file: 027-161405-0.004 */
if (aux->symtab == NULL)
continue;
if (arm_sec->rel_type == SHT_REL)
{
offset = word & 0x7fffffff;
if (offset & 0x40000000)
offset |= ~ (bfd_vma) 0x7fffffff;
}
else if (arm_sec->rel_type == SHT_RELA)
offset = rp->r_addend;
else
{
error (_("Unknown section relocation type %d encountered\n"),
arm_sec->rel_type);
break;
}
/* PR 17531 file: 027-1241568-0.004. */
if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
{
error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
(unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
break;
}
sym = aux->symtab + ELF32_R_SYM (rp->r_info);
offset += sym->st_value;
prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
/* Check that we are processing the expected reloc type. */
if (elf_header.e_machine == EM_ARM)
{
relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
if (relname == NULL)
{
warn (_("Skipping unknown ARM relocation type: %d\n"),
(int) ELF32_R_TYPE (rp->r_info));
continue;
}
if (streq (relname, "R_ARM_NONE"))
continue;
if (! streq (relname, "R_ARM_PREL31"))
{
warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
continue;
}
}
else if (elf_header.e_machine == EM_TI_C6000)
{
relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
if (relname == NULL)
{
warn (_("Skipping unknown C6000 relocation type: %d\n"),
(int) ELF32_R_TYPE (rp->r_info));
continue;
}
if (streq (relname, "R_C6000_NONE"))
continue;
if (! streq (relname, "R_C6000_PREL31"))
{
warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
continue;
}
prelval >>= 1;
}
else
{
/* This function currently only supports ARM and TI unwinders. */
warn (_("Only TI and ARM unwinders are currently supported\n"));
break;
}
word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
addr->section = sym->st_shndx;
addr->offset = offset;
if (sym_name)
* sym_name = sym->st_name;
break;
}
*wordp = word;
arm_sec->next_rela = rp;
return TRUE;
}
static const char *tic6x_unwind_regnames[16] =
{
"A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
"A14", "A13", "A12", "A11", "A10",
"[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
};
static void
decode_tic6x_unwind_regmask (unsigned int mask)
{
int i;
for (i = 12; mask; mask >>= 1, i--)
{
if (mask & 1)
{
fputs (tic6x_unwind_regnames[i], stdout);
if (mask > 1)
fputs (", ", stdout);
}
}
}
#define ADVANCE \
if (remaining == 0 && more_words) \
{ \
data_offset += 4; \
if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
data_offset, & word, & addr, NULL)) \
return; \
remaining = 4; \
more_words--; \
} \
#define GET_OP(OP) \
ADVANCE; \
if (remaining) \
{ \
remaining--; \
(OP) = word >> 24; \
word <<= 8; \
} \
else \
{ \
printf (_("[Truncated opcode]\n")); \
return; \
} \
printf ("0x%02x ", OP)
static void
decode_arm_unwind_bytecode (struct arm_unw_aux_info * aux,
unsigned int word,
unsigned int remaining,
unsigned int more_words,
bfd_vma data_offset,
Elf_Internal_Shdr * data_sec,
struct arm_section * data_arm_sec)
{
struct absaddr addr;
/* Decode the unwinding instructions. */
while (1)
{
unsigned int op, op2;
ADVANCE;
if (remaining == 0)
break;
remaining--;
op = word >> 24;
word <<= 8;
printf (" 0x%02x ", op);
if ((op & 0xc0) == 0x00)
{
int offset = ((op & 0x3f) << 2) + 4;
printf (" vsp = vsp + %d", offset);
}
else if ((op & 0xc0) == 0x40)
{
int offset = ((op & 0x3f) << 2) + 4;
printf (" vsp = vsp - %d", offset);
}
else if ((op & 0xf0) == 0x80)
{
GET_OP (op2);
if (op == 0x80 && op2 == 0)
printf (_("Refuse to unwind"));
else
{
unsigned int mask = ((op & 0x0f) << 8) | op2;
int first = 1;
int i;
printf ("pop {");
for (i = 0; i < 12; i++)
if (mask & (1 << i))
{
if (first)
first = 0;
else
printf (", ");
printf ("r%d", 4 + i);
}
printf ("}");
}
}
else if ((op & 0xf0) == 0x90)
{
if (op == 0x9d || op == 0x9f)
printf (_(" [Reserved]"));
else
printf (" vsp = r%d", op & 0x0f);
}
else if ((op & 0xf0) == 0xa0)
{
int end = 4 + (op & 0x07);
int first = 1;
int i;
printf (" pop {");
for (i = 4; i <= end; i++)
{
if (first)
first = 0;
else
printf (", ");
printf ("r%d", i);
}
if (op & 0x08)
{
if (!first)
printf (", ");
printf ("r14");
}
printf ("}");
}
else if (op == 0xb0)
printf (_(" finish"));
else if (op == 0xb1)
{
GET_OP (op2);
if (op2 == 0 || (op2 & 0xf0) != 0)
printf (_("[Spare]"));
else
{
unsigned int mask = op2 & 0x0f;
int first = 1;
int i;
printf ("pop {");
for (i = 0; i < 12; i++)
if (mask & (1 << i))
{
if (first)
first = 0;
else
printf (", ");
printf ("r%d", i);
}
printf ("}");
}
}
else if (op == 0xb2)
{
unsigned char buf[9];
unsigned int i, len;
unsigned long offset;
for (i = 0; i < sizeof (buf); i++)
{
GET_OP (buf[i]);
if ((buf[i] & 0x80) == 0)
break;
}
if (i == sizeof (buf))
printf (_("corrupt change to vsp"));
else
{
offset = read_uleb128 (buf, &len, buf + i + 1);
assert (len == i + 1);
offset = offset * 4 + 0x204;
printf ("vsp = vsp + %ld", offset);
}
}
else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
{
unsigned int first, last;
GET_OP (op2);
first = op2 >> 4;
last = op2 & 0x0f;
if (op == 0xc8)
first = first + 16;
printf ("pop {D%d", first);
if (last)
printf ("-D%d", first + last);
printf ("}");
}
else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
{
unsigned int count = op & 0x07;
printf ("pop {D8");
if (count)
printf ("-D%d", 8 + count);
printf ("}");
}
else if (op >= 0xc0 && op <= 0xc5)
{
unsigned int count = op & 0x07;
printf (" pop {wR10");
if (count)
printf ("-wR%d", 10 + count);
printf ("}");
}
else if (op == 0xc6)
{
unsigned int first, last;
GET_OP (op2);
first = op2 >> 4;
last = op2 & 0x0f;
printf ("pop {wR%d", first);
if (last)
printf ("-wR%d", first + last);
printf ("}");
}
else if (op == 0xc7)
{
GET_OP (op2);
if (op2 == 0 || (op2 & 0xf0) != 0)
printf (_("[Spare]"));
else
{
unsigned int mask = op2 & 0x0f;
int first = 1;
int i;
printf ("pop {");
for (i = 0; i < 4; i++)
if (mask & (1 << i))
{
if (first)
first = 0;
else
printf (", ");
printf ("wCGR%d", i);
}
printf ("}");
}
}
else
printf (_(" [unsupported opcode]"));
printf ("\n");
}
}
static void
decode_tic6x_unwind_bytecode (struct arm_unw_aux_info * aux,
unsigned int word,
unsigned int remaining,
unsigned int more_words,
bfd_vma data_offset,
Elf_Internal_Shdr * data_sec,
struct arm_section * data_arm_sec)
{
struct absaddr addr;
/* Decode the unwinding instructions. */
while (1)
{
unsigned int op, op2;
ADVANCE;
if (remaining == 0)
break;
remaining--;
op = word >> 24;
word <<= 8;
printf (" 0x%02x ", op);
if ((op & 0xc0) == 0x00)
{
int offset = ((op & 0x3f) << 3) + 8;
printf (" sp = sp + %d", offset);
}
else if ((op & 0xc0) == 0x80)
{
GET_OP (op2);
if (op == 0x80 && op2 == 0)
printf (_("Refuse to unwind"));
else
{
unsigned int mask = ((op & 0x1f) << 8) | op2;
if (op & 0x20)
printf ("pop compact {");
else
printf ("pop {");
decode_tic6x_unwind_regmask (mask);
printf("}");
}
}
else if ((op & 0xf0) == 0xc0)
{
unsigned int reg;
unsigned int nregs;
unsigned int i;
const char *name;
struct
{
unsigned int offset;
unsigned int reg;
} regpos[16];
/* Scan entire instruction first so that GET_OP output is not
interleaved with disassembly. */
nregs = 0;
for (i = 0; nregs < (op & 0xf); i++)
{
GET_OP (op2);
reg = op2 >> 4;
if (reg != 0xf)
{
regpos[nregs].offset = i * 2;
regpos[nregs].reg = reg;
nregs++;
}
reg = op2 & 0xf;
if (reg != 0xf)
{
regpos[nregs].offset = i * 2 + 1;
regpos[nregs].reg = reg;
nregs++;
}
}
printf (_("pop frame {"));
reg = nregs - 1;
for (i = i * 2; i > 0; i--)
{
if (regpos[reg].offset == i - 1)
{
name = tic6x_unwind_regnames[regpos[reg].reg];
if (reg > 0)
reg--;
}
else
name = _("[pad]");
fputs (name, stdout);
if (i > 1)
printf (", ");
}
printf ("}");
}
else if (op == 0xd0)
printf (" MOV FP, SP");
else if (op == 0xd1)
printf (" __c6xabi_pop_rts");
else if (op == 0xd2)
{
unsigned char buf[9];
unsigned int i, len;
unsigned long offset;
for (i = 0; i < sizeof (buf); i++)
{
GET_OP (buf[i]);
if ((buf[i] & 0x80) == 0)
break;
}
/* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
if (i == sizeof (buf))
{
printf ("<corrupt sp adjust>\n");
warn (_("Corrupt stack pointer adjustment detected\n"));
return;
}
offset = read_uleb128 (buf, &len, buf + i + 1);
assert (len == i + 1);
offset = offset * 8 + 0x408;
printf (_("sp = sp + %ld"), offset);
}
else if ((op & 0xf0) == 0xe0)
{
if ((op & 0x0f) == 7)
printf (" RETURN");
else
printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
}
else
{
printf (_(" [unsupported opcode]"));
}
putchar ('\n');
}
}
static bfd_vma
arm_expand_prel31 (bfd_vma word, bfd_vma where)
{
bfd_vma offset;
offset = word & 0x7fffffff;
if (offset & 0x40000000)
offset |= ~ (bfd_vma) 0x7fffffff;
if (elf_header.e_machine == EM_TI_C6000)
offset <<= 1;
return offset + where;
}
static void
decode_arm_unwind (struct arm_unw_aux_info * aux,
unsigned int word,
unsigned int remaining,
bfd_vma data_offset,
Elf_Internal_Shdr * data_sec,
struct arm_section * data_arm_sec)
{
int per_index;
unsigned int more_words = 0;
struct absaddr addr;
bfd_vma sym_name = (bfd_vma) -1;
if (remaining == 0)
{
/* Fetch the first word.
Note - when decoding an object file the address extracted
here will always be 0. So we also pass in the sym_name
parameter so that we can find the symbol associated with
the personality routine. */
if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
& word, & addr, & sym_name))
return;
remaining = 4;
}
if ((word & 0x80000000) == 0)
{
/* Expand prel31 for personality routine. */
bfd_vma fn;
const char *procname;
fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
printf (_(" Personality routine: "));
if (fn == 0
&& addr.section == SHN_UNDEF && addr.offset == 0
&& sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
{
procname = aux->strtab + sym_name;
print_vma (fn, PREFIX_HEX);
if (procname)
{
fputs (" <", stdout);
fputs (procname, stdout);
fputc ('>', stdout);
}
}
else
procname = arm_print_vma_and_name (aux, fn, addr);
fputc ('\n', stdout);
/* The GCC personality routines use the standard compact
encoding, starting with one byte giving the number of
words. */
if (procname != NULL
&& (const_strneq (procname, "__gcc_personality_v0")
|| const_strneq (procname, "__gxx_personality_v0")
|| const_strneq (procname, "__gcj_personality_v0")
|| const_strneq (procname, "__gnu_objc_personality_v0")))
{
remaining = 0;
more_words = 1;
ADVANCE;
if (!remaining)
{
printf (_(" [Truncated data]\n"));
return;
}
more_words = word >> 24;
word <<= 8;
remaining--;
per_index = -1;
}
else
return;
}
else
{
/* ARM EHABI Section 6.3:
An exception-handling table entry for the compact model looks like:
31 30-28 27-24 23-0
-- ----- ----- ----
1 0 index Data for personalityRoutine[index] */
if (elf_header.e_machine == EM_ARM
&& (word & 0x70000000))
warn (_("Corrupt ARM compact model table entry: %x \n"), word);
per_index = (word >> 24) & 0x7f;
printf (_(" Compact model index: %d\n"), per_index);
if (per_index == 0)
{
more_words = 0;
word <<= 8;
remaining--;
}
else if (per_index < 3)
{
more_words = (word >> 16) & 0xff;
word <<= 16;
remaining -= 2;
}
}
switch (elf_header.e_machine)
{
case EM_ARM:
if (per_index < 3)
{
decode_arm_unwind_bytecode (aux, word, remaining, more_words,
data_offset, data_sec, data_arm_sec);
}
else
{
warn (_("Unknown ARM compact model index encountered\n"));
printf (_(" [reserved]\n"));
}
break;
case EM_TI_C6000:
if (per_index < 3)
{
decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
data_offset, data_sec, data_arm_sec);
}
else if (per_index < 5)
{
if (((word >> 17) & 0x7f) == 0x7f)
printf (_(" Restore stack from frame pointer\n"));
else
printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
printf (_(" Registers restored: "));
if (per_index == 4)
printf (" (compact) ");
decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
putchar ('\n');
printf (_(" Return register: %s\n"),
tic6x_unwind_regnames[word & 0xf]);
}
else
printf (_(" [reserved (%d)]\n"), per_index);
break;
default:
error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
elf_header.e_machine);
}
/* Decode the descriptors. Not implemented. */
}
static void
dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
{
struct arm_section exidx_arm_sec, extab_arm_sec;
unsigned int i, exidx_len;
unsigned long j, nfuns;
memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
exidx_len = exidx_sec->sh_size / 8;
aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
for (nfuns = 0, j = 0; j < aux->nsyms; j++)
if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
aux->funtab[nfuns++] = aux->symtab[j];
aux->nfuns = nfuns;
qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
for (i = 0; i < exidx_len; i++)
{
unsigned int exidx_fn, exidx_entry;
struct absaddr fn_addr, entry_addr;
bfd_vma fn;
fputc ('\n', stdout);
if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8 * i, & exidx_fn, & fn_addr, NULL)
|| ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8 * i + 4, & exidx_entry, & entry_addr, NULL))
{
free (aux->funtab);
arm_free_section (& exidx_arm_sec);
arm_free_section (& extab_arm_sec);
return;
}
/* ARM EHABI, Section 5:
An index table entry consists of 2 words.
The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
if (exidx_fn & 0x80000000)
warn (_("corrupt index table entry: %x\n"), exidx_fn);
fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
arm_print_vma_and_name (aux, fn, fn_addr);
fputs (": ", stdout);
if (exidx_entry == 1)
{
print_vma (exidx_entry, PREFIX_HEX);
fputs (" [cantunwind]\n", stdout);
}
else if (exidx_entry & 0x80000000)
{
print_vma (exidx_entry, PREFIX_HEX);
fputc ('\n', stdout);
decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
}
else
{
bfd_vma table, table_offset = 0;
Elf_Internal_Shdr *table_sec;
fputs ("@", stdout);
table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
print_vma (table, PREFIX_HEX);
printf ("\n");
/* Locate the matching .ARM.extab. */
if (entry_addr.section != SHN_UNDEF
&& entry_addr.section < elf_header.e_shnum)
{
table_sec = section_headers + entry_addr.section;
table_offset = entry_addr.offset;
/* PR 18879 */
if (table_offset > table_sec->sh_size
|| ((bfd_signed_vma) table_offset) < 0)
{
warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
(unsigned long) table_offset,
printable_section_name (table_sec));
continue;
}
}
else
{
table_sec = find_section_by_address (table);
if (table_sec != NULL)
table_offset = table - table_sec->sh_addr;
}
if (table_sec == NULL)
{
warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
(unsigned long) table);
continue;
}
decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
&extab_arm_sec);
}
}
printf ("\n");
free (aux->funtab);
arm_free_section (&exidx_arm_sec);
arm_free_section (&extab_arm_sec);
}
/* Used for both ARM and C6X unwinding tables. */
static void
arm_process_unwind (FILE *file)
{
struct arm_unw_aux_info aux;
Elf_Internal_Shdr *unwsec = NULL;
Elf_Internal_Shdr *strsec;
Elf_Internal_Shdr *sec;
unsigned long i;
unsigned int sec_type;
switch (elf_header.e_machine)
{
case EM_ARM:
sec_type = SHT_ARM_EXIDX;
break;
case EM_TI_C6000:
sec_type = SHT_C6000_UNWIND;
break;
default:
error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
elf_header.e_machine);
return;
}
if (string_table == NULL)
return;
memset (& aux, 0, sizeof (aux));
aux.file = file;
for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
{
if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
{
aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
strsec = section_headers + sec->sh_link;
/* PR binutils/17531 file: 011-12666-0.004. */
if (aux.strtab != NULL)
{
error (_("Multiple string tables found in file.\n"));
free (aux.strtab);
}
aux.strtab = get_data (NULL, file, strsec->sh_offset,
1, strsec->sh_size, _("string table"));
aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
}
else if (sec->sh_type == sec_type)
unwsec = sec;
}
if (unwsec == NULL)
printf (_("\nThere are no unwind sections in this file.\n"));
else
for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
{
if (sec->sh_type == sec_type)
{
printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
printable_section_name (sec),
(unsigned long) sec->sh_offset,
(unsigned long) (sec->sh_size / (2 * eh_addr_size)));
dump_arm_unwind (&aux, sec);
}
}
if (aux.symtab)
free (aux.symtab);
if (aux.strtab)
free ((char *) aux.strtab);
}
static void
process_unwind (FILE * file)
{
struct unwind_handler
{
int machtype;
void (* handler)(FILE *);
} handlers[] =
{
{ EM_ARM, arm_process_unwind },
{ EM_IA_64, ia64_process_unwind },
{ EM_PARISC, hppa_process_unwind },
{ EM_TI_C6000, arm_process_unwind },
{ 0, 0 }
};
int i;
if (!do_unwind)
return;
for (i = 0; handlers[i].handler != NULL; i++)
if (elf_header.e_machine == handlers[i].machtype)
{
handlers[i].handler (file);
return;
}
printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
get_machine_name (elf_header.e_machine));
}
static void
dynamic_section_mips_val (Elf_Internal_Dyn * entry)
{
switch (entry->d_tag)
{
case DT_MIPS_FLAGS:
if (entry->d_un.d_val == 0)
printf (_("NONE"));
else
{
static const char * opts[] =
{
"QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
"NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
"GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
"REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
"RLD_ORDER_SAFE"
};
unsigned int cnt;
int first = 1;
for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
if (entry->d_un.d_val & (1 << cnt))
{
printf ("%s%s", first ? "" : " ", opts[cnt]);
first = 0;
}
}
break;
case DT_MIPS_IVERSION:
if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
else
{
char buf[40];
sprintf_vma (buf, entry->d_un.d_ptr);
/* Note: coded this way so that there is a single string for translation. */
printf (_("<corrupt: %s>"), buf);
}
break;
case DT_MIPS_TIME_STAMP:
{
char timebuf[128];
struct tm * tmp;
time_t atime = entry->d_un.d_val;
tmp = gmtime (&atime);
/* PR 17531: file: 6accc532. */
if (tmp == NULL)
snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
else
snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
printf (_("Time Stamp: %s"), timebuf);
}
break;
case DT_MIPS_RLD_VERSION:
case DT_MIPS_LOCAL_GOTNO:
case DT_MIPS_CONFLICTNO:
case DT_MIPS_LIBLISTNO:
case DT_MIPS_SYMTABNO:
case DT_MIPS_UNREFEXTNO:
case DT_MIPS_HIPAGENO:
case DT_MIPS_DELTA_CLASS_NO:
case DT_MIPS_DELTA_INSTANCE_NO:
case DT_MIPS_DELTA_RELOC_NO:
case DT_MIPS_DELTA_SYM_NO:
case DT_MIPS_DELTA_CLASSSYM_NO:
case DT_MIPS_COMPACT_SIZE:
print_vma (entry->d_un.d_val, DEC);
break;
default:
print_vma (entry->d_un.d_ptr, PREFIX_HEX);
}
putchar ('\n');
}
static void
dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
{
switch (entry->d_tag)
{
case DT_HP_DLD_FLAGS:
{
static struct
{
long int bit;
const char * str;
}
flags[] =
{
{ DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
{ DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
{ DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
{ DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
{ DT_HP_BIND_NOW, "HP_BIND_NOW" },
{ DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
{ DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
{ DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
{ DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
{ DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
{ DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
{ DT_HP_GST, "HP_GST" },
{ DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
{ DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
{ DT_HP_NODELETE, "HP_NODELETE" },
{ DT_HP_GROUP, "HP_GROUP" },
{ DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
};
int first = 1;
size_t cnt;
bfd_vma val = entry->d_un.d_val;
for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
if (val & flags[cnt].bit)
{
if (! first)
putchar (' ');
fputs (flags[cnt].str, stdout);
first = 0;
val ^= flags[cnt].bit;
}
if (val != 0 || first)
{
if (! first)
putchar (' ');
print_vma (val, HEX);
}
}
break;
default:
print_vma (entry->d_un.d_ptr, PREFIX_HEX);
break;
}
putchar ('\n');
}
#ifdef BFD64
/* VMS vs Unix time offset and factor. */
#define VMS_EPOCH_OFFSET 35067168000000000LL
#define VMS_GRANULARITY_FACTOR 10000000
/* Display a VMS time in a human readable format. */
static void
print_vms_time (bfd_int64_t vmstime)
{
struct tm *tm;
time_t unxtime;
unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
tm = gmtime (&unxtime);
printf ("%04u-%02u-%02uT%02u:%02u:%02u",
tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec);
}
#endif /* BFD64 */
static void
dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
{
switch (entry->d_tag)
{
case DT_IA_64_PLT_RESERVE:
/* First 3 slots reserved. */
print_vma (entry->d_un.d_ptr, PREFIX_HEX);
printf (" -- ");
print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
break;
case DT_IA_64_VMS_LINKTIME:
#ifdef BFD64
print_vms_time (entry->d_un.d_val);
#endif
break;
case DT_IA_64_VMS_LNKFLAGS:
print_vma (entry->d_un.d_ptr, PREFIX_HEX);
if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
printf (" CALL_DEBUG");
if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
printf (" NOP0BUFS");
if (entry->d_un.d_val & VMS_LF_P0IMAGE)
printf (" P0IMAGE");
if (entry->d_un.d_val & VMS_LF_MKTHREADS)
printf (" MKTHREADS");
if (entry->d_un.d_val & VMS_LF_UPCALLS)
printf (" UPCALLS");
if (entry->d_un.d_val & VMS_LF_IMGSTA)
printf (" IMGSTA");
if (entry->d_un.d_val & VMS_LF_INITIALIZE)
printf (" INITIALIZE");
if (entry->d_un.d_val & VMS_LF_MAIN)
printf (" MAIN");
if (entry->d_un.d_val & VMS_LF_EXE_INIT)
printf (" EXE_INIT");
if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
printf (" TBK_IN_IMG");
if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
printf (" DBG_IN_IMG");
if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
printf (" TBK_IN_DSF");
if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
printf (" DBG_IN_DSF");
if (entry->d_un.d_val & VMS_LF_SIGNATURES)
printf (" SIGNATURES");
if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
printf (" REL_SEG_OFF");
break;
default:
print_vma (entry->d_un.d_ptr, PREFIX_HEX);
break;
}
putchar ('\n');
}
static int
get_32bit_dynamic_section (FILE * file)
{
Elf32_External_Dyn * edyn;
Elf32_External_Dyn * ext;
Elf_Internal_Dyn * entry;
edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
dynamic_size, _("dynamic section"));
if (!edyn)
return 0;
/* SGI's ELF has more than one section in the DYNAMIC segment, and we
might not have the luxury of section headers. Look for the DT_NULL
terminator to determine the number of entries. */
for (ext = edyn, dynamic_nent = 0;
(char *) (ext + 1) <= (char *) edyn + dynamic_size;
ext++)
{
dynamic_nent++;
if (BYTE_GET (ext->d_tag) == DT_NULL)
break;
}
dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
sizeof (* entry));
if (dynamic_section == NULL)
{
error (_("Out of memory allocating space for %lu dynamic entries\n"),
(unsigned long) dynamic_nent);
free (edyn);
return 0;
}
for (ext = edyn, entry = dynamic_section;
entry < dynamic_section + dynamic_nent;
ext++, entry++)
{
entry->d_tag = BYTE_GET (ext->d_tag);
entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
}
free (edyn);
return 1;
}
static int
get_64bit_dynamic_section (FILE * file)
{
Elf64_External_Dyn * edyn;
Elf64_External_Dyn * ext;
Elf_Internal_Dyn * entry;
/* Read in the data. */
edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
dynamic_size, _("dynamic section"));
if (!edyn)
return 0;
/* SGI's ELF has more than one section in the DYNAMIC segment, and we
might not have the luxury of section headers. Look for the DT_NULL
terminator to determine the number of entries. */
for (ext = edyn, dynamic_nent = 0;
/* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
(char *) (ext + 1) <= (char *) edyn + dynamic_size;
ext++)
{
dynamic_nent++;
if (BYTE_GET (ext->d_tag) == DT_NULL)
break;
}
dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
sizeof (* entry));
if (dynamic_section == NULL)
{
error (_("Out of memory allocating space for %lu dynamic entries\n"),
(unsigned long) dynamic_nent);
free (edyn);
return 0;
}
/* Convert from external to internal formats. */
for (ext = edyn, entry = dynamic_section;
entry < dynamic_section + dynamic_nent;
ext++, entry++)
{
entry->d_tag = BYTE_GET (ext->d_tag);
entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
}
free (edyn);
return 1;
}
static void
print_dynamic_flags (bfd_vma flags)
{
int first = 1;
while (flags)
{
bfd_vma flag;
flag = flags & - flags;
flags &= ~ flag;
if (first)
first = 0;
else
putc (' ', stdout);
switch (flag)
{
case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
default: fputs (_("unknown"), stdout); break;
}
}
puts ("");
}
/* Parse and display the contents of the dynamic section. */
static int
process_dynamic_section (FILE * file)
{
Elf_Internal_Dyn * entry;
if (dynamic_size == 0)
{
if (do_dynamic)
printf (_("\nThere is no dynamic section in this file.\n"));
return 1;
}
if (is_32bit_elf)
{
if (! get_32bit_dynamic_section (file))
return 0;
}
else if (! get_64bit_dynamic_section (file))
return 0;
/* Find the appropriate symbol table. */
if (dynamic_symbols == NULL)
{
for (entry = dynamic_section;
entry < dynamic_section + dynamic_nent;
++entry)
{
Elf_Internal_Shdr section;
if (entry->d_tag != DT_SYMTAB)
continue;
dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
/* Since we do not know how big the symbol table is,
we default to reading in the entire file (!) and
processing that. This is overkill, I know, but it
should work. */
section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
if (archive_file_offset != 0)
section.sh_size = archive_file_size - section.sh_offset;
else
{
if (fseek (file, 0, SEEK_END))
error (_("Unable to seek to end of file!\n"));
section.sh_size = ftell (file) - section.sh_offset;
}
if (is_32bit_elf)
section.sh_entsize = sizeof (Elf32_External_Sym);
else
section.sh_entsize = sizeof (Elf64_External_Sym);
section.sh_name = string_table_length;
dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
if (num_dynamic_syms < 1)
{
error (_("Unable to determine the number of symbols to load\n"));
continue;
}
}
}
/* Similarly find a string table. */
if (dynamic_strings == NULL)
{
for (entry = dynamic_section;
entry < dynamic_section + dynamic_nent;
++entry)
{
unsigned long offset;
long str_tab_len;
if (entry->d_tag != DT_STRTAB)
continue;
dynamic_info[DT_STRTAB] = entry->d_un.d_val;
/* Since we do not know how big the string table is,
we default to reading in the entire file (!) and
processing that. This is overkill, I know, but it
should work. */
offset = offset_from_vma (file, entry->d_un.d_val, 0);
if (archive_file_offset != 0)
str_tab_len = archive_file_size - offset;
else
{
if (fseek (file, 0, SEEK_END))
error (_("Unable to seek to end of file\n"));
str_tab_len = ftell (file) - offset;
}
if (str_tab_len < 1)
{
error
(_("Unable to determine the length of the dynamic string table\n"));
continue;
}
dynamic_strings = (char *) get_data (NULL, file, offset, 1,
str_tab_len,
_("dynamic string table"));
dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
break;
}
}
/* And find the syminfo section if available. */
if (dynamic_syminfo == NULL)
{
unsigned long syminsz = 0;
for (entry = dynamic_section;
entry < dynamic_section + dynamic_nent;
++entry)
{
if (entry->d_tag == DT_SYMINENT)
{
/* Note: these braces are necessary to avoid a syntax
error from the SunOS4 C compiler. */
/* PR binutils/17531: A corrupt file can trigger this test.
So do not use an assert, instead generate an error message. */
if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
error (_("Bad value (%d) for SYMINENT entry\n"),
(int) entry->d_un.d_val);
}
else if (entry->d_tag == DT_SYMINSZ)
syminsz = entry->d_un.d_val;
else if (entry->d_tag == DT_SYMINFO)
dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
syminsz);
}
if (dynamic_syminfo_offset != 0 && syminsz != 0)
{
Elf_External_Syminfo * extsyminfo;
Elf_External_Syminfo * extsym;
Elf_Internal_Syminfo * syminfo;
/* There is a syminfo section. Read the data. */
extsyminfo = (Elf_External_Syminfo *)
get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
_("symbol information"));
if (!extsyminfo)
return 0;
dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
if (dynamic_syminfo == NULL)
{
error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
(unsigned long) syminsz);
return 0;
}
dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
for (syminfo = dynamic_syminfo, extsym = extsyminfo;
syminfo < dynamic_syminfo + dynamic_syminfo_nent;
++syminfo, ++extsym)
{
syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
syminfo->si_flags = BYTE_GET (extsym->si_flags);
}
free (extsyminfo);
}
}
if (do_dynamic && dynamic_addr)
printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
dynamic_addr, (unsigned long) dynamic_nent);
if (do_dynamic)
printf (_(" Tag Type Name/Value\n"));
for (entry = dynamic_section;
entry < dynamic_section + dynamic_nent;
entry++)
{
if (do_dynamic)
{
const char * dtype;
putchar (' ');
print_vma (entry->d_tag, FULL_HEX);
dtype = get_dynamic_type (entry->d_tag);
printf (" (%s)%*s", dtype,
((is_32bit_elf ? 27 : 19)
- (int) strlen (dtype)),
" ");
}
switch (entry->d_tag)
{
case DT_FLAGS:
if (do_dynamic)
print_dynamic_flags (entry->d_un.d_val);
break;
case DT_AUXILIARY:
case DT_FILTER:
case DT_CONFIG:
case DT_DEPAUDIT:
case DT_AUDIT:
if (do_dynamic)
{
switch (entry->d_tag)
{
case DT_AUXILIARY:
printf (_("Auxiliary library"));
break;
case DT_FILTER:
printf (_("Filter library"));
break;
case DT_CONFIG:
printf (_("Configuration file"));
break;
case DT_DEPAUDIT:
printf (_("Dependency audit library"));
break;
case DT_AUDIT:
printf (_("Audit library"));
break;
}
if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
else
{
printf (": ");
print_vma (entry->d_un.d_val, PREFIX_HEX);
putchar ('\n');
}
}
break;
case DT_FEATURE:
if (do_dynamic)
{
printf (_("Flags:"));
if (entry->d_un.d_val == 0)
printf (_(" None\n"));
else
{
unsigned long int val = entry->d_un.d_val;
if (val & DTF_1_PARINIT)
{
printf (" PARINIT");
val ^= DTF_1_PARINIT;
}
if (val & DTF_1_CONFEXP)
{
printf (" CONFEXP");
val ^= DTF_1_CONFEXP;
}
if (val != 0)
printf (" %lx", val);
puts ("");
}
}
break;
case DT_POSFLAG_1:
if (do_dynamic)
{
printf (_("Flags:"));
if (entry->d_un.d_val == 0)
printf (_(" None\n"));
else
{
unsigned long int val = entry->d_un.d_val;
if (val & DF_P1_LAZYLOAD)
{
printf (" LAZYLOAD");
val ^= DF_P1_LAZYLOAD;
}
if (val & DF_P1_GROUPPERM)
{
printf (" GROUPPERM");
val ^= DF_P1_GROUPPERM;
}
if (val != 0)
printf (" %lx", val);
puts ("");
}
}
break;
case DT_FLAGS_1:
if (do_dynamic)
{
printf (_("Flags:"));
if (entry->d_un.d_val == 0)
printf (_(" None\n"));
else
{
unsigned long int val = entry->d_un.d_val;
if (val & DF_1_NOW)
{
printf (" NOW");
val ^= DF_1_NOW;
}
if (val & DF_1_GLOBAL)
{
printf (" GLOBAL");
val ^= DF_1_GLOBAL;
}
if (val & DF_1_GROUP)
{
printf (" GROUP");
val ^= DF_1_GROUP;
}
if (val & DF_1_NODELETE)
{
printf (" NODELETE");
val ^= DF_1_NODELETE;
}
if (val & DF_1_LOADFLTR)
{
printf (" LOADFLTR");
val ^= DF_1_LOADFLTR;
}
if (val & DF_1_INITFIRST)
{
printf (" INITFIRST");
val ^= DF_1_INITFIRST;
}
if (val & DF_1_NOOPEN)
{
printf (" NOOPEN");
val ^= DF_1_NOOPEN;
}
if (val & DF_1_ORIGIN)
{
printf (" ORIGIN");
val ^= DF_1_ORIGIN;
}
if (val & DF_1_DIRECT)
{
printf (" DIRECT");
val ^= DF_1_DIRECT;
}
if (val & DF_1_TRANS)
{
printf (" TRANS");
val ^= DF_1_TRANS;
}
if (val & DF_1_INTERPOSE)
{
printf (" INTERPOSE");
val ^= DF_1_INTERPOSE;
}
if (val & DF_1_NODEFLIB)
{
printf (" NODEFLIB");
val ^= DF_1_NODEFLIB;
}
if (val & DF_1_NODUMP)
{
printf (" NODUMP");
val ^= DF_1_NODUMP;
}
if (val & DF_1_CONFALT)
{
printf (" CONFALT");
val ^= DF_1_CONFALT;
}
if (val & DF_1_ENDFILTEE)
{
printf (" ENDFILTEE");
val ^= DF_1_ENDFILTEE;
}
if (val & DF_1_DISPRELDNE)
{
printf (" DISPRELDNE");
val ^= DF_1_DISPRELDNE;
}
if (val & DF_1_DISPRELPND)
{
printf (" DISPRELPND");
val ^= DF_1_DISPRELPND;
}
if (val & DF_1_NODIRECT)
{
printf (" NODIRECT");
val ^= DF_1_NODIRECT;
}
if (val & DF_1_IGNMULDEF)
{
printf (" IGNMULDEF");
val ^= DF_1_IGNMULDEF;
}
if (val & DF_1_NOKSYMS)
{
printf (" NOKSYMS");
val ^= DF_1_NOKSYMS;
}
if (val & DF_1_NOHDR)
{
printf (" NOHDR");
val ^= DF_1_NOHDR;
}
if (val & DF_1_EDITED)
{
printf (" EDITED");
val ^= DF_1_EDITED;
}
if (val & DF_1_NORELOC)
{
printf (" NORELOC");
val ^= DF_1_NORELOC;
}
if (val & DF_1_SYMINTPOSE)
{
printf (" SYMINTPOSE");
val ^= DF_1_SYMINTPOSE;
}
if (val & DF_1_GLOBAUDIT)
{
printf (" GLOBAUDIT");
val ^= DF_1_GLOBAUDIT;
}
if (val & DF_1_SINGLETON)
{
printf (" SINGLETON");
val ^= DF_1_SINGLETON;
}
if (val & DF_1_STUB)
{
printf (" STUB");
val ^= DF_1_STUB;
}
if (val & DF_1_PIE)
{
printf (" PIE");
val ^= DF_1_PIE;
}
if (val != 0)
printf (" %lx", val);
puts ("");
}
}
break;
case DT_PLTREL:
dynamic_info[entry->d_tag] = entry->d_un.d_val;
if (do_dynamic)
puts (get_dynamic_type (entry->d_un.d_val));
break;
case DT_NULL :
case DT_NEEDED :
case DT_PLTGOT :
case DT_HASH :
case DT_STRTAB :
case DT_SYMTAB :
case DT_RELA :
case DT_INIT :
case DT_FINI :
case DT_SONAME :
case DT_RPATH :
case DT_SYMBOLIC:
case DT_REL :
case DT_DEBUG :
case DT_TEXTREL :
case DT_JMPREL :
case DT_RUNPATH :
dynamic_info[entry->d_tag] = entry->d_un.d_val;
if (do_dynamic)
{
char * name;
if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
name = GET_DYNAMIC_NAME (entry->d_un.d_val);
else
name = NULL;
if (name)
{
switch (entry->d_tag)
{
case DT_NEEDED:
printf (_("Shared library: [%s]"), name);
if (streq (name, program_interpreter))
printf (_(" program interpreter"));
break;
case DT_SONAME:
printf (_("Library soname: [%s]"), name);
break;
case DT_RPATH:
printf (_("Library rpath: [%s]"), name);
break;
case DT_RUNPATH:
printf (_("Library runpath: [%s]"), name);
break;
default:
print_vma (entry->d_un.d_val, PREFIX_HEX);
break;
}
}
else
print_vma (entry->d_un.d_val, PREFIX_HEX);
putchar ('\n');
}
break;
case DT_PLTRELSZ:
case DT_RELASZ :
case DT_STRSZ :
case DT_RELSZ :
case DT_RELAENT :
case DT_SYMENT :
case DT_RELENT :
dynamic_info[entry->d_tag] = entry->d_un.d_val;
case DT_PLTPADSZ:
case DT_MOVEENT :
case DT_MOVESZ :
case DT_INIT_ARRAYSZ:
case DT_FINI_ARRAYSZ:
case DT_GNU_CONFLICTSZ:
case DT_GNU_LIBLISTSZ:
if (do_dynamic)
{
print_vma (entry->d_un.d_val, UNSIGNED);
printf (_(" (bytes)\n"));
}
break;
case DT_VERDEFNUM:
case DT_VERNEEDNUM:
case DT_RELACOUNT:
case DT_RELCOUNT:
if (do_dynamic)
{
print_vma (entry->d_un.d_val, UNSIGNED);
putchar ('\n');
}
break;
case DT_SYMINSZ:
case DT_SYMINENT:
case DT_SYMINFO:
case DT_USED:
case DT_INIT_ARRAY:
case DT_FINI_ARRAY:
if (do_dynamic)
{
if (entry->d_tag == DT_USED
&& VALID_DYNAMIC_NAME (entry->d_un.d_val))
{
char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
if (*name)
{
printf (_("Not needed object: [%s]\n"), name);
break;
}
}
print_vma (entry->d_un.d_val, PREFIX_HEX);
putchar ('\n');
}
break;
case DT_BIND_NOW:
/* The value of this entry is ignored. */
if (do_dynamic)
putchar ('\n');
break;
case DT_GNU_PRELINKED:
if (do_dynamic)
{
struct tm * tmp;
time_t atime = entry->d_un.d_val;
tmp = gmtime (&atime);
/* PR 17533 file: 041-1244816-0.004. */
if (tmp == NULL)
printf (_("<corrupt time val: %lx"),
(unsigned long) atime);
else
printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
}
break;
case DT_GNU_HASH:
dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
if (do_dynamic)
{
print_vma (entry->d_un.d_val, PREFIX_HEX);
putchar ('\n');
}
break;
default:
if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
entry->d_un.d_val;
if (do_dynamic)
{
switch (elf_header.e_machine)
{
case EM_MIPS:
case EM_MIPS_RS3_LE:
dynamic_section_mips_val (entry);
break;
case EM_PARISC:
dynamic_section_parisc_val (entry);
break;
case EM_IA_64:
dynamic_section_ia64_val (entry);
break;
default:
print_vma (entry->d_un.d_val, PREFIX_HEX);
putchar ('\n');
}
}
break;
}
}
return 1;
}
static char *
get_ver_flags (unsigned int flags)
{
static char buff[32];
buff[0] = 0;
if (flags == 0)
return _("none");
if (flags & VER_FLG_BASE)
strcat (buff, "BASE ");
if (flags & VER_FLG_WEAK)
{
if (flags & VER_FLG_BASE)
strcat (buff, "| ");
strcat (buff, "WEAK ");
}
if (flags & VER_FLG_INFO)
{
if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
strcat (buff, "| ");
strcat (buff, "INFO ");
}
if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
strcat (buff, _("| <unknown>"));
return buff;
}
/* Display the contents of the version sections. */
static int
process_version_sections (FILE * file)
{
Elf_Internal_Shdr * section;
unsigned i;
int found = 0;
if (! do_version)
return 1;
for (i = 0, section = section_headers;
i < elf_header.e_shnum;
i++, section++)
{
switch (section->sh_type)
{
case SHT_GNU_verdef:
{
Elf_External_Verdef * edefs;
unsigned int idx;
unsigned int cnt;
char * endbuf;
found = 1;
printf (_("\nVersion definition section '%s' contains %u entries:\n"),
printable_section_name (section),
section->sh_info);
printf (_(" Addr: 0x"));
printf_vma (section->sh_addr);
printf (_(" Offset: %#08lx Link: %u (%s)"),
(unsigned long) section->sh_offset, section->sh_link,
printable_section_name_from_index (section->sh_link));
edefs = (Elf_External_Verdef *)
get_data (NULL, file, section->sh_offset, 1,section->sh_size,
_("version definition section"));
if (!edefs)
break;
endbuf = (char *) edefs + section->sh_size;
for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
{
char * vstart;
Elf_External_Verdef * edef;
Elf_Internal_Verdef ent;
Elf_External_Verdaux * eaux;
Elf_Internal_Verdaux aux;
int j;
int isum;
/* Check for very large indicies. */
if (idx > (size_t) (endbuf - (char *) edefs))
break;
vstart = ((char *) edefs) + idx;
if (vstart + sizeof (*edef) > endbuf)
break;
edef = (Elf_External_Verdef *) vstart;
ent.vd_version = BYTE_GET (edef->vd_version);
ent.vd_flags = BYTE_GET (edef->vd_flags);
ent.vd_ndx = BYTE_GET (edef->vd_ndx);
ent.vd_cnt = BYTE_GET (edef->vd_cnt);
ent.vd_hash = BYTE_GET (edef->vd_hash);
ent.vd_aux = BYTE_GET (edef->vd_aux);
ent.vd_next = BYTE_GET (edef->vd_next);
printf (_(" %#06x: Rev: %d Flags: %s"),
idx, ent.vd_version, get_ver_flags (ent.vd_flags));
printf (_(" Index: %d Cnt: %d "),
ent.vd_ndx, ent.vd_cnt);
/* Check for overflow. */
if (ent.vd_aux > (size_t) (endbuf - vstart))
break;
vstart += ent.vd_aux;
eaux = (Elf_External_Verdaux *) vstart;
aux.vda_name = BYTE_GET (eaux->vda_name);
aux.vda_next = BYTE_GET (eaux->vda_next);
if (VALID_DYNAMIC_NAME (aux.vda_name))
printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
else
printf (_("Name index: %ld\n"), aux.vda_name);
isum = idx + ent.vd_aux;
for (j = 1; j < ent.vd_cnt; j++)
{
/* Check for overflow. */
if (aux.vda_next > (size_t) (endbuf - vstart))
break;
isum += aux.vda_next;
vstart += aux.vda_next;
eaux = (Elf_External_Verdaux *) vstart;
if (vstart + sizeof (*eaux) > endbuf)
break;
aux.vda_name = BYTE_GET (eaux->vda_name);
aux.vda_next = BYTE_GET (eaux->vda_next);
if (VALID_DYNAMIC_NAME (aux.vda_name))
printf (_(" %#06x: Parent %d: %s\n"),
isum, j, GET_DYNAMIC_NAME (aux.vda_name));
else
printf (_(" %#06x: Parent %d, name index: %ld\n"),
isum, j, aux.vda_name);
}
if (j < ent.vd_cnt)
printf (_(" Version def aux past end of section\n"));
/* PR 17531: file: id:000001,src:000172+005151,op:splice,rep:2. */
if (idx + ent.vd_next <= idx)
break;
idx += ent.vd_next;
}
if (cnt < section->sh_info)
printf (_(" Version definition past end of section\n"));
free (edefs);
}
break;
case SHT_GNU_verneed:
{
Elf_External_Verneed * eneed;
unsigned int idx;
unsigned int cnt;
char * endbuf;
found = 1;
printf (_("\nVersion needs section '%s' contains %u entries:\n"),
printable_section_name (section), section->sh_info);
printf (_(" Addr: 0x"));
printf_vma (section->sh_addr);
printf (_(" Offset: %#08lx Link: %u (%s)\n"),
(unsigned long) section->sh_offset, section->sh_link,
printable_section_name_from_index (section->sh_link));
eneed = (Elf_External_Verneed *) get_data (NULL, file,
section->sh_offset, 1,
section->sh_size,
_("Version Needs section"));
if (!eneed)
break;
endbuf = (char *) eneed + section->sh_size;
for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
{
Elf_External_Verneed * entry;
Elf_Internal_Verneed ent;
int j;
int isum;
char * vstart;
if (idx > (size_t) (endbuf - (char *) eneed))
break;
vstart = ((char *) eneed) + idx;
if (vstart + sizeof (*entry) > endbuf)
break;
entry = (Elf_External_Verneed *) vstart;
ent.vn_version = BYTE_GET (entry->vn_version);
ent.vn_cnt = BYTE_GET (entry->vn_cnt);
ent.vn_file = BYTE_GET (entry->vn_file);
ent.vn_aux = BYTE_GET (entry->vn_aux);
ent.vn_next = BYTE_GET (entry->vn_next);
printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
if (VALID_DYNAMIC_NAME (ent.vn_file))
printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
else
printf (_(" File: %lx"), ent.vn_file);
printf (_(" Cnt: %d\n"), ent.vn_cnt);
/* Check for overflow. */
if (ent.vn_aux > (size_t) (endbuf - vstart))
break;
vstart += ent.vn_aux;
for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
{
Elf_External_Vernaux * eaux;
Elf_Internal_Vernaux aux;
if (vstart + sizeof (*eaux) > endbuf)
break;
eaux = (Elf_External_Vernaux *) vstart;
aux.vna_hash = BYTE_GET (eaux->vna_hash);
aux.vna_flags = BYTE_GET (eaux->vna_flags);
aux.vna_other = BYTE_GET (eaux->vna_other);
aux.vna_name = BYTE_GET (eaux->vna_name);
aux.vna_next = BYTE_GET (eaux->vna_next);
if (VALID_DYNAMIC_NAME (aux.vna_name))
printf (_(" %#06x: Name: %s"),
isum, GET_DYNAMIC_NAME (aux.vna_name));
else
printf (_(" %#06x: Name index: %lx"),
isum, aux.vna_name);
printf (_(" Flags: %s Version: %d\n"),
get_ver_flags (aux.vna_flags), aux.vna_other);
/* Check for overflow. */
if (aux.vna_next > (size_t) (endbuf - vstart)
|| (aux.vna_next == 0 && j < ent.vn_cnt - 1))
{
warn (_("Invalid vna_next field of %lx\n"),
aux.vna_next);
j = ent.vn_cnt;
break;
}
isum += aux.vna_next;
vstart += aux.vna_next;
}
if (j < ent.vn_cnt)
warn (_("Missing Version Needs auxillary information\n"));
if (ent.vn_next == 0 && cnt < section->sh_info - 1)
{
warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
cnt = section->sh_info;
break;
}
idx += ent.vn_next;
}
if (cnt < section->sh_info)
warn (_("Missing Version Needs information\n"));
free (eneed);
}
break;
case SHT_GNU_versym:
{
Elf_Internal_Shdr * link_section;
size_t total;
unsigned int cnt;
unsigned char * edata;
unsigned short * data;
char * strtab;
Elf_Internal_Sym * symbols;
Elf_Internal_Shdr * string_sec;
unsigned long num_syms;
long off;
if (section->sh_link >= elf_header.e_shnum)
break;
link_section = section_headers + section->sh_link;
total = section->sh_size / sizeof (Elf_External_Versym);
if (link_section->sh_link >= elf_header.e_shnum)
break;
found = 1;
symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
if (symbols == NULL)
break;
string_sec = section_headers + link_section->sh_link;
strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
string_sec->sh_size,
_("version string table"));
if (!strtab)
{
free (symbols);
break;
}
printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
printable_section_name (section), (unsigned long) total);
printf (_(" Addr: "));
printf_vma (section->sh_addr);
printf (_(" Offset: %#08lx Link: %u (%s)\n"),
(unsigned long) section->sh_offset, section->sh_link,
printable_section_name (link_section));
off = offset_from_vma (file,
version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
total * sizeof (short));
edata = (unsigned char *) get_data (NULL, file, off, total,
sizeof (short),
_("version symbol data"));
if (!edata)
{
free (strtab);
free (symbols);
break;
}
data = (short unsigned int *) cmalloc (total, sizeof (short));
for (cnt = total; cnt --;)
data[cnt] = byte_get (edata + cnt * sizeof (short),
sizeof (short));
free (edata);
for (cnt = 0; cnt < total; cnt += 4)
{
int j, nn;
char *name;
char *invalid = _("*invalid*");
printf (" %03x:", cnt);
for (j = 0; (j < 4) && (cnt + j) < total; ++j)
switch (data[cnt + j])
{
case 0:
fputs (_(" 0 (*local*) "), stdout);
break;
case 1:
fputs (_(" 1 (*global*) "), stdout);
break;
default:
nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
/* If this index value is greater than the size of the symbols
array, break to avoid an out-of-bounds read. */
if ((unsigned long)(cnt + j) >= num_syms)
{
warn (_("invalid index into symbol array\n"));
break;
}
name = NULL;
if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
{
Elf_Internal_Verneed ivn;
unsigned long offset;
offset = offset_from_vma
(file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
sizeof (Elf_External_Verneed));
do
{
Elf_Internal_Vernaux ivna;
Elf_External_Verneed evn;
Elf_External_Vernaux evna;
unsigned long a_off;
if (get_data (&evn, file, offset, sizeof (evn), 1,
_("version need")) == NULL)
break;
ivn.vn_aux = BYTE_GET (evn.vn_aux);
ivn.vn_next = BYTE_GET (evn.vn_next);
a_off = offset + ivn.vn_aux;
do
{
if (get_data (&evna, file, a_off, sizeof (evna),
1, _("version need aux (2)")) == NULL)
{
ivna.vna_next = 0;
ivna.vna_other = 0;
}
else
{
ivna.vna_next = BYTE_GET (evna.vna_next);
ivna.vna_other = BYTE_GET (evna.vna_other);
}
a_off += ivna.vna_next;
}
while (ivna.vna_other != data[cnt + j]
&& ivna.vna_next != 0);
if (ivna.vna_other == data[cnt + j])
{
ivna.vna_name = BYTE_GET (evna.vna_name);
if (ivna.vna_name >= string_sec->sh_size)
name = invalid;
else
name = strtab + ivna.vna_name;
break;
}
offset += ivn.vn_next;
}
while (ivn.vn_next);
}
if (data[cnt + j] != 0x8001
&& version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
{
Elf_Internal_Verdef ivd;
Elf_External_Verdef evd;
unsigned long offset;
offset = offset_from_vma
(file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
sizeof evd);
do
{
if (get_data (&evd, file, offset, sizeof (evd), 1,
_("version def")) == NULL)
{
ivd.vd_next = 0;
/* PR 17531: file: 046-1082287-0.004. */
ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
break;
}
else
{
ivd.vd_next = BYTE_GET (evd.vd_next);
ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
}
offset += ivd.vd_next;
}
while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
&& ivd.vd_next != 0);
if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
{
Elf_External_Verdaux evda;
Elf_Internal_Verdaux ivda;
ivd.vd_aux = BYTE_GET (evd.vd_aux);
if (get_data (&evda, file,
offset - ivd.vd_next + ivd.vd_aux,
sizeof (evda), 1,
_("version def aux")) == NULL)
break;
ivda.vda_name = BYTE_GET (evda.vda_name);
if (ivda.vda_name >= string_sec->sh_size)
name = invalid;
else if (name != NULL && name != invalid)
name = _("*both*");
else
name = strtab + ivda.vda_name;
}
}
if (name != NULL)
nn += printf ("(%s%-*s",
name,
12 - (int) strlen (name),
")");
if (nn < 18)
printf ("%*c", 18 - nn, ' ');
}
putchar ('\n');
}
free (data);
free (strtab);
free (symbols);
}
break;
default:
break;
}
}
if (! found)
printf (_("\nNo version information found in this file.\n"));
return 1;
}
static const char *
get_symbol_binding (unsigned int binding)
{
static char buff[32];
switch (binding)
{
case STB_LOCAL: return "LOCAL";
case STB_GLOBAL: return "GLOBAL";
case STB_WEAK: return "WEAK";
default:
if (binding >= STB_LOPROC && binding <= STB_HIPROC)
snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
binding);
else if (binding >= STB_LOOS && binding <= STB_HIOS)
{
if (binding == STB_GNU_UNIQUE
&& (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
/* GNU is still using the default value 0. */
|| elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
return "UNIQUE";
snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
}
else
snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
return buff;
}
}
static const char *
get_symbol_type (unsigned int type)
{
static char buff[32];
switch (type)
{
case STT_NOTYPE: return "NOTYPE";
case STT_OBJECT: return "OBJECT";
case STT_FUNC: return "FUNC";
case STT_SECTION: return "SECTION";
case STT_FILE: return "FILE";
case STT_COMMON: return "COMMON";
case STT_TLS: return "TLS";
case STT_RELC: return "RELC";
case STT_SRELC: return "SRELC";
default:
if (type >= STT_LOPROC && type <= STT_HIPROC)
{
if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
return "THUMB_FUNC";
if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
return "REGISTER";
if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
return "PARISC_MILLI";
snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
}
else if (type >= STT_LOOS && type <= STT_HIOS)
{
if (elf_header.e_machine == EM_PARISC)
{
if (type == STT_HP_OPAQUE)
return "HP_OPAQUE";
if (type == STT_HP_STUB)
return "HP_STUB";
}
if (type == STT_GNU_IFUNC
&& (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
|| elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
/* GNU is still using the default value 0. */
|| elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
return "IFUNC";
snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
}
else
snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
return buff;
}
}
static const char *
get_symbol_visibility (unsigned int visibility)
{
switch (visibility)
{
case STV_DEFAULT: return "DEFAULT";
case STV_INTERNAL: return "INTERNAL";
case STV_HIDDEN: return "HIDDEN";
case STV_PROTECTED: return "PROTECTED";
default:
error (_("Unrecognized visibility value: %u"), visibility);
return _("<unknown>");
}
}
static const char *
get_solaris_symbol_visibility (unsigned int visibility)
{
switch (visibility)
{
case 4: return "EXPORTED";
case 5: return "SINGLETON";
case 6: return "ELIMINATE";
default: return get_symbol_visibility (visibility);
}
}
static const char *
get_mips_symbol_other (unsigned int other)
{
switch (other)
{
case STO_OPTIONAL:
return "OPTIONAL";
case STO_MIPS_PLT:
return "MIPS PLT";
case STO_MIPS_PIC:
return "MIPS PIC";
case STO_MICROMIPS:
return "MICROMIPS";
case STO_MICROMIPS | STO_MIPS_PIC:
return "MICROMIPS, MIPS PIC";
case STO_MIPS16:
return "MIPS16";
default:
return NULL;
}
}
static const char *
get_ia64_symbol_other (unsigned int other)
{
if (is_ia64_vms ())
{
static char res[32];
res[0] = 0;
/* Function types is for images and .STB files only. */
switch (elf_header.e_type)
{
case ET_DYN:
case ET_EXEC:
switch (VMS_ST_FUNC_TYPE (other))
{
case VMS_SFT_CODE_ADDR:
strcat (res, " CA");
break;
case VMS_SFT_SYMV_IDX:
strcat (res, " VEC");
break;
case VMS_SFT_FD:
strcat (res, " FD");
break;
case VMS_SFT_RESERVE:
strcat (res, " RSV");
break;
default:
warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
VMS_ST_FUNC_TYPE (other));
strcat (res, " <unknown>");
break;
}
break;
default:
break;
}
switch (VMS_ST_LINKAGE (other))
{
case VMS_STL_IGNORE:
strcat (res, " IGN");
break;
case VMS_STL_RESERVE:
strcat (res, " RSV");
break;
case VMS_STL_STD:
strcat (res, " STD");
break;
case VMS_STL_LNK:
strcat (res, " LNK");
break;
default:
warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
VMS_ST_LINKAGE (other));
strcat (res, " <unknown>");
break;
}
if (res[0] != 0)
return res + 1;
else
return res;
}
return NULL;
}
static const char *
get_ppc64_symbol_other (unsigned int other)
{
if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
{
static char buf[32];
snprintf (buf, sizeof buf, _("<localentry>: %d"),
PPC64_LOCAL_ENTRY_OFFSET (other));
return buf;
}
return NULL;
}
static const char *
get_symbol_other (unsigned int other)
{
const char * result = NULL;
static char buff [32];
if (other == 0)
return "";
switch (elf_header.e_machine)
{
case EM_MIPS:
result = get_mips_symbol_other (other);
break;
case EM_IA_64:
result = get_ia64_symbol_other (other);
break;
case EM_PPC64:
result = get_ppc64_symbol_other (other);
break;
default:
result = NULL;
break;
}
if (result)
return result;
snprintf (buff, sizeof buff, _("<other>: %x"), other);
return buff;
}
static const char *
get_symbol_index_type (unsigned int type)
{
static char buff[32];
switch (type)
{
case SHN_UNDEF: return "UND";
case SHN_ABS: return "ABS";
case SHN_COMMON: return "COM";
default:
if (type == SHN_IA_64_ANSI_COMMON
&& elf_header.e_machine == EM_IA_64
&& elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
return "ANSI_COM";
else if ((elf_header.e_machine == EM_X86_64
|| elf_header.e_machine == EM_L1OM
|| elf_header.e_machine == EM_K1OM)
&& type == SHN_X86_64_LCOMMON)
return "LARGE_COM";
else if ((type == SHN_MIPS_SCOMMON
&& elf_header.e_machine == EM_MIPS)
|| (type == SHN_TIC6X_SCOMMON
&& elf_header.e_machine == EM_TI_C6000))
return "SCOM";
else if (type == SHN_MIPS_SUNDEFINED
&& elf_header.e_machine == EM_MIPS)
return "SUND";
else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
sprintf (buff, "PRC[0x%04x]", type & 0xffff);
else if (type >= SHN_LOOS && type <= SHN_HIOS)
sprintf (buff, "OS [0x%04x]", type & 0xffff);
else if (type >= SHN_LORESERVE)
sprintf (buff, "RSV[0x%04x]", type & 0xffff);
else if (type >= elf_header.e_shnum)
sprintf (buff, _("bad section index[%3d]"), type);
else
sprintf (buff, "%3d", type);
break;
}
return buff;
}
static bfd_vma *
get_dynamic_data (FILE * file, bfd_size_type number, unsigned int ent_size)
{
unsigned char * e_data;
bfd_vma * i_data;
/* If the size_t type is smaller than the bfd_size_type, eg because
you are building a 32-bit tool on a 64-bit host, then make sure
that when (number) is cast to (size_t) no information is lost. */
if (sizeof (size_t) < sizeof (bfd_size_type)
&& (bfd_size_type) ((size_t) number) != number)
{
error (_("Size truncation prevents reading %" BFD_VMA_FMT "u"
" elements of size %u\n"),
number, ent_size);
return NULL;
}
/* Be kind to memory chekers (eg valgrind, address sanitizer) by not
attempting to allocate memory when the read is bound to fail. */
if (ent_size * number > current_file_size)
{
error (_("Invalid number of dynamic entries: %" BFD_VMA_FMT "u\n"),
number);
return NULL;
}
e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
if (e_data == NULL)
{
error (_("Out of memory reading %" BFD_VMA_FMT "u dynamic entries\n"),
number);
return NULL;
}
if (fread (e_data, ent_size, (size_t) number, file) != number)
{
error (_("Unable to read in %" BFD_VMA_FMT "u bytes of dynamic data\n"),
number * ent_size);
free (e_data);
return NULL;
}
i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
if (i_data == NULL)
{
error (_("Out of memory allocating space for %" BFD_VMA_FMT "u"
" dynamic entries\n"),
number);
free (e_data);
return NULL;
}
while (number--)
i_data[number] = byte_get (e_data + number * ent_size, ent_size);
free (e_data);
return i_data;
}
static void
print_dynamic_symbol (bfd_vma si, unsigned long hn)
{
Elf_Internal_Sym * psym;
int n;
n = print_vma (si, DEC_5);
if (n < 5)
fputs (&" "[n], stdout);
printf (" %3lu: ", hn);
if (dynamic_symbols == NULL || si >= num_dynamic_syms)
{
printf (_("<No info available for dynamic symbol number %lu>\n"),
(unsigned long) si);
return;
}
psym = dynamic_symbols + si;
print_vma (psym->st_value, LONG_HEX);
putchar (' ');
print_vma (psym->st_size, DEC_5);
printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
else
{
unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
printf (" %-7s", get_symbol_visibility (vis));
/* Check to see if any other bits in the st_other field are set.
Note - displaying this information disrupts the layout of the
table being generated, but for the moment this case is very
rare. */
if (psym->st_other ^ vis)
printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
}
printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
if (VALID_DYNAMIC_NAME (psym->st_name))
print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
else
printf (_(" <corrupt: %14ld>"), psym->st_name);
putchar ('\n');
}
static const char *
get_symbol_version_string (FILE *file, int is_dynsym,
const char *strtab,
unsigned long int strtab_size,
unsigned int si, Elf_Internal_Sym *psym,
enum versioned_symbol_info *sym_info,
unsigned short *vna_other)
{
unsigned char data[2];
unsigned short vers_data;
unsigned long offset;
if (!is_dynsym
|| version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
return NULL;
offset = offset_from_vma (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
sizeof data + si * sizeof (vers_data));
if (get_data (&data, file, offset + si * sizeof (vers_data),
sizeof (data), 1, _("version data")) == NULL)
return NULL;
vers_data = byte_get (data, 2);
if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data <= 1)
return NULL;
/* Usually we'd only see verdef for defined symbols, and verneed for
undefined symbols. However, symbols defined by the linker in
.dynbss for variables copied from a shared library in order to
avoid text relocations are defined yet have verneed. We could
use a heuristic to detect the special case, for example, check
for verneed first on symbols defined in SHT_NOBITS sections, but
it is simpler and more reliable to just look for both verdef and
verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
if (psym->st_shndx != SHN_UNDEF
&& vers_data != 0x8001
&& version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
{
Elf_Internal_Verdef ivd;
Elf_Internal_Verdaux ivda;
Elf_External_Verdaux evda;
unsigned long off;
off = offset_from_vma (file,
version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
sizeof (Elf_External_Verdef));
do
{
Elf_External_Verdef evd;
if (get_data (&evd, file, off, sizeof (evd), 1,
_("version def")) == NULL)
{
ivd.vd_ndx = 0;
ivd.vd_aux = 0;
ivd.vd_next = 0;
}
else
{
ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
ivd.vd_aux = BYTE_GET (evd.vd_aux);
ivd.vd_next = BYTE_GET (evd.vd_next);
}
off += ivd.vd_next;
}
while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
{
off -= ivd.vd_next;
off += ivd.vd_aux;
if (get_data (&evda, file, off, sizeof (evda), 1,
_("version def aux")) != NULL)
{
ivda.vda_name = BYTE_GET (evda.vda_name);
if (psym->st_name != ivda.vda_name)
{
*sym_info = ((vers_data & VERSYM_HIDDEN) != 0
? symbol_hidden : symbol_public);
return (ivda.vda_name < strtab_size
? strtab + ivda.vda_name : _("<corrupt>"));
}
}
}
}
if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
{
Elf_External_Verneed evn;
Elf_Internal_Verneed ivn;
Elf_Internal_Vernaux ivna;
offset = offset_from_vma (file,
version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
sizeof evn);
do
{
unsigned long vna_off;
if (get_data (&evn, file, offset, sizeof (evn), 1,
_("version need")) == NULL)
{
ivna.vna_next = 0;
ivna.vna_other = 0;
ivna.vna_name = 0;
break;
}
ivn.vn_aux = BYTE_GET (evn.vn_aux);
ivn.vn_next = BYTE_GET (evn.vn_next);
vna_off = offset + ivn.vn_aux;
do
{
Elf_External_Vernaux evna;
if (get_data (&evna, file, vna_off, sizeof (evna), 1,
_("version need aux (3)")) == NULL)
{
ivna.vna_next = 0;
ivna.vna_other = 0;
ivna.vna_name = 0;
}
else
{
ivna.vna_other = BYTE_GET (evna.vna_other);
ivna.vna_next = BYTE_GET (evna.vna_next);
ivna.vna_name = BYTE_GET (evna.vna_name);
}
vna_off += ivna.vna_next;
}
while (ivna.vna_other != vers_data && ivna.vna_next != 0);
if (ivna.vna_other == vers_data)
break;
offset += ivn.vn_next;
}
while (ivn.vn_next != 0);
if (ivna.vna_other == vers_data)
{
*sym_info = symbol_undefined;
*vna_other = ivna.vna_other;
return (ivna.vna_name < strtab_size
? strtab + ivna.vna_name : _("<corrupt>"));
}
}
return NULL;
}
/* Dump the symbol table. */
static int
process_symbol_table (FILE * file)
{
Elf_Internal_Shdr * section;
bfd_size_type nbuckets = 0;
bfd_size_type nchains = 0;
bfd_vma * buckets = NULL;
bfd_vma * chains = NULL;
bfd_vma ngnubuckets = 0;
bfd_vma * gnubuckets = NULL;
bfd_vma * gnuchains = NULL;
bfd_vma gnusymidx = 0;
bfd_size_type ngnuchains = 0;
if (!do_syms && !do_dyn_syms && !do_histogram)
return 1;
if (dynamic_info[DT_HASH]
&& (do_histogram
|| (do_using_dynamic
&& !do_dyn_syms
&& dynamic_strings != NULL)))
{
unsigned char nb[8];
unsigned char nc[8];
unsigned int hash_ent_size = 4;
if ((elf_header.e_machine == EM_ALPHA
|| elf_header.e_machine == EM_S390
|| elf_header.e_machine == EM_S390_OLD)
&& elf_header.e_ident[EI_CLASS] == ELFCLASS64)
hash_ent_size = 8;
if (fseek (file,
(archive_file_offset
+ offset_from_vma (file, dynamic_info[DT_HASH],
sizeof nb + sizeof nc)),
SEEK_SET))
{
error (_("Unable to seek to start of dynamic information\n"));
goto no_hash;
}
if (fread (nb, hash_ent_size, 1, file) != 1)
{
error (_("Failed to read in number of buckets\n"));
goto no_hash;
}
if (fread (nc, hash_ent_size, 1, file) != 1)
{
error (_("Failed to read in number of chains\n"));
goto no_hash;
}
nbuckets = byte_get (nb, hash_ent_size);
nchains = byte_get (nc, hash_ent_size);
buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
chains = get_dynamic_data (file, nchains, hash_ent_size);
no_hash:
if (buckets == NULL || chains == NULL)
{
if (do_using_dynamic)
return 0;
free (buckets);
free (chains);
buckets = NULL;
chains = NULL;
nbuckets = 0;
nchains = 0;
}
}
if (dynamic_info_DT_GNU_HASH
&& (do_histogram
|| (do_using_dynamic
&& !do_dyn_syms
&& dynamic_strings != NULL)))
{
unsigned char nb[16];
bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
bfd_vma buckets_vma;
if (fseek (file,
(archive_file_offset
+ offset_from_vma (file, dynamic_info_DT_GNU_HASH,
sizeof nb)),
SEEK_SET))
{
error (_("Unable to seek to start of dynamic information\n"));
goto no_gnu_hash;
}
if (fread (nb, 16, 1, file) != 1)
{
error (_("Failed to read in number of buckets\n"));
goto no_gnu_hash;
}
ngnubuckets = byte_get (nb, 4);
gnusymidx = byte_get (nb + 4, 4);
bitmaskwords = byte_get (nb + 8, 4);
buckets_vma = dynamic_info_DT_GNU_HASH + 16;
if (is_32bit_elf)
buckets_vma += bitmaskwords * 4;
else
buckets_vma += bitmaskwords * 8;
if (fseek (file,
(archive_file_offset
+ offset_from_vma (file, buckets_vma, 4)),
SEEK_SET))
{
error (_("Unable to seek to start of dynamic information\n"));
goto no_gnu_hash;
}
gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
if (gnubuckets == NULL)
goto no_gnu_hash;
for (i = 0; i < ngnubuckets; i++)
if (gnubuckets[i] != 0)
{
if (gnubuckets[i] < gnusymidx)
return 0;
if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
maxchain = gnubuckets[i];
}
if (maxchain == 0xffffffff)
goto no_gnu_hash;
maxchain -= gnusymidx;
if (fseek (file,
(archive_file_offset
+ offset_from_vma (file, buckets_vma
+ 4 * (ngnubuckets + maxchain), 4)),
SEEK_SET))
{
error (_("Unable to seek to start of dynamic information\n"));
goto no_gnu_hash;
}
do
{
if (fread (nb, 4, 1, file) != 1)
{
error (_("Failed to determine last chain length\n"));
goto no_gnu_hash;
}
if (maxchain + 1 == 0)
goto no_gnu_hash;
++maxchain;
}
while ((byte_get (nb, 4) & 1) == 0);
if (fseek (file,
(archive_file_offset
+ offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
SEEK_SET))
{
error (_("Unable to seek to start of dynamic information\n"));
goto no_gnu_hash;
}
gnuchains = get_dynamic_data (file, maxchain, 4);
ngnuchains = maxchain;
no_gnu_hash:
if (gnuchains == NULL)
{
free (gnubuckets);
gnubuckets = NULL;
ngnubuckets = 0;
if (do_using_dynamic)
return 0;
}
}
if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
&& do_syms
&& do_using_dynamic
&& dynamic_strings != NULL
&& dynamic_symbols != NULL)
{
unsigned long hn;
if (dynamic_info[DT_HASH])
{
bfd_vma si;
printf (_("\nSymbol table for image:\n"));
if (is_32bit_elf)
printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
else
printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
for (hn = 0; hn < nbuckets; hn++)
{
if (! buckets[hn])
continue;
for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
print_dynamic_symbol (si, hn);
}
}
if (dynamic_info_DT_GNU_HASH)
{
printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
if (is_32bit_elf)
printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
else
printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
for (hn = 0; hn < ngnubuckets; ++hn)
if (gnubuckets[hn] != 0)
{
bfd_vma si = gnubuckets[hn];
bfd_vma off = si - gnusymidx;
do
{
print_dynamic_symbol (si, hn);
si++;
}
while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
}
}
}
else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
&& section_headers != NULL)
{
unsigned int i;
for (i = 0, section = section_headers;
i < elf_header.e_shnum;
i++, section++)
{
unsigned int si;
char * strtab = NULL;
unsigned long int strtab_size = 0;
Elf_Internal_Sym * symtab;
Elf_Internal_Sym * psym;
unsigned long num_syms;
if ((section->sh_type != SHT_SYMTAB
&& section->sh_type != SHT_DYNSYM)
|| (!do_syms
&& section->sh_type == SHT_SYMTAB))
continue;
if (section->sh_entsize == 0)
{
printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
printable_section_name (section));
continue;
}
printf (_("\nSymbol table '%s' contains %lu entries:\n"),
printable_section_name (section),
(unsigned long) (section->sh_size / section->sh_entsize));
if (is_32bit_elf)
printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
else
printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
if (symtab == NULL)
continue;
if (section->sh_link == elf_header.e_shstrndx)
{
strtab = string_table;
strtab_size = string_table_length;
}
else if (section->sh_link < elf_header.e_shnum)
{
Elf_Internal_Shdr * string_sec;
string_sec = section_headers + section->sh_link;
strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
1, string_sec->sh_size,
_("string table"));
strtab_size = strtab != NULL ? string_sec->sh_size : 0;
}
for (si = 0, psym = symtab; si < num_syms; si++, psym++)
{
const char *version_string;
enum versioned_symbol_info sym_info;
unsigned short vna_other;
printf ("%6d: ", si);
print_vma (psym->st_value, LONG_HEX);
putchar (' ');
print_vma (psym->st_size, DEC_5);
printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
else
{
unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
printf (" %-7s", get_symbol_visibility (vis));
/* Check to see if any other bits in the st_other field are set.
Note - displaying this information disrupts the layout of the
table being generated, but for the moment this case is very rare. */
if (psym->st_other ^ vis)
printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
}
printf (" %4s ", get_symbol_index_type (psym->st_shndx));
print_symbol (25, psym->st_name < strtab_size
? strtab + psym->st_name : _("<corrupt>"));
version_string
= get_symbol_version_string (file,
section->sh_type == SHT_DYNSYM,
strtab, strtab_size, si,
psym, &sym_info, &vna_other);
if (version_string)
{
if (sym_info == symbol_undefined)
printf ("@%s (%d)", version_string, vna_other);
else
printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
version_string);
}
putchar ('\n');
}
free (symtab);
if (strtab != string_table)
free (strtab);
}
}
else if (do_syms)
printf
(_("\nDynamic symbol information is not available for displaying symbols.\n"));
if (do_histogram && buckets != NULL)
{
unsigned long * lengths;
unsigned long * counts;
unsigned long hn;
bfd_vma si;
unsigned long maxlength = 0;
unsigned long nzero_counts = 0;
unsigned long nsyms = 0;
unsigned long chained;
printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
(unsigned long) nbuckets);
lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
if (lengths == NULL)
{
error (_("Out of memory allocating space for histogram buckets\n"));
return 0;
}
printf (_(" Length Number %% of total Coverage\n"));
for (hn = 0; hn < nbuckets; ++hn)
{
for (si = buckets[hn], chained = 0;
si > 0 && si < nchains && si < nbuckets && chained <= nchains;
si = chains[si], ++chained)
{
++nsyms;
if (maxlength < ++lengths[hn])
++maxlength;
}
/* PR binutils/17531: A corrupt binary could contain broken
histogram data. Do not go into an infinite loop trying
to process it. */
if (chained > nchains)
{
error (_("histogram chain is corrupt\n"));
break;
}
}
counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
if (counts == NULL)
{
free (lengths);
error (_("Out of memory allocating space for histogram counts\n"));
return 0;
}
for (hn = 0; hn < nbuckets; ++hn)
++counts[lengths[hn]];
if (nbuckets > 0)
{
unsigned long i;
printf (" 0 %-10lu (%5.1f%%)\n",
counts[0], (counts[0] * 100.0) / nbuckets);
for (i = 1; i <= maxlength; ++i)
{
nzero_counts += counts[i] * i;
printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
i, counts[i], (counts[i] * 100.0) / nbuckets,
(nzero_counts * 100.0) / nsyms);
}
}
free (counts);
free (lengths);
}
if (buckets != NULL)
{
free (buckets);
free (chains);
}
if (do_histogram && gnubuckets != NULL)
{
unsigned long * lengths;
unsigned long * counts;
unsigned long hn;
unsigned long maxlength = 0;
unsigned long nzero_counts = 0;
unsigned long nsyms = 0;
printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
(unsigned long) ngnubuckets);
lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
if (lengths == NULL)
{
error (_("Out of memory allocating space for gnu histogram buckets\n"));
return 0;
}
printf (_(" Length Number %% of total Coverage\n"));
for (hn = 0; hn < ngnubuckets; ++hn)
if (gnubuckets[hn] != 0)
{
bfd_vma off, length = 1;
for (off = gnubuckets[hn] - gnusymidx;
/* PR 17531 file: 010-77222-0.004. */
off < ngnuchains && (gnuchains[off] & 1) == 0;
++off)
++length;
lengths[hn] = length;
if (length > maxlength)
maxlength = length;
nsyms += length;
}
counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
if (counts == NULL)
{
free (lengths);
error (_("Out of memory allocating space for gnu histogram counts\n"));
return 0;
}
for (hn = 0; hn < ngnubuckets; ++hn)
++counts[lengths[hn]];
if (ngnubuckets > 0)
{
unsigned long j;
printf (" 0 %-10lu (%5.1f%%)\n",
counts[0], (counts[0] * 100.0) / ngnubuckets);
for (j = 1; j <= maxlength; ++j)
{
nzero_counts += counts[j] * j;
printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
j, counts[j], (counts[j] * 100.0) / ngnubuckets,
(nzero_counts * 100.0) / nsyms);
}
}
free (counts);
free (lengths);
free (gnubuckets);
free (gnuchains);
}
return 1;
}
static int
process_syminfo (FILE * file ATTRIBUTE_UNUSED)
{
unsigned int i;
if (dynamic_syminfo == NULL
|| !do_dynamic)
/* No syminfo, this is ok. */
return 1;
/* There better should be a dynamic symbol section. */
if (dynamic_symbols == NULL || dynamic_strings == NULL)
return 0;
if (dynamic_addr)
printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
dynamic_syminfo_offset, dynamic_syminfo_nent);
printf (_(" Num: Name BoundTo Flags\n"));
for (i = 0; i < dynamic_syminfo_nent; ++i)
{
unsigned short int flags = dynamic_syminfo[i].si_flags;
printf ("%4d: ", i);
if (i >= num_dynamic_syms)
printf (_("<corrupt index>"));
else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
else
printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
putchar (' ');
switch (dynamic_syminfo[i].si_boundto)
{
case SYMINFO_BT_SELF:
fputs ("SELF ", stdout);
break;
case SYMINFO_BT_PARENT:
fputs ("PARENT ", stdout);
break;
default:
if (dynamic_syminfo[i].si_boundto > 0
&& dynamic_syminfo[i].si_boundto < dynamic_nent
&& VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
{
print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
putchar (' ' );
}
else
printf ("%-10d ", dynamic_syminfo[i].si_boundto);
break;
}
if (flags & SYMINFO_FLG_DIRECT)
printf (" DIRECT");
if (flags & SYMINFO_FLG_PASSTHRU)
printf (" PASSTHRU");
if (flags & SYMINFO_FLG_COPY)
printf (" COPY");
if (flags & SYMINFO_FLG_LAZYLOAD)
printf (" LAZYLOAD");
puts ("");
}
return 1;
}
/* Check to see if the given reloc needs to be handled in a target specific
manner. If so then process the reloc and return TRUE otherwise return
FALSE. */
static bfd_boolean
target_specific_reloc_handling (Elf_Internal_Rela * reloc,
unsigned char * start,
Elf_Internal_Sym * symtab)
{
unsigned int reloc_type = get_reloc_type (reloc->r_info);
switch (elf_header.e_machine)
{
case EM_MSP430:
case EM_MSP430_OLD:
{
static Elf_Internal_Sym * saved_sym = NULL;
switch (reloc_type)
{
case 10: /* R_MSP430_SYM_DIFF */
if (uses_msp430x_relocs ())
break;
case 21: /* R_MSP430X_SYM_DIFF */
saved_sym = symtab + get_reloc_symindex (reloc->r_info);
return TRUE;
case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
goto handle_sym_diff;
case 5: /* R_MSP430_16_BYTE */
case 9: /* R_MSP430_8 */
if (uses_msp430x_relocs ())
break;
goto handle_sym_diff;
case 2: /* R_MSP430_ABS16 */
case 15: /* R_MSP430X_ABS16 */
if (! uses_msp430x_relocs ())
break;
goto handle_sym_diff;
handle_sym_diff:
if (saved_sym != NULL)
{
bfd_vma value;
value = reloc->r_addend
+ (symtab[get_reloc_symindex (reloc->r_info)].st_value
- saved_sym->st_value);
byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
saved_sym = NULL;
return TRUE;
}
break;
default:
if (saved_sym != NULL)
error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
break;
}
break;
}
case EM_MN10300:
case EM_CYGNUS_MN10300:
{
static Elf_Internal_Sym * saved_sym = NULL;
switch (reloc_type)
{
case 34: /* R_MN10300_ALIGN */
return TRUE;
case 33: /* R_MN10300_SYM_DIFF */
saved_sym = symtab + get_reloc_symindex (reloc->r_info);
return TRUE;
case 1: /* R_MN10300_32 */
case 2: /* R_MN10300_16 */
if (saved_sym != NULL)
{
bfd_vma value;
value = reloc->r_addend
+ (symtab[get_reloc_symindex (reloc->r_info)].st_value
- saved_sym->st_value);
byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
saved_sym = NULL;
return TRUE;
}
break;
default:
if (saved_sym != NULL)
error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
break;
}
break;
}
case EM_RL78:
{
static bfd_vma saved_sym1 = 0;
static bfd_vma saved_sym2 = 0;
static bfd_vma value;
switch (reloc_type)
{
case 0x80: /* R_RL78_SYM. */
saved_sym1 = saved_sym2;
saved_sym2 = symtab[get_reloc_symindex (reloc->r_info)].st_value;
saved_sym2 += reloc->r_addend;
return TRUE;
case 0x83: /* R_RL78_OPsub. */
value = saved_sym1 - saved_sym2;
saved_sym2 = saved_sym1 = 0;
return TRUE;
break;
case 0x41: /* R_RL78_ABS32. */
byte_put (start + reloc->r_offset, value, 4);
value = 0;
return TRUE;
case 0x43: /* R_RL78_ABS16. */
byte_put (start + reloc->r_offset, value, 2);
value = 0;
return TRUE;
default:
break;
}
break;
}
}
return FALSE;
}
/* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
DWARF debug sections. This is a target specific test. Note - we do not
go through the whole including-target-headers-multiple-times route, (as
we have already done with <elf/h8.h>) because this would become very
messy and even then this function would have to contain target specific
information (the names of the relocs instead of their numeric values).
FIXME: This is not the correct way to solve this problem. The proper way
is to have target specific reloc sizing and typing functions created by
the reloc-macros.h header, in the same way that it already creates the
reloc naming functions. */
static bfd_boolean
is_32bit_abs_reloc (unsigned int reloc_type)
{
/* Please keep this table alpha-sorted for ease of visual lookup. */
switch (elf_header.e_machine)
{
case EM_386:
case EM_IAMCU:
return reloc_type == 1; /* R_386_32. */
case EM_68K:
return reloc_type == 1; /* R_68K_32. */
case EM_860:
return reloc_type == 1; /* R_860_32. */
case EM_960:
return reloc_type == 2; /* R_960_32. */
case EM_AARCH64:
return reloc_type == 258; /* R_AARCH64_ABS32 */
case EM_ADAPTEVA_EPIPHANY:
return reloc_type == 3;
case EM_ALPHA:
return reloc_type == 1; /* R_ALPHA_REFLONG. */
case EM_ARC:
return reloc_type == 1; /* R_ARC_32. */
case EM_ARC_COMPACT:
case EM_ARC_COMPACT2:
return reloc_type == 4; /* R_ARC_32. */
case EM_ARM:
return reloc_type == 2; /* R_ARM_ABS32 */
case EM_AVR_OLD:
case EM_AVR:
return reloc_type == 1;
case EM_BLACKFIN:
return reloc_type == 0x12; /* R_byte4_data. */
case EM_CRIS:
return reloc_type == 3; /* R_CRIS_32. */
case EM_CR16:
return reloc_type == 3; /* R_CR16_NUM32. */
case EM_CRX:
return reloc_type == 15; /* R_CRX_NUM32. */
case EM_CYGNUS_FRV:
return reloc_type == 1;
case EM_CYGNUS_D10V:
case EM_D10V:
return reloc_type == 6; /* R_D10V_32. */
case EM_CYGNUS_D30V:
case EM_D30V:
return reloc_type == 12; /* R_D30V_32_NORMAL. */
case EM_DLX:
return reloc_type == 3; /* R_DLX_RELOC_32. */
case EM_CYGNUS_FR30:
case EM_FR30:
return reloc_type == 3; /* R_FR30_32. */
case EM_FT32:
return reloc_type == 1; /* R_FT32_32. */
case EM_H8S:
case EM_H8_300:
case EM_H8_300H:
return reloc_type == 1; /* R_H8_DIR32. */
case EM_IA_64:
return reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
|| reloc_type == 0x25; /* R_IA64_DIR32LSB. */
case EM_IP2K_OLD:
case EM_IP2K:
return reloc_type == 2; /* R_IP2K_32. */
case EM_IQ2000:
return reloc_type == 2; /* R_IQ2000_32. */
case EM_LATTICEMICO32:
return reloc_type == 3; /* R_LM32_32. */
case EM_M32C_OLD:
case EM_M32C:
return reloc_type == 3; /* R_M32C_32. */
case EM_M32R:
return reloc_type == 34; /* R_M32R_32_RELA. */
case EM_68HC11:
case EM_68HC12:
return reloc_type == 6; /* R_M68HC11_32. */
case EM_MCORE:
return reloc_type == 1; /* R_MCORE_ADDR32. */
case EM_CYGNUS_MEP:
return reloc_type == 4; /* R_MEP_32. */
case EM_METAG:
return reloc_type == 2; /* R_METAG_ADDR32. */
case EM_MICROBLAZE:
return reloc_type == 1; /* R_MICROBLAZE_32. */
case EM_MIPS:
return reloc_type == 2; /* R_MIPS_32. */
case EM_MMIX:
return reloc_type == 4; /* R_MMIX_32. */
case EM_CYGNUS_MN10200:
case EM_MN10200:
return reloc_type == 1; /* R_MN10200_32. */
case EM_CYGNUS_MN10300:
case EM_MN10300:
return reloc_type == 1; /* R_MN10300_32. */
case EM_MOXIE:
return reloc_type == 1; /* R_MOXIE_32. */
case EM_MSP430_OLD:
case EM_MSP430:
return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
case EM_MT:
return reloc_type == 2; /* R_MT_32. */
case EM_NDS32:
return reloc_type == 20; /* R_NDS32_RELA. */
case EM_ALTERA_NIOS2:
return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
case EM_NIOS32:
return reloc_type == 1; /* R_NIOS_32. */
case EM_OR1K:
return reloc_type == 1; /* R_OR1K_32. */
case EM_PARISC:
return (reloc_type == 1 /* R_PARISC_DIR32. */
|| reloc_type == 41); /* R_PARISC_SECREL32. */
case EM_PJ:
case EM_PJ_OLD:
return reloc_type == 1; /* R_PJ_DATA_DIR32. */
case EM_PPC64:
return reloc_type == 1; /* R_PPC64_ADDR32. */
case EM_PPC:
return reloc_type == 1; /* R_PPC_ADDR32. */
case EM_RL78:
return reloc_type == 1; /* R_RL78_DIR32. */
case EM_RX:
return reloc_type == 1; /* R_RX_DIR32. */
case EM_S370:
return reloc_type == 1; /* R_I370_ADDR31. */
case EM_S390_OLD:
case EM_S390:
return reloc_type == 4; /* R_S390_32. */
case EM_SCORE:
return reloc_type == 8; /* R_SCORE_ABS32. */
case EM_SH:
return reloc_type == 1; /* R_SH_DIR32. */
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPARC:
return reloc_type == 3 /* R_SPARC_32. */
|| reloc_type == 23; /* R_SPARC_UA32. */
case EM_SPU:
return reloc_type == 6; /* R_SPU_ADDR32 */
case EM_TI_C6000:
return reloc_type == 1; /* R_C6000_ABS32. */
case EM_TILEGX:
return reloc_type == 2; /* R_TILEGX_32. */
case EM_TILEPRO:
return reloc_type == 1; /* R_TILEPRO_32. */
case EM_CYGNUS_V850:
case EM_V850:
return reloc_type == 6; /* R_V850_ABS32. */
case EM_V800:
return reloc_type == 0x33; /* R_V810_WORD. */
case EM_VAX:
return reloc_type == 1; /* R_VAX_32. */
case EM_VISIUM:
return reloc_type == 3; /* R_VISIUM_32. */
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
return reloc_type == 10; /* R_X86_64_32. */
case EM_XC16X:
case EM_C166:
return reloc_type == 3; /* R_XC16C_ABS_32. */
case EM_XGATE:
return reloc_type == 4; /* R_XGATE_32. */
case EM_XSTORMY16:
return reloc_type == 1; /* R_XSTROMY16_32. */
case EM_XTENSA_OLD:
case EM_XTENSA:
return reloc_type == 1; /* R_XTENSA_32. */
default:
{
static unsigned int prev_warn = 0;
/* Avoid repeating the same warning multiple times. */
if (prev_warn != elf_header.e_machine)
error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
elf_header.e_machine);
prev_warn = elf_header.e_machine;
return FALSE;
}
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
static bfd_boolean
is_32bit_pcrel_reloc (unsigned int reloc_type)
{
switch (elf_header.e_machine)
/* Please keep this table alpha-sorted for ease of visual lookup. */
{
case EM_386:
case EM_IAMCU:
return reloc_type == 2; /* R_386_PC32. */
case EM_68K:
return reloc_type == 4; /* R_68K_PC32. */
case EM_AARCH64:
return reloc_type == 261; /* R_AARCH64_PREL32 */
case EM_ADAPTEVA_EPIPHANY:
return reloc_type == 6;
case EM_ALPHA:
return reloc_type == 10; /* R_ALPHA_SREL32. */
case EM_ARC_COMPACT:
case EM_ARC_COMPACT2:
return reloc_type == 49; /* R_ARC_32_PCREL. */
case EM_ARM:
return reloc_type == 3; /* R_ARM_REL32 */
case EM_AVR_OLD:
case EM_AVR:
return reloc_type == 36; /* R_AVR_32_PCREL. */
case EM_MICROBLAZE:
return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
case EM_OR1K:
return reloc_type == 9; /* R_OR1K_32_PCREL. */
case EM_PARISC:
return reloc_type == 9; /* R_PARISC_PCREL32. */
case EM_PPC:
return reloc_type == 26; /* R_PPC_REL32. */
case EM_PPC64:
return reloc_type == 26; /* R_PPC64_REL32. */
case EM_S390_OLD:
case EM_S390:
return reloc_type == 5; /* R_390_PC32. */
case EM_SH:
return reloc_type == 2; /* R_SH_REL32. */
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPARC:
return reloc_type == 6; /* R_SPARC_DISP32. */
case EM_SPU:
return reloc_type == 13; /* R_SPU_REL32. */
case EM_TILEGX:
return reloc_type == 6; /* R_TILEGX_32_PCREL. */
case EM_TILEPRO:
return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
case EM_VISIUM:
return reloc_type == 6; /* R_VISIUM_32_PCREL */
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
return reloc_type == 2; /* R_X86_64_PC32. */
case EM_XTENSA_OLD:
case EM_XTENSA:
return reloc_type == 14; /* R_XTENSA_32_PCREL. */
default:
/* Do not abort or issue an error message here. Not all targets use
pc-relative 32-bit relocs in their DWARF debug information and we
have already tested for target coverage in is_32bit_abs_reloc. A
more helpful warning message will be generated by apply_relocations
anyway, so just return. */
return FALSE;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 64-bit absolute RELA relocation used in DWARF debug sections. */
static bfd_boolean
is_64bit_abs_reloc (unsigned int reloc_type)
{
switch (elf_header.e_machine)
{
case EM_AARCH64:
return reloc_type == 257; /* R_AARCH64_ABS64. */
case EM_ALPHA:
return reloc_type == 2; /* R_ALPHA_REFQUAD. */
case EM_IA_64:
return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
case EM_PARISC:
return reloc_type == 80; /* R_PARISC_DIR64. */
case EM_PPC64:
return reloc_type == 38; /* R_PPC64_ADDR64. */
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPARC:
return reloc_type == 54; /* R_SPARC_UA64. */
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
return reloc_type == 1; /* R_X86_64_64. */
case EM_S390_OLD:
case EM_S390:
return reloc_type == 22; /* R_S390_64. */
case EM_TILEGX:
return reloc_type == 1; /* R_TILEGX_64. */
case EM_MIPS:
return reloc_type == 18; /* R_MIPS_64. */
default:
return FALSE;
}
}
/* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
static bfd_boolean
is_64bit_pcrel_reloc (unsigned int reloc_type)
{
switch (elf_header.e_machine)
{
case EM_AARCH64:
return reloc_type == 260; /* R_AARCH64_PREL64. */
case EM_ALPHA:
return reloc_type == 11; /* R_ALPHA_SREL64. */
case EM_IA_64:
return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
case EM_PARISC:
return reloc_type == 72; /* R_PARISC_PCREL64. */
case EM_PPC64:
return reloc_type == 44; /* R_PPC64_REL64. */
case EM_SPARC32PLUS:
case EM_SPARCV9:
case EM_SPARC:
return reloc_type == 46; /* R_SPARC_DISP64. */
case EM_X86_64:
case EM_L1OM:
case EM_K1OM:
return reloc_type == 24; /* R_X86_64_PC64. */
case EM_S390_OLD:
case EM_S390:
return reloc_type == 23; /* R_S390_PC64. */
case EM_TILEGX:
return reloc_type == 5; /* R_TILEGX_64_PCREL. */
default:
return FALSE;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 24-bit absolute RELA relocation used in DWARF debug sections. */
static bfd_boolean
is_24bit_abs_reloc (unsigned int reloc_type)
{
switch (elf_header.e_machine)
{
case EM_CYGNUS_MN10200:
case EM_MN10200:
return reloc_type == 4; /* R_MN10200_24. */
case EM_FT32:
return reloc_type == 5; /* R_FT32_20. */
default:
return FALSE;
}
}
/* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
a 16-bit absolute RELA relocation used in DWARF debug sections. */
static bfd_boolean
is_16bit_abs_reloc (unsigned int reloc_type)
{
/* Please keep this table alpha-sorted for ease of visual lookup. */
switch (elf_header.e_machine)
{
case EM_ARC:
case EM_ARC_COMPACT:
case EM_ARC_COMPACT2:
return reloc_type == 2; /* R_ARC_16. */
case EM_ADAPTEVA_EPIPHANY:
return reloc_type == 5;
case EM_AVR_OLD:
case EM_AVR:
return reloc_type == 4; /* R_AVR_16. */
case EM_CYGNUS_D10V:
case EM_D10V:
return reloc_type == 3; /* R_D10V_16. */
case EM_H8S:
case EM_H8_300:
case EM_H8_300H:
return reloc_type == R_H8_DIR16;
case EM_IP2K_OLD:
case EM_IP2K:
return reloc_type == 1; /* R_IP2K_16. */
case EM_M32C_OLD:
case EM_M32C:
return reloc_type == 1; /* R_M32C_16 */
case EM_CYGNUS_MN10200:
case EM_MN10200:
return reloc_type == 2; /* R_MN10200_16. */
case EM_CYGNUS_MN10300:
case EM_MN10300:
return reloc_type == 2; /* R_MN10300_16. */
case EM_MSP430:
if (uses_msp430x_relocs ())
return reloc_type == 2; /* R_MSP430_ABS16. */
case EM_MSP430_OLD:
return reloc_type == 5; /* R_MSP430_16_BYTE. */
case EM_NDS32:
return reloc_type == 19; /* R_NDS32_RELA. */
case EM_ALTERA_NIOS2:
return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
case EM_NIOS32:
return reloc_type == 9; /* R_NIOS_16. */
case EM_OR1K:
return reloc_type == 2; /* R_OR1K_16. */
case EM_TI_C6000:
return reloc_type == 2; /* R_C6000_ABS16. */
case EM_VISIUM:
return reloc_type == 2; /* R_VISIUM_16. */
case EM_XC16X:
case EM_C166:
return reloc_type == 2; /* R_XC16C_ABS_16. */
case EM_XGATE:
return reloc_type == 3; /* R_XGATE_16. */
default:
return FALSE;
}
}
/* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
relocation entries (possibly formerly used for SHT_GROUP sections). */
static bfd_boolean
is_none_reloc (unsigned int reloc_type)
{
switch (elf_header.e_machine)
{
case EM_386: /* R_386_NONE. */
case EM_68K: /* R_68K_NONE. */
case EM_ADAPTEVA_EPIPHANY:
case EM_ALPHA: /* R_ALPHA_NONE. */
case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
case EM_ARC: /* R_ARC_NONE. */
case EM_ARC_COMPACT2: /* R_ARC_NONE. */
case EM_ARC_COMPACT: /* R_ARC_NONE. */
case EM_ARM: /* R_ARM_NONE. */
case EM_C166: /* R_XC16X_NONE. */
case EM_CRIS: /* R_CRIS_NONE. */
case EM_FT32: /* R_FT32_NONE. */
case EM_IA_64: /* R_IA64_NONE. */
case EM_K1OM: /* R_X86_64_NONE. */
case EM_L1OM: /* R_X86_64_NONE. */
case EM_M32R: /* R_M32R_NONE. */
case EM_MIPS: /* R_MIPS_NONE. */
case EM_MN10300: /* R_MN10300_NONE. */
case EM_MOXIE: /* R_MOXIE_NONE. */
case EM_NIOS32: /* R_NIOS_NONE. */
case EM_OR1K: /* R_OR1K_NONE. */
case EM_PARISC: /* R_PARISC_NONE. */
case EM_PPC64: /* R_PPC64_NONE. */
case EM_PPC: /* R_PPC_NONE. */
case EM_S390: /* R_390_NONE. */
case EM_S390_OLD:
case EM_SH: /* R_SH_NONE. */
case EM_SPARC32PLUS:
case EM_SPARC: /* R_SPARC_NONE. */
case EM_SPARCV9:
case EM_TILEGX: /* R_TILEGX_NONE. */
case EM_TILEPRO: /* R_TILEPRO_NONE. */
case EM_TI_C6000:/* R_C6000_NONE. */
case EM_X86_64: /* R_X86_64_NONE. */
case EM_XC16X:
return reloc_type == 0;
case EM_AARCH64:
return reloc_type == 0 || reloc_type == 256;
case EM_AVR_OLD:
case EM_AVR:
return (reloc_type == 0 /* R_AVR_NONE. */
|| reloc_type == 30 /* R_AVR_DIFF8. */
|| reloc_type == 31 /* R_AVR_DIFF16. */
|| reloc_type == 32 /* R_AVR_DIFF32. */);
case EM_METAG:
return reloc_type == 3; /* R_METAG_NONE. */
case EM_NDS32:
return (reloc_type == 0 /* R_XTENSA_NONE. */
|| reloc_type == 204 /* R_NDS32_DIFF8. */
|| reloc_type == 205 /* R_NDS32_DIFF16. */
|| reloc_type == 206 /* R_NDS32_DIFF32. */
|| reloc_type == 207 /* R_NDS32_ULEB128. */);
case EM_XTENSA_OLD:
case EM_XTENSA:
return (reloc_type == 0 /* R_XTENSA_NONE. */
|| reloc_type == 17 /* R_XTENSA_DIFF8. */
|| reloc_type == 18 /* R_XTENSA_DIFF16. */
|| reloc_type == 19 /* R_XTENSA_DIFF32. */);
}
return FALSE;
}
/* Returns TRUE if there is a relocation against
section NAME at OFFSET bytes. */
bfd_boolean
reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
{
Elf_Internal_Rela * relocs;
Elf_Internal_Rela * rp;
if (dsec == NULL || dsec->reloc_info == NULL)
return FALSE;
relocs = (Elf_Internal_Rela *) dsec->reloc_info;
for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
if (rp->r_offset == offset)
return TRUE;
return FALSE;
}
/* Apply relocations to a section.
Note: So far support has been added only for those relocations
which can be found in debug sections.
If RELOCS_RETURN is non-NULL then returns in it a pointer to the
loaded relocs. It is then the caller's responsibility to free them.
FIXME: Add support for more relocations ? */
static void
apply_relocations (void * file,
const Elf_Internal_Shdr * section,
unsigned char * start,
bfd_size_type size,
void ** relocs_return,
unsigned long * num_relocs_return)
{
Elf_Internal_Shdr * relsec;
unsigned char * end = start + size;
if (relocs_return != NULL)
{
* (Elf_Internal_Rela **) relocs_return = NULL;
* num_relocs_return = 0;
}
if (elf_header.e_type != ET_REL)
return;
/* Find the reloc section associated with the section. */
for (relsec = section_headers;
relsec < section_headers + elf_header.e_shnum;
++relsec)
{
bfd_boolean is_rela;
unsigned long num_relocs;
Elf_Internal_Rela * relocs;
Elf_Internal_Rela * rp;
Elf_Internal_Shdr * symsec;
Elf_Internal_Sym * symtab;
unsigned long num_syms;
Elf_Internal_Sym * sym;
if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
|| relsec->sh_info >= elf_header.e_shnum
|| section_headers + relsec->sh_info != section
|| relsec->sh_size == 0
|| relsec->sh_link >= elf_header.e_shnum)
continue;
is_rela = relsec->sh_type == SHT_RELA;
if (is_rela)
{
if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
relsec->sh_size, & relocs, & num_relocs))
return;
}
else
{
if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
relsec->sh_size, & relocs, & num_relocs))
return;
}
/* SH uses RELA but uses in place value instead of the addend field. */
if (elf_header.e_machine == EM_SH)
is_rela = FALSE;
symsec = section_headers + relsec->sh_link;
symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
for (rp = relocs; rp < relocs + num_relocs; ++rp)
{
bfd_vma addend;
unsigned int reloc_type;
unsigned int reloc_size;
unsigned char * rloc;
unsigned long sym_index;
reloc_type = get_reloc_type (rp->r_info);
if (target_specific_reloc_handling (rp, start, symtab))
continue;
else if (is_none_reloc (reloc_type))
continue;
else if (is_32bit_abs_reloc (reloc_type)
|| is_32bit_pcrel_reloc (reloc_type))
reloc_size = 4;
else if (is_64bit_abs_reloc (reloc_type)
|| is_64bit_pcrel_reloc (reloc_type))
reloc_size = 8;
else if (is_24bit_abs_reloc (reloc_type))
reloc_size = 3;
else if (is_16bit_abs_reloc (reloc_type))
reloc_size = 2;
else
{
static unsigned int prev_reloc = 0;
if (reloc_type != prev_reloc)
warn (_("unable to apply unsupported reloc type %d to section %s\n"),
reloc_type, printable_section_name (section));
prev_reloc = reloc_type;
continue;
}
rloc = start + rp->r_offset;
if ((rloc + reloc_size) > end || (rloc < start))
{
warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
(unsigned long) rp->r_offset,
printable_section_name (section));
continue;
}
sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
if (sym_index >= num_syms)
{
warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
sym_index, printable_section_name (section));
continue;
}
sym = symtab + sym_index;
/* If the reloc has a symbol associated with it,
make sure that it is of an appropriate type.
Relocations against symbols without type can happen.
Gcc -feliminate-dwarf2-dups may generate symbols
without type for debug info.
Icc generates relocations against function symbols
instead of local labels.
Relocations against object symbols can happen, eg when
referencing a global array. For an example of this see
the _clz.o binary in libgcc.a. */
if (sym != symtab
&& ELF_ST_TYPE (sym->st_info) != STT_COMMON
&& ELF_ST_TYPE (sym->st_info) > STT_SECTION)
{
warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
get_symbol_type (ELF_ST_TYPE (sym->st_info)),
(long int)(rp - relocs),
printable_section_name (relsec));
continue;
}
addend = 0;
if (is_rela)
addend += rp->r_addend;
/* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
partial_inplace. */
if (!is_rela
|| (elf_header.e_machine == EM_XTENSA
&& reloc_type == 1)
|| ((elf_header.e_machine == EM_PJ
|| elf_header.e_machine == EM_PJ_OLD)
&& reloc_type == 1)
|| ((elf_header.e_machine == EM_D30V
|| elf_header.e_machine == EM_CYGNUS_D30V)
&& reloc_type == 12))
addend += byte_get (rloc, reloc_size);
if (is_32bit_pcrel_reloc (reloc_type)
|| is_64bit_pcrel_reloc (reloc_type))
{
/* On HPPA, all pc-relative relocations are biased by 8. */
if (elf_header.e_machine == EM_PARISC)
addend -= 8;
byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
reloc_size);
}
else
byte_put (rloc, addend + sym->st_value, reloc_size);
}
free (symtab);
if (relocs_return)
{
* (Elf_Internal_Rela **) relocs_return = relocs;
* num_relocs_return = num_relocs;
}
else
free (relocs);
break;
}
}
#ifdef SUPPORT_DISASSEMBLY
static int
disassemble_section (Elf_Internal_Shdr * section, FILE * file)
{
printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
/* FIXME: XXX -- to be done --- XXX */
return 1;
}
#endif
/* Reads in the contents of SECTION from FILE, returning a pointer
to a malloc'ed buffer or NULL if something went wrong. */
static char *
get_section_contents (Elf_Internal_Shdr * section, FILE * file)
{
bfd_size_type num_bytes;
num_bytes = section->sh_size;
if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
{
printf (_("\nSection '%s' has no data to dump.\n"),
printable_section_name (section));
return NULL;
}
return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
_("section contents"));
}
/* Uncompresses a section that was compressed using zlib, in place. */
static bfd_boolean
uncompress_section_contents (unsigned char **buffer,
dwarf_size_type uncompressed_size,
dwarf_size_type *size)
{
dwarf_size_type compressed_size = *size;
unsigned char * compressed_buffer = *buffer;
unsigned char * uncompressed_buffer;
z_stream strm;
int rc;
/* It is possible the section consists of several compressed
buffers concatenated together, so we uncompress in a loop. */
/* PR 18313: The state field in the z_stream structure is supposed
to be invisible to the user (ie us), but some compilers will
still complain about it being used without initialisation. So
we first zero the entire z_stream structure and then set the fields
that we need. */
memset (& strm, 0, sizeof strm);
strm.avail_in = compressed_size;
strm.next_in = (Bytef *) compressed_buffer;
strm.avail_out = uncompressed_size;
uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
rc = inflateInit (& strm);
while (strm.avail_in > 0)
{
if (rc != Z_OK)
goto fail;
strm.next_out = ((Bytef *) uncompressed_buffer
+ (uncompressed_size - strm.avail_out));
rc = inflate (&strm, Z_FINISH);
if (rc != Z_STREAM_END)
goto fail;
rc = inflateReset (& strm);
}
rc = inflateEnd (& strm);
if (rc != Z_OK
|| strm.avail_out != 0)
goto fail;
*buffer = uncompressed_buffer;
*size = uncompressed_size;
return TRUE;
fail:
free (uncompressed_buffer);
/* Indicate decompression failure. */
*buffer = NULL;
return FALSE;
}
static void
dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
{
Elf_Internal_Shdr * relsec;
bfd_size_type num_bytes;
unsigned char * data;
unsigned char * end;
unsigned char * real_start;
unsigned char * start;
bfd_boolean some_strings_shown;
real_start = start = (unsigned char *) get_section_contents (section,
file);
if (start == NULL)
return;
num_bytes = section->sh_size;
printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
if (decompress_dumps)
{
dwarf_size_type new_size = num_bytes;
dwarf_size_type uncompressed_size = 0;
if ((section->sh_flags & SHF_COMPRESSED) != 0)
{
Elf_Internal_Chdr chdr;
unsigned int compression_header_size
= get_compression_header (& chdr, (unsigned char *) start);
if (chdr.ch_type != ELFCOMPRESS_ZLIB)
{
warn (_("section '%s' has unsupported compress type: %d\n"),
printable_section_name (section), chdr.ch_type);
return;
}
else if (chdr.ch_addralign != section->sh_addralign)
{
warn (_("compressed section '%s' is corrupted\n"),
printable_section_name (section));
return;
}
uncompressed_size = chdr.ch_size;
start += compression_header_size;
new_size -= compression_header_size;
}
else if (new_size > 12 && streq ((char *) start, "ZLIB"))
{
/* Read the zlib header. In this case, it should be "ZLIB"
followed by the uncompressed section size, 8 bytes in
big-endian order. */
uncompressed_size = start[4]; uncompressed_size <<= 8;
uncompressed_size += start[5]; uncompressed_size <<= 8;
uncompressed_size += start[6]; uncompressed_size <<= 8;
uncompressed_size += start[7]; uncompressed_size <<= 8;
uncompressed_size += start[8]; uncompressed_size <<= 8;
uncompressed_size += start[9]; uncompressed_size <<= 8;
uncompressed_size += start[10]; uncompressed_size <<= 8;
uncompressed_size += start[11];
start += 12;
new_size -= 12;
}
if (uncompressed_size
&& uncompress_section_contents (& start,
uncompressed_size, & new_size))
num_bytes = new_size;
}
/* If the section being dumped has relocations against it the user might
be expecting these relocations to have been applied. Check for this
case and issue a warning message in order to avoid confusion.
FIXME: Maybe we ought to have an option that dumps a section with
relocs applied ? */
for (relsec = section_headers;
relsec < section_headers + elf_header.e_shnum;
++relsec)
{
if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
|| relsec->sh_info >= elf_header.e_shnum
|| section_headers + relsec->sh_info != section
|| relsec->sh_size == 0
|| relsec->sh_link >= elf_header.e_shnum)
continue;
printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
break;
}
data = start;
end = start + num_bytes;
some_strings_shown = FALSE;
while (data < end)
{
while (!ISPRINT (* data))
if (++ data >= end)
break;
if (data < end)
{
size_t maxlen = end - data;
#ifndef __MSVCRT__
/* PR 11128: Use two separate invocations in order to work
around bugs in the Solaris 8 implementation of printf. */
printf (" [%6tx] ", data - start);
#else
printf (" [%6Ix] ", (size_t) (data - start));
#endif
if (maxlen > 0)
{
print_symbol ((int) maxlen, (const char *) data);
putchar ('\n');
data += strnlen ((const char *) data, maxlen);
}
else
{
printf (_("<corrupt>\n"));
data = end;
}
some_strings_shown = TRUE;
}
}
if (! some_strings_shown)
printf (_(" No strings found in this section."));
free (real_start);
putchar ('\n');
}
static void
dump_section_as_bytes (Elf_Internal_Shdr * section,
FILE * file,
bfd_boolean relocate)
{
Elf_Internal_Shdr * relsec;
bfd_size_type bytes;
bfd_size_type section_size;
bfd_vma addr;
unsigned char * data;
unsigned char * real_start;
unsigned char * start;
real_start = start = (unsigned char *) get_section_contents (section, file);
if (start == NULL)
return;
section_size = section->sh_size;
printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
if (decompress_dumps)
{
dwarf_size_type new_size = section_size;
dwarf_size_type uncompressed_size = 0;
if ((section->sh_flags & SHF_COMPRESSED) != 0)
{
Elf_Internal_Chdr chdr;
unsigned int compression_header_size
= get_compression_header (& chdr, start);
if (chdr.ch_type != ELFCOMPRESS_ZLIB)
{
warn (_("section '%s' has unsupported compress type: %d\n"),
printable_section_name (section), chdr.ch_type);
return;
}
else if (chdr.ch_addralign != section->sh_addralign)
{
warn (_("compressed section '%s' is corrupted\n"),
printable_section_name (section));
return;
}
uncompressed_size = chdr.ch_size;
start += compression_header_size;
new_size -= compression_header_size;
}
else if (new_size > 12 && streq ((char *) start, "ZLIB"))
{
/* Read the zlib header. In this case, it should be "ZLIB"
followed by the uncompressed section size, 8 bytes in
big-endian order. */
uncompressed_size = start[4]; uncompressed_size <<= 8;
uncompressed_size += start[5]; uncompressed_size <<= 8;
uncompressed_size += start[6]; uncompressed_size <<= 8;
uncompressed_size += start[7]; uncompressed_size <<= 8;
uncompressed_size += start[8]; uncompressed_size <<= 8;
uncompressed_size += start[9]; uncompressed_size <<= 8;
uncompressed_size += start[10]; uncompressed_size <<= 8;
uncompressed_size += start[11];
start += 12;
new_size -= 12;
}
if (uncompressed_size
&& uncompress_section_contents (& start, uncompressed_size,
& new_size))
section_size = new_size;
}
if (relocate)
{
apply_relocations (file, section, start, section_size, NULL, NULL);
}
else
{
/* If the section being dumped has relocations against it the user might
be expecting these relocations to have been applied. Check for this
case and issue a warning message in order to avoid confusion.
FIXME: Maybe we ought to have an option that dumps a section with
relocs applied ? */
for (relsec = section_headers;
relsec < section_headers + elf_header.e_shnum;
++relsec)
{
if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
|| relsec->sh_info >= elf_header.e_shnum
|| section_headers + relsec->sh_info != section
|| relsec->sh_size == 0
|| relsec->sh_link >= elf_header.e_shnum)
continue;
printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
break;
}
}
addr = section->sh_addr;
bytes = section_size;
data = start;
while (bytes)
{
int j;
int k;
int lbytes;
lbytes = (bytes > 16 ? 16 : bytes);
printf (" 0x%8.8lx ", (unsigned long) addr);
for (j = 0; j < 16; j++)
{
if (j < lbytes)
printf ("%2.2x", data[j]);
else
printf (" ");
if ((j & 3) == 3)
printf (" ");
}
for (j = 0; j < lbytes; j++)
{
k = data[j];
if (k >= ' ' && k < 0x7f)
printf ("%c", k);
else
printf (".");
}
putchar ('\n');
data += lbytes;
addr += lbytes;
bytes -= lbytes;
}
free (real_start);
putchar ('\n');
}
static int
load_specific_debug_section (enum dwarf_section_display_enum debug,
const Elf_Internal_Shdr * sec, void * file)
{
struct dwarf_section * section = &debug_displays [debug].section;
char buf [64];
/* If it is already loaded, do nothing. */
if (section->start != NULL)
return 1;
snprintf (buf, sizeof (buf), _("%s section data"), section->name);
section->address = sec->sh_addr;
section->user_data = NULL;
section->start = (unsigned char *) get_data (NULL, (FILE *) file,
sec->sh_offset, 1,
sec->sh_size, buf);
if (section->start == NULL)
section->size = 0;
else
{
unsigned char *start = section->start;
dwarf_size_type size = sec->sh_size;
dwarf_size_type uncompressed_size = 0;
if ((sec->sh_flags & SHF_COMPRESSED) != 0)
{
Elf_Internal_Chdr chdr;
unsigned int compression_header_size
= get_compression_header (&chdr, start);
if (chdr.ch_type != ELFCOMPRESS_ZLIB)
{
warn (_("section '%s' has unsupported compress type: %d\n"),
section->name, chdr.ch_type);
return 0;
}
else if (chdr.ch_addralign != sec->sh_addralign)
{
warn (_("compressed section '%s' is corrupted\n"),
section->name);
return 0;
}
uncompressed_size = chdr.ch_size;
start += compression_header_size;
size -= compression_header_size;
}
else if (size > 12 && streq ((char *) start, "ZLIB"))
{
/* Read the zlib header. In this case, it should be "ZLIB"
followed by the uncompressed section size, 8 bytes in
big-endian order. */
uncompressed_size = start[4]; uncompressed_size <<= 8;
uncompressed_size += start[5]; uncompressed_size <<= 8;
uncompressed_size += start[6]; uncompressed_size <<= 8;
uncompressed_size += start[7]; uncompressed_size <<= 8;
uncompressed_size += start[8]; uncompressed_size <<= 8;
uncompressed_size += start[9]; uncompressed_size <<= 8;
uncompressed_size += start[10]; uncompressed_size <<= 8;
uncompressed_size += start[11];
start += 12;
size -= 12;
}
if (uncompressed_size
&& uncompress_section_contents (&start, uncompressed_size,
&size))
{
/* Free the compressed buffer, update the section buffer
and the section size if uncompress is successful. */
free (section->start);
section->start = start;
}
section->size = size;
}
if (section->start == NULL)
return 0;
if (debug_displays [debug].relocate)
apply_relocations ((FILE *) file, sec, section->start, section->size,
& section->reloc_info, & section->num_relocs);
else
{
section->reloc_info = NULL;
section->num_relocs = 0;
}
return 1;
}
/* If this is not NULL, load_debug_section will only look for sections
within the list of sections given here. */
unsigned int *section_subset = NULL;
int
load_debug_section (enum dwarf_section_display_enum debug, void * file)
{
struct dwarf_section * section = &debug_displays [debug].section;
Elf_Internal_Shdr * sec;
/* Locate the debug section. */
sec = find_section_in_set (section->uncompressed_name, section_subset);
if (sec != NULL)
section->name = section->uncompressed_name;
else
{
sec = find_section_in_set (section->compressed_name, section_subset);
if (sec != NULL)
section->name = section->compressed_name;
}
if (sec == NULL)
return 0;
/* If we're loading from a subset of sections, and we've loaded
a section matching this name before, it's likely that it's a
different one. */
if (section_subset != NULL)
free_debug_section (debug);
return load_specific_debug_section (debug, sec, (FILE *) file);
}
void
free_debug_section (enum dwarf_section_display_enum debug)
{
struct dwarf_section * section = &debug_displays [debug].section;
if (section->start == NULL)
return;
free ((char *) section->start);
section->start = NULL;
section->address = 0;
section->size = 0;
}
static int
display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
{
char * name = SECTION_NAME (section);
const char * print_name = printable_section_name (section);
bfd_size_type length;
int result = 1;
int i;
length = section->sh_size;
if (length == 0)
{
printf (_("\nSection '%s' has no debugging data.\n"), print_name);
return 0;
}
if (section->sh_type == SHT_NOBITS)
{
/* There is no point in dumping the contents of a debugging section
which has the NOBITS type - the bits in the file will be random.
This can happen when a file containing a .eh_frame section is
stripped with the --only-keep-debug command line option. */
printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
print_name);
return 0;
}
if (const_strneq (name, ".gnu.linkonce.wi."))
name = ".debug_info";
/* See if we know how to display the contents of this section. */
for (i = 0; i < max; i++)
if (streq (debug_displays[i].section.uncompressed_name, name)
|| (i == line && const_strneq (name, ".debug_line."))
|| streq (debug_displays[i].section.compressed_name, name))
{
struct dwarf_section * sec = &debug_displays [i].section;
int secondary = (section != find_section (name));
if (secondary)
free_debug_section ((enum dwarf_section_display_enum) i);
if (i == line && const_strneq (name, ".debug_line."))
sec->name = name;
else if (streq (sec->uncompressed_name, name))
sec->name = sec->uncompressed_name;
else
sec->name = sec->compressed_name;
if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
section, file))
{
/* If this debug section is part of a CU/TU set in a .dwp file,
restrict load_debug_section to the sections in that set. */
section_subset = find_cu_tu_set (file, shndx);
result &= debug_displays[i].display (sec, file);
section_subset = NULL;
if (secondary || (i != info && i != abbrev))
free_debug_section ((enum dwarf_section_display_enum) i);
}
break;
}
if (i == max)
{
printf (_("Unrecognized debug section: %s\n"), print_name);
result = 0;
}
return result;
}
/* Set DUMP_SECTS for all sections where dumps were requested
based on section name. */
static void
initialise_dumps_byname (void)
{
struct dump_list_entry * cur;
for (cur = dump_sects_byname; cur; cur = cur->next)
{
unsigned int i;
int any;
for (i = 0, any = 0; i < elf_header.e_shnum; i++)
if (streq (SECTION_NAME (section_headers + i), cur->name))
{
request_dump_bynumber (i, cur->type);
any = 1;
}
if (!any)
warn (_("Section '%s' was not dumped because it does not exist!\n"),
cur->name);
}
}
static void
process_section_contents (FILE * file)
{
Elf_Internal_Shdr * section;
unsigned int i;
if (! do_dump)
return;
initialise_dumps_byname ();
for (i = 0, section = section_headers;
i < elf_header.e_shnum && i < num_dump_sects;
i++, section++)
{
#ifdef SUPPORT_DISASSEMBLY
if (dump_sects[i] & DISASS_DUMP)
disassemble_section (section, file);
#endif
if (dump_sects[i] & HEX_DUMP)
dump_section_as_bytes (section, file, FALSE);
if (dump_sects[i] & RELOC_DUMP)
dump_section_as_bytes (section, file, TRUE);
if (dump_sects[i] & STRING_DUMP)
dump_section_as_strings (section, file);
if (dump_sects[i] & DEBUG_DUMP)
display_debug_section (i, section, file);
}
/* Check to see if the user requested a
dump of a section that does not exist. */
while (i++ < num_dump_sects)
if (dump_sects[i])
warn (_("Section %d was not dumped because it does not exist!\n"), i);
}
static void
process_mips_fpe_exception (int mask)
{
if (mask)
{
int first = 1;
if (mask & OEX_FPU_INEX)
fputs ("INEX", stdout), first = 0;
if (mask & OEX_FPU_UFLO)
printf ("%sUFLO", first ? "" : "|"), first = 0;
if (mask & OEX_FPU_OFLO)
printf ("%sOFLO", first ? "" : "|"), first = 0;
if (mask & OEX_FPU_DIV0)
printf ("%sDIV0", first ? "" : "|"), first = 0;
if (mask & OEX_FPU_INVAL)
printf ("%sINVAL", first ? "" : "|");
}
else
fputs ("0", stdout);
}
/* Display's the value of TAG at location P. If TAG is
greater than 0 it is assumed to be an unknown tag, and
a message is printed to this effect. Otherwise it is
assumed that a message has already been printed.
If the bottom bit of TAG is set it assumed to have a
string value, otherwise it is assumed to have an integer
value.
Returns an updated P pointing to the first unread byte
beyond the end of TAG's value.
Reads at or beyond END will not be made. */
static unsigned char *
display_tag_value (int tag,
unsigned char * p,
const unsigned char * const end)
{
unsigned long val;
if (tag > 0)
printf (" Tag_unknown_%d: ", tag);
if (p >= end)
{
warn (_("<corrupt tag>\n"));
}
else if (tag & 1)
{
/* PR 17531 file: 027-19978-0.004. */
size_t maxlen = (end - p) - 1;
putchar ('"');
if (maxlen > 0)
{
print_symbol ((int) maxlen, (const char *) p);
p += strnlen ((char *) p, maxlen) + 1;
}
else
{
printf (_("<corrupt string tag>"));
p = (unsigned char *) end;
}
printf ("\"\n");
}
else
{
unsigned int len;
val = read_uleb128 (p, &len, end);
p += len;
printf ("%ld (0x%lx)\n", val, val);
}
assert (p <= end);
return p;
}
/* ARM EABI attributes section. */
typedef struct
{
unsigned int tag;
const char * name;
/* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
unsigned int type;
const char ** table;
} arm_attr_public_tag;
static const char * arm_attr_tag_CPU_arch[] =
{"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
"v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "", "v8-M.baseline",
"v8-M.mainline"};
static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
static const char * arm_attr_tag_THUMB_ISA_use[] =
{"No", "Thumb-1", "Thumb-2", "Yes"};
static const char * arm_attr_tag_FP_arch[] =
{"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
"FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
static const char * arm_attr_tag_Advanced_SIMD_arch[] =
{"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
"NEON for ARMv8.1"};
static const char * arm_attr_tag_PCS_config[] =
{"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
"PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
static const char * arm_attr_tag_ABI_PCS_R9_use[] =
{"V6", "SB", "TLS", "Unused"};
static const char * arm_attr_tag_ABI_PCS_RW_data[] =
{"Absolute", "PC-relative", "SB-relative", "None"};
static const char * arm_attr_tag_ABI_PCS_RO_data[] =
{"Absolute", "PC-relative", "None"};
static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
{"None", "direct", "GOT-indirect"};
static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
{"None", "??? 1", "2", "??? 3", "4"};
static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
static const char * arm_attr_tag_ABI_FP_denormal[] =
{"Unused", "Needed", "Sign only"};
static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
static const char * arm_attr_tag_ABI_FP_number_model[] =
{"Unused", "Finite", "RTABI", "IEEE 754"};
static const char * arm_attr_tag_ABI_enum_size[] =
{"Unused", "small", "int", "forced to int"};
static const char * arm_attr_tag_ABI_HardFP_use[] =
{"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
static const char * arm_attr_tag_ABI_VFP_args[] =
{"AAPCS", "VFP registers", "custom", "compatible"};
static const char * arm_attr_tag_ABI_WMMX_args[] =
{"AAPCS", "WMMX registers", "custom"};
static const char * arm_attr_tag_ABI_optimization_goals[] =
{"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
"Aggressive Size", "Prefer Debug", "Aggressive Debug"};
static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
{"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
"Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
static const char * arm_attr_tag_FP_HP_extension[] =
{"Not Allowed", "Allowed"};
static const char * arm_attr_tag_ABI_FP_16bit_format[] =
{"None", "IEEE 754", "Alternative Format"};
static const char * arm_attr_tag_DSP_extension[] =
{"Follow architecture", "Allowed"};
static const char * arm_attr_tag_MPextension_use[] =
{"Not Allowed", "Allowed"};
static const char * arm_attr_tag_DIV_use[] =
{"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
"Allowed in v7-A with integer division extension"};
static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
static const char * arm_attr_tag_Virtualization_use[] =
{"Not Allowed", "TrustZone", "Virtualization Extensions",
"TrustZone and Virtualization Extensions"};
static const char * arm_attr_tag_MPextension_use_legacy[] =
{"Not Allowed", "Allowed"};
#define LOOKUP(id, name) \
{id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
static arm_attr_public_tag arm_attr_public_tags[] =
{
{4, "CPU_raw_name", 1, NULL},
{5, "CPU_name", 1, NULL},
LOOKUP(6, CPU_arch),
{7, "CPU_arch_profile", 0, NULL},
LOOKUP(8, ARM_ISA_use),
LOOKUP(9, THUMB_ISA_use),
LOOKUP(10, FP_arch),
LOOKUP(11, WMMX_arch),
LOOKUP(12, Advanced_SIMD_arch),
LOOKUP(13, PCS_config),
LOOKUP(14, ABI_PCS_R9_use),
LOOKUP(15, ABI_PCS_RW_data),
LOOKUP(16, ABI_PCS_RO_data),
LOOKUP(17, ABI_PCS_GOT_use),
LOOKUP(18, ABI_PCS_wchar_t),
LOOKUP(19, ABI_FP_rounding),
LOOKUP(20, ABI_FP_denormal),
LOOKUP(21, ABI_FP_exceptions),
LOOKUP(22, ABI_FP_user_exceptions),
LOOKUP(23, ABI_FP_number_model),
{24, "ABI_align_needed", 0, NULL},
{25, "ABI_align_preserved", 0, NULL},
LOOKUP(26, ABI_enum_size),
LOOKUP(27, ABI_HardFP_use),
LOOKUP(28, ABI_VFP_args),
LOOKUP(29, ABI_WMMX_args),
LOOKUP(30, ABI_optimization_goals),
LOOKUP(31, ABI_FP_optimization_goals),
{32, "compatibility", 0, NULL},
LOOKUP(34, CPU_unaligned_access),
LOOKUP(36, FP_HP_extension),
LOOKUP(38, ABI_FP_16bit_format),
LOOKUP(42, MPextension_use),
LOOKUP(44, DIV_use),
LOOKUP(46, DSP_extension),
{64, "nodefaults", 0, NULL},
{65, "also_compatible_with", 0, NULL},
LOOKUP(66, T2EE_use),
{67, "conformance", 1, NULL},
LOOKUP(68, Virtualization_use),
LOOKUP(70, MPextension_use_legacy)
};
#undef LOOKUP
static unsigned char *
display_arm_attribute (unsigned char * p,
const unsigned char * const end)
{
unsigned int tag;
unsigned int len;
unsigned int val;
arm_attr_public_tag * attr;
unsigned i;
unsigned int type;
tag = read_uleb128 (p, &len, end);
p += len;
attr = NULL;
for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
{
if (arm_attr_public_tags[i].tag == tag)
{
attr = &arm_attr_public_tags[i];
break;
}
}
if (attr)
{
printf (" Tag_%s: ", attr->name);
switch (attr->type)
{
case 0:
switch (tag)
{
case 7: /* Tag_CPU_arch_profile. */
val = read_uleb128 (p, &len, end);
p += len;
switch (val)
{
case 0: printf (_("None\n")); break;
case 'A': printf (_("Application\n")); break;
case 'R': printf (_("Realtime\n")); break;
case 'M': printf (_("Microcontroller\n")); break;
case 'S': printf (_("Application or Realtime\n")); break;
default: printf ("??? (%d)\n", val); break;
}
break;
case 24: /* Tag_align_needed. */
val = read_uleb128 (p, &len, end);
p += len;
switch (val)
{
case 0: printf (_("None\n")); break;
case 1: printf (_("8-byte\n")); break;
case 2: printf (_("4-byte\n")); break;
case 3: printf ("??? 3\n"); break;
default:
if (val <= 12)
printf (_("8-byte and up to %d-byte extended\n"),
1 << val);
else
printf ("??? (%d)\n", val);
break;
}
break;
case 25: /* Tag_align_preserved. */
val = read_uleb128 (p, &len, end);
p += len;
switch (val)
{
case 0: printf (_("None\n")); break;
case 1: printf (_("8-byte, except leaf SP\n")); break;
case 2: printf (_("8-byte\n")); break;
case 3: printf ("??? 3\n"); break;
default:
if (val <= 12)
printf (_("8-byte and up to %d-byte extended\n"),
1 << val);
else
printf ("??? (%d)\n", val);
break;
}
break;
case 32: /* Tag_compatibility. */
{
val = read_uleb128 (p, &len, end);
p += len;
printf (_("flag = %d, vendor = "), val);
if (p < end - 1)
{
size_t maxlen = (end - p) - 1;
print_symbol ((int) maxlen, (const char *) p);
p += strnlen ((char *) p, maxlen) + 1;
}
else
{
printf (_("<corrupt>"));
p = (unsigned char *) end;
}
putchar ('\n');
}
break;
case 64: /* Tag_nodefaults. */
/* PR 17531: file: 001-505008-0.01. */
if (p < end)
p++;
printf (_("True\n"));
break;
case 65: /* Tag_also_compatible_with. */
val = read_uleb128 (p, &len, end);
p += len;
if (val == 6 /* Tag_CPU_arch. */)
{
val = read_uleb128 (p, &len, end);
p += len;
if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
printf ("??? (%d)\n", val);
else
printf ("%s\n", arm_attr_tag_CPU_arch[val]);
}
else
printf ("???\n");
while (p < end && *(p++) != '\0' /* NUL terminator. */)
;
break;
default:
printf (_("<unknown: %d>\n"), tag);
break;
}
return p;
case 1:
return display_tag_value (-1, p, end);
case 2:
return display_tag_value (0, p, end);
default:
assert (attr->type & 0x80);
val = read_uleb128 (p, &len, end);
p += len;
type = attr->type & 0x7f;
if (val >= type)
printf ("??? (%d)\n", val);
else
printf ("%s\n", attr->table[val]);
return p;
}
}
return display_tag_value (tag, p, end);
}
static unsigned char *
display_gnu_attribute (unsigned char * p,
unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const),
const unsigned char * const end)
{
int tag;
unsigned int len;
int val;
tag = read_uleb128 (p, &len, end);
p += len;
/* Tag_compatibility is the only generic GNU attribute defined at
present. */
if (tag == 32)
{
val = read_uleb128 (p, &len, end);
p += len;
printf (_("flag = %d, vendor = "), val);
if (p == end)
{
printf (_("<corrupt>\n"));
warn (_("corrupt vendor attribute\n"));
}
else
{
if (p < end - 1)
{
size_t maxlen = (end - p) - 1;
print_symbol ((int) maxlen, (const char *) p);
p += strnlen ((char *) p, maxlen) + 1;
}
else
{
printf (_("<corrupt>"));
p = (unsigned char *) end;
}
putchar ('\n');
}
return p;
}
if ((tag & 2) == 0 && display_proc_gnu_attribute)
return display_proc_gnu_attribute (p, tag, end);
return display_tag_value (tag, p, end);
}
static unsigned char *
display_power_gnu_attribute (unsigned char * p,
int tag,
const unsigned char * const end)
{
unsigned int len;
int val;
if (tag == Tag_GNU_Power_ABI_FP)
{
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_GNU_Power_ABI_FP: ");
switch (val)
{
case 0:
printf (_("Hard or soft float\n"));
break;
case 1:
printf (_("Hard float\n"));
break;
case 2:
printf (_("Soft float\n"));
break;
case 3:
printf (_("Single-precision hard float\n"));
break;
default:
printf ("??? (%d)\n", val);
break;
}
return p;
}
if (tag == Tag_GNU_Power_ABI_Vector)
{
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_GNU_Power_ABI_Vector: ");
switch (val)
{
case 0:
printf (_("Any\n"));
break;
case 1:
printf (_("Generic\n"));
break;
case 2:
printf ("AltiVec\n");
break;
case 3:
printf ("SPE\n");
break;
default:
printf ("??? (%d)\n", val);
break;
}
return p;
}
if (tag == Tag_GNU_Power_ABI_Struct_Return)
{
if (p == end)
{
warn (_("corrupt Tag_GNU_Power_ABI_Struct_Return\n"));
return p;
}
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_GNU_Power_ABI_Struct_Return: ");
switch (val)
{
case 0:
printf (_("Any\n"));
break;
case 1:
printf ("r3/r4\n");
break;
case 2:
printf (_("Memory\n"));
break;
default:
printf ("??? (%d)\n", val);
break;
}
return p;
}
return display_tag_value (tag & 1, p, end);
}
static unsigned char *
display_s390_gnu_attribute (unsigned char * p,
int tag,
const unsigned char * const end)
{
unsigned int len;
int val;
if (tag == Tag_GNU_S390_ABI_Vector)
{
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_GNU_S390_ABI_Vector: ");
switch (val)
{
case 0:
printf (_("any\n"));
break;
case 1:
printf (_("software\n"));
break;
case 2:
printf (_("hardware\n"));
break;
default:
printf ("??? (%d)\n", val);
break;
}
return p;
}
return display_tag_value (tag & 1, p, end);
}
static void
display_sparc_hwcaps (int mask)
{
if (mask)
{
int first = 1;
if (mask & ELF_SPARC_HWCAP_MUL32)
fputs ("mul32", stdout), first = 0;
if (mask & ELF_SPARC_HWCAP_DIV32)
printf ("%sdiv32", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP_FSMULD)
printf ("%sfsmuld", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP_V8PLUS)
printf ("%sv8plus", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP_POPC)
printf ("%spopc", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP_VIS)
printf ("%svis", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP_VIS2)
printf ("%svis2", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP_FMAF)
printf ("%sfmaf", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP_VIS3)
printf ("%svis3", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP_HPC)
printf ("%shpc", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP_RANDOM)
printf ("%srandom", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP_TRANS)
printf ("%strans", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP_FJFMAU)
printf ("%sfjfmau", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP_IMA)
printf ("%sima", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
printf ("%scspare", first ? "" : "|"), first = 0;
}
else
fputc ('0', stdout);
fputc ('\n', stdout);
}
static void
display_sparc_hwcaps2 (int mask)
{
if (mask)
{
int first = 1;
if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
fputs ("fjathplus", stdout), first = 0;
if (mask & ELF_SPARC_HWCAP2_VIS3B)
printf ("%svis3b", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP2_ADP)
printf ("%sadp", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP2_SPARC5)
printf ("%ssparc5", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP2_MWAIT)
printf ("%smwait", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP2_XMPMUL)
printf ("%sxmpmul", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP2_XMONT)
printf ("%sxmont2", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP2_NSEC)
printf ("%snsec", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
printf ("%sfjathhpc", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP2_FJDES)
printf ("%sfjdes", first ? "" : "|"), first = 0;
if (mask & ELF_SPARC_HWCAP2_FJAES)
printf ("%sfjaes", first ? "" : "|"), first = 0;
}
else
fputc ('0', stdout);
fputc ('\n', stdout);
}
static unsigned char *
display_sparc_gnu_attribute (unsigned char * p,
int tag,
const unsigned char * const end)
{
unsigned int len;
int val;
if (tag == Tag_GNU_Sparc_HWCAPS)
{
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_GNU_Sparc_HWCAPS: ");
display_sparc_hwcaps (val);
return p;
}
if (tag == Tag_GNU_Sparc_HWCAPS2)
{
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_GNU_Sparc_HWCAPS2: ");
display_sparc_hwcaps2 (val);
return p;
}
return display_tag_value (tag, p, end);
}
static void
print_mips_fp_abi_value (int val)
{
switch (val)
{
case Val_GNU_MIPS_ABI_FP_ANY:
printf (_("Hard or soft float\n"));
break;
case Val_GNU_MIPS_ABI_FP_DOUBLE:
printf (_("Hard float (double precision)\n"));
break;
case Val_GNU_MIPS_ABI_FP_SINGLE:
printf (_("Hard float (single precision)\n"));
break;
case Val_GNU_MIPS_ABI_FP_SOFT:
printf (_("Soft float\n"));
break;
case Val_GNU_MIPS_ABI_FP_OLD_64:
printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
break;
case Val_GNU_MIPS_ABI_FP_XX:
printf (_("Hard float (32-bit CPU, Any FPU)\n"));
break;
case Val_GNU_MIPS_ABI_FP_64:
printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
break;
case Val_GNU_MIPS_ABI_FP_64A:
printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
break;
case Val_GNU_MIPS_ABI_FP_NAN2008:
printf (_("NaN 2008 compatibility\n"));
break;
default:
printf ("??? (%d)\n", val);
break;
}
}
static unsigned char *
display_mips_gnu_attribute (unsigned char * p,
int tag,
const unsigned char * const end)
{
if (tag == Tag_GNU_MIPS_ABI_FP)
{
unsigned int len;
int val;
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_GNU_MIPS_ABI_FP: ");
print_mips_fp_abi_value (val);
return p;
}
if (tag == Tag_GNU_MIPS_ABI_MSA)
{
unsigned int len;
int val;
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_GNU_MIPS_ABI_MSA: ");
switch (val)
{
case Val_GNU_MIPS_ABI_MSA_ANY:
printf (_("Any MSA or not\n"));
break;
case Val_GNU_MIPS_ABI_MSA_128:
printf (_("128-bit MSA\n"));
break;
default:
printf ("??? (%d)\n", val);
break;
}
return p;
}
return display_tag_value (tag & 1, p, end);
}
static unsigned char *
display_tic6x_attribute (unsigned char * p,
const unsigned char * const end)
{
int tag;
unsigned int len;
int val;
tag = read_uleb128 (p, &len, end);
p += len;
switch (tag)
{
case Tag_ISA:
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_ISA: ");
switch (val)
{
case C6XABI_Tag_ISA_none:
printf (_("None\n"));
break;
case C6XABI_Tag_ISA_C62X:
printf ("C62x\n");
break;
case C6XABI_Tag_ISA_C67X:
printf ("C67x\n");
break;
case C6XABI_Tag_ISA_C67XP:
printf ("C67x+\n");
break;
case C6XABI_Tag_ISA_C64X:
printf ("C64x\n");
break;
case C6XABI_Tag_ISA_C64XP:
printf ("C64x+\n");
break;
case C6XABI_Tag_ISA_C674X:
printf ("C674x\n");
break;
default:
printf ("??? (%d)\n", val);
break;
}
return p;
case Tag_ABI_wchar_t:
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_ABI_wchar_t: ");
switch (val)
{
case 0:
printf (_("Not used\n"));
break;
case 1:
printf (_("2 bytes\n"));
break;
case 2:
printf (_("4 bytes\n"));
break;
default:
printf ("??? (%d)\n", val);
break;
}
return p;
case Tag_ABI_stack_align_needed:
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_ABI_stack_align_needed: ");
switch (val)
{
case 0:
printf (_("8-byte\n"));
break;
case 1:
printf (_("16-byte\n"));
break;
default:
printf ("??? (%d)\n", val);
break;
}
return p;
case Tag_ABI_stack_align_preserved:
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_ABI_stack_align_preserved: ");
switch (val)
{
case 0:
printf (_("8-byte\n"));
break;
case 1:
printf (_("16-byte\n"));
break;
default:
printf ("??? (%d)\n", val);
break;
}
return p;
case Tag_ABI_DSBT:
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_ABI_DSBT: ");
switch (val)
{
case 0:
printf (_("DSBT addressing not used\n"));
break;
case 1:
printf (_("DSBT addressing used\n"));
break;
default:
printf ("??? (%d)\n", val);
break;
}
return p;
case Tag_ABI_PID:
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_ABI_PID: ");
switch (val)
{
case 0:
printf (_("Data addressing position-dependent\n"));
break;
case 1:
printf (_("Data addressing position-independent, GOT near DP\n"));
break;
case 2:
printf (_("Data addressing position-independent, GOT far from DP\n"));
break;
default:
printf ("??? (%d)\n", val);
break;
}
return p;
case Tag_ABI_PIC:
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_ABI_PIC: ");
switch (val)
{
case 0:
printf (_("Code addressing position-dependent\n"));
break;
case 1:
printf (_("Code addressing position-independent\n"));
break;
default:
printf ("??? (%d)\n", val);
break;
}
return p;
case Tag_ABI_array_object_alignment:
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_ABI_array_object_alignment: ");
switch (val)
{
case 0:
printf (_("8-byte\n"));
break;
case 1:
printf (_("4-byte\n"));
break;
case 2:
printf (_("16-byte\n"));
break;
default:
printf ("??? (%d)\n", val);
break;
}
return p;
case Tag_ABI_array_object_align_expected:
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_ABI_array_object_align_expected: ");
switch (val)
{
case 0:
printf (_("8-byte\n"));
break;
case 1:
printf (_("4-byte\n"));
break;
case 2:
printf (_("16-byte\n"));
break;
default:
printf ("??? (%d)\n", val);
break;
}
return p;
case Tag_ABI_compatibility:
{
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_ABI_compatibility: ");
printf (_("flag = %d, vendor = "), val);
if (p < end - 1)
{
size_t maxlen = (end - p) - 1;
print_symbol ((int) maxlen, (const char *) p);
p += strnlen ((char *) p, maxlen) + 1;
}
else
{
printf (_("<corrupt>"));
p = (unsigned char *) end;
}
putchar ('\n');
return p;
}
case Tag_ABI_conformance:
{
printf (" Tag_ABI_conformance: \"");
if (p < end - 1)
{
size_t maxlen = (end - p) - 1;
print_symbol ((int) maxlen, (const char *) p);
p += strnlen ((char *) p, maxlen) + 1;
}
else
{
printf (_("<corrupt>"));
p = (unsigned char *) end;
}
printf ("\"\n");
return p;
}
}
return display_tag_value (tag, p, end);
}
static void
display_raw_attribute (unsigned char * p, unsigned char * end)
{
unsigned long addr = 0;
size_t bytes = end - p;
assert (end > p);
while (bytes)
{
int j;
int k;
int lbytes = (bytes > 16 ? 16 : bytes);
printf (" 0x%8.8lx ", addr);
for (j = 0; j < 16; j++)
{
if (j < lbytes)
printf ("%2.2x", p[j]);
else
printf (" ");
if ((j & 3) == 3)
printf (" ");
}
for (j = 0; j < lbytes; j++)
{
k = p[j];
if (k >= ' ' && k < 0x7f)
printf ("%c", k);
else
printf (".");
}
putchar ('\n');
p += lbytes;
bytes -= lbytes;
addr += lbytes;
}
putchar ('\n');
}
static unsigned char *
display_msp430x_attribute (unsigned char * p,
const unsigned char * const end)
{
unsigned int len;
int val;
int tag;
tag = read_uleb128 (p, & len, end);
p += len;
switch (tag)
{
case OFBA_MSPABI_Tag_ISA:
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_ISA: ");
switch (val)
{
case 0: printf (_("None\n")); break;
case 1: printf (_("MSP430\n")); break;
case 2: printf (_("MSP430X\n")); break;
default: printf ("??? (%d)\n", val); break;
}
break;
case OFBA_MSPABI_Tag_Code_Model:
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_Code_Model: ");
switch (val)
{
case 0: printf (_("None\n")); break;
case 1: printf (_("Small\n")); break;
case 2: printf (_("Large\n")); break;
default: printf ("??? (%d)\n", val); break;
}
break;
case OFBA_MSPABI_Tag_Data_Model:
val = read_uleb128 (p, &len, end);
p += len;
printf (" Tag_Data_Model: ");
switch (val)
{
case 0: printf (_("None\n")); break;
case 1: printf (_("Small\n")); break;
case 2: printf (_("Large\n")); break;
case 3: printf (_("Restricted Large\n")); break;
default: printf ("??? (%d)\n", val); break;
}
break;
default:
printf (_(" <unknown tag %d>: "), tag);
if (tag & 1)
{
putchar ('"');
if (p < end - 1)
{
size_t maxlen = (end - p) - 1;
print_symbol ((int) maxlen, (const char *) p);
p += strnlen ((char *) p, maxlen) + 1;
}
else
{
printf (_("<corrupt>"));
p = (unsigned char *) end;
}
printf ("\"\n");
}
else
{
val = read_uleb128 (p, &len, end);
p += len;
printf ("%d (0x%x)\n", val, val);
}
break;
}
assert (p <= end);
return p;
}
static int
process_attributes (FILE * file,
const char * public_name,
unsigned int proc_type,
unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const))
{
Elf_Internal_Shdr * sect;
unsigned i;
/* Find the section header so that we get the size. */
for (i = 0, sect = section_headers;
i < elf_header.e_shnum;
i++, sect++)
{
unsigned char * contents;
unsigned char * p;
if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
continue;
contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
sect->sh_size, _("attributes"));
if (contents == NULL)
continue;
p = contents;
if (*p == 'A')
{
bfd_vma section_len;
section_len = sect->sh_size - 1;
p++;
while (section_len > 0)
{
bfd_vma attr_len;
unsigned int namelen;
bfd_boolean public_section;
bfd_boolean gnu_section;
if (section_len <= 4)
{
error (_("Tag section ends prematurely\n"));
break;
}
attr_len = byte_get (p, 4);
p += 4;
if (attr_len > section_len)
{
error (_("Bad attribute length (%u > %u)\n"),
(unsigned) attr_len, (unsigned) section_len);
attr_len = section_len;
}
/* PR 17531: file: 001-101425-0.004 */
else if (attr_len < 5)
{
error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
break;
}
section_len -= attr_len;
attr_len -= 4;
namelen = strnlen ((char *) p, attr_len) + 1;
if (namelen == 0 || namelen >= attr_len)
{
error (_("Corrupt attribute section name\n"));
break;
}
printf (_("Attribute Section: "));
print_symbol (INT_MAX, (const char *) p);
putchar ('\n');
if (public_name && streq ((char *) p, public_name))
public_section = TRUE;
else
public_section = FALSE;
if (streq ((char *) p, "gnu"))
gnu_section = TRUE;
else
gnu_section = FALSE;
p += namelen;
attr_len -= namelen;
while (attr_len > 0 && p < contents + sect->sh_size)
{
int tag;
int val;
bfd_vma size;
unsigned char * end;
/* PR binutils/17531: Safe handling of corrupt files. */
if (attr_len < 6)
{
error (_("Unused bytes at end of section\n"));
section_len = 0;
break;
}
tag = *(p++);
size = byte_get (p, 4);
if (size > attr_len)
{
error (_("Bad subsection length (%u > %u)\n"),
(unsigned) size, (unsigned) attr_len);
size = attr_len;
}
/* PR binutils/17531: Safe handling of corrupt files. */
if (size < 6)
{
error (_("Bad subsection length (%u < 6)\n"),
(unsigned) size);
section_len = 0;
break;
}
attr_len -= size;
end = p + size - 1;
assert (end <= contents + sect->sh_size);
p += 4;
switch (tag)
{
case 1:
printf (_("File Attributes\n"));
break;
case 2:
printf (_("Section Attributes:"));
goto do_numlist;
case 3:
printf (_("Symbol Attributes:"));
do_numlist:
for (;;)
{
unsigned int j;
val = read_uleb128 (p, &j, end);
p += j;
if (val == 0)
break;
printf (" %d", val);
}
printf ("\n");
break;
default:
printf (_("Unknown tag: %d\n"), tag);
public_section = FALSE;
break;
}
if (public_section && display_pub_attribute != NULL)
{
while (p < end)
p = display_pub_attribute (p, end);
assert (p <= end);
}
else if (gnu_section && display_proc_gnu_attribute != NULL)
{
while (p < end)
p = display_gnu_attribute (p,
display_proc_gnu_attribute,
end);
assert (p <= end);
}
else if (p < end)
{
printf (_(" Unknown attribute:\n"));
display_raw_attribute (p, end);
p = end;
}
else
attr_len = 0;
}
}
}
else
printf (_("Unknown format '%c' (%d)\n"), *p, *p);
free (contents);
}
return 1;
}
static int
process_arm_specific (FILE * file)
{
return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
display_arm_attribute, NULL);
}
static int
process_power_specific (FILE * file)
{
return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
display_power_gnu_attribute);
}
static int
process_s390_specific (FILE * file)
{
return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
display_s390_gnu_attribute);
}
static int
process_sparc_specific (FILE * file)
{
return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
display_sparc_gnu_attribute);
}
static int
process_tic6x_specific (FILE * file)
{
return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
display_tic6x_attribute, NULL);
}
static int
process_msp430x_specific (FILE * file)
{
return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
display_msp430x_attribute, NULL);
}
/* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
Print the Address, Access and Initial fields of an entry at VMA ADDR
and return the VMA of the next entry, or -1 if there was a problem.
Does not read from DATA_END or beyond. */
static bfd_vma
print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
unsigned char * data_end)
{
printf (" ");
print_vma (addr, LONG_HEX);
printf (" ");
if (addr < pltgot + 0xfff0)
printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
else
printf ("%10s", "");
printf (" ");
if (data == NULL)
printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
else
{
bfd_vma entry;
unsigned char * from = data + addr - pltgot;
if (from + (is_32bit_elf ? 4 : 8) > data_end)
{
warn (_("MIPS GOT entry extends beyond the end of available data\n"));
printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
return (bfd_vma) -1;
}
else
{
entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
print_vma (entry, LONG_HEX);
}
}
return addr + (is_32bit_elf ? 4 : 8);
}
/* DATA points to the contents of a MIPS PLT GOT that starts at VMA
PLTGOT. Print the Address and Initial fields of an entry at VMA
ADDR and return the VMA of the next entry. */
static bfd_vma
print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
{
printf (" ");
print_vma (addr, LONG_HEX);
printf (" ");
if (data == NULL)
printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
else
{
bfd_vma entry;
entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
print_vma (entry, LONG_HEX);
}
return addr + (is_32bit_elf ? 4 : 8);
}
static void
print_mips_ases (unsigned int mask)
{
if (mask & AFL_ASE_DSP)
fputs ("\n\tDSP ASE", stdout);
if (mask & AFL_ASE_DSPR2)
fputs ("\n\tDSP R2 ASE", stdout);
if (mask & AFL_ASE_DSPR3)
fputs ("\n\tDSP R3 ASE", stdout);
if (mask & AFL_ASE_EVA)
fputs ("\n\tEnhanced VA Scheme", stdout);
if (mask & AFL_ASE_MCU)
fputs ("\n\tMCU (MicroController) ASE", stdout);
if (mask & AFL_ASE_MDMX)
fputs ("\n\tMDMX ASE", stdout);
if (mask & AFL_ASE_MIPS3D)
fputs ("\n\tMIPS-3D ASE", stdout);
if (mask & AFL_ASE_MT)
fputs ("\n\tMT ASE", stdout);
if (mask & AFL_ASE_SMARTMIPS)
fputs ("\n\tSmartMIPS ASE", stdout);
if (mask & AFL_ASE_VIRT)
fputs ("\n\tVZ ASE", stdout);
if (mask & AFL_ASE_MSA)
fputs ("\n\tMSA ASE", stdout);
if (mask & AFL_ASE_MIPS16)
fputs ("\n\tMIPS16 ASE", stdout);
if (mask & AFL_ASE_MICROMIPS)
fputs ("\n\tMICROMIPS ASE", stdout);
if (mask & AFL_ASE_XPA)
fputs ("\n\tXPA ASE", stdout);
if (mask == 0)
fprintf (stdout, "\n\t%s", _("None"));
else if ((mask & ~AFL_ASE_MASK) != 0)
fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
}
static void
print_mips_isa_ext (unsigned int isa_ext)
{
switch (isa_ext)
{
case 0:
fputs (_("None"), stdout);
break;
case AFL_EXT_XLR:
fputs ("RMI XLR", stdout);
break;
case AFL_EXT_OCTEON3:
fputs ("Cavium Networks Octeon3", stdout);
break;
case AFL_EXT_OCTEON2:
fputs ("Cavium Networks Octeon2", stdout);
break;
case AFL_EXT_OCTEONP:
fputs ("Cavium Networks OcteonP", stdout);
break;
case AFL_EXT_LOONGSON_3A:
fputs ("Loongson 3A", stdout);
break;
case AFL_EXT_OCTEON:
fputs ("Cavium Networks Octeon", stdout);
break;
case AFL_EXT_5900:
fputs ("Toshiba R5900", stdout);
break;
case AFL_EXT_4650:
fputs ("MIPS R4650", stdout);
break;
case AFL_EXT_4010:
fputs ("LSI R4010", stdout);
break;
case AFL_EXT_4100:
fputs ("NEC VR4100", stdout);
break;
case AFL_EXT_3900:
fputs ("Toshiba R3900", stdout);
break;
case AFL_EXT_10000:
fputs ("MIPS R10000", stdout);
break;
case AFL_EXT_SB1:
fputs ("Broadcom SB-1", stdout);
break;
case AFL_EXT_4111:
fputs ("NEC VR4111/VR4181", stdout);
break;
case AFL_EXT_4120:
fputs ("NEC VR4120", stdout);
break;
case AFL_EXT_5400:
fputs ("NEC VR5400", stdout);
break;
case AFL_EXT_5500:
fputs ("NEC VR5500", stdout);
break;
case AFL_EXT_LOONGSON_2E:
fputs ("ST Microelectronics Loongson 2E", stdout);
break;
case AFL_EXT_LOONGSON_2F:
fputs ("ST Microelectronics Loongson 2F", stdout);
break;
default:
fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
}
}
static int
get_mips_reg_size (int reg_size)
{
return (reg_size == AFL_REG_NONE) ? 0
: (reg_size == AFL_REG_32) ? 32
: (reg_size == AFL_REG_64) ? 64
: (reg_size == AFL_REG_128) ? 128
: -1;
}
static int
process_mips_specific (FILE * file)
{
Elf_Internal_Dyn * entry;
Elf_Internal_Shdr *sect = NULL;
size_t liblist_offset = 0;
size_t liblistno = 0;
size_t conflictsno = 0;
size_t options_offset = 0;
size_t conflicts_offset = 0;
size_t pltrelsz = 0;
size_t pltrel = 0;
bfd_vma pltgot = 0;
bfd_vma mips_pltgot = 0;
bfd_vma jmprel = 0;
bfd_vma local_gotno = 0;
bfd_vma gotsym = 0;
bfd_vma symtabno = 0;
process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
display_mips_gnu_attribute);
sect = find_section (".MIPS.abiflags");
if (sect != NULL)
{
Elf_External_ABIFlags_v0 *abiflags_ext;
Elf_Internal_ABIFlags_v0 abiflags_in;
if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
fputs ("\nCorrupt ABI Flags section.\n", stdout);
else
{
abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
sect->sh_size, _("MIPS ABI Flags section"));
if (abiflags_ext)
{
abiflags_in.version = BYTE_GET (abiflags_ext->version);
abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
printf ("\nISA: MIPS%d", abiflags_in.isa_level);
if (abiflags_in.isa_rev > 1)
printf ("r%d", abiflags_in.isa_rev);
printf ("\nGPR size: %d",
get_mips_reg_size (abiflags_in.gpr_size));
printf ("\nCPR1 size: %d",
get_mips_reg_size (abiflags_in.cpr1_size));
printf ("\nCPR2 size: %d",
get_mips_reg_size (abiflags_in.cpr2_size));
fputs ("\nFP ABI: ", stdout);
print_mips_fp_abi_value (abiflags_in.fp_abi);
fputs ("ISA Extension: ", stdout);
print_mips_isa_ext (abiflags_in.isa_ext);
fputs ("\nASEs:", stdout);
print_mips_ases (abiflags_in.ases);
printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
fputc ('\n', stdout);
free (abiflags_ext);
}
}
}
/* We have a lot of special sections. Thanks SGI! */
if (dynamic_section == NULL)
/* No information available. */
return 0;
for (entry = dynamic_section;
/* PR 17531 file: 012-50589-0.004. */
entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
++entry)
switch (entry->d_tag)
{
case DT_MIPS_LIBLIST:
liblist_offset
= offset_from_vma (file, entry->d_un.d_val,
liblistno * sizeof (Elf32_External_Lib));
break;
case DT_MIPS_LIBLISTNO:
liblistno = entry->d_un.d_val;
break;
case DT_MIPS_OPTIONS:
options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
break;
case DT_MIPS_CONFLICT:
conflicts_offset
= offset_from_vma (file, entry->d_un.d_val,
conflictsno * sizeof (Elf32_External_Conflict));
break;
case DT_MIPS_CONFLICTNO:
conflictsno = entry->d_un.d_val;
break;
case DT_PLTGOT:
pltgot = entry->d_un.d_ptr;
break;
case DT_MIPS_LOCAL_GOTNO:
local_gotno = entry->d_un.d_val;
break;
case DT_MIPS_GOTSYM:
gotsym = entry->d_un.d_val;
break;
case DT_MIPS_SYMTABNO:
symtabno = entry->d_un.d_val;
break;
case DT_MIPS_PLTGOT:
mips_pltgot = entry->d_un.d_ptr;
break;
case DT_PLTREL:
pltrel = entry->d_un.d_val;
break;
case DT_PLTRELSZ:
pltrelsz = entry->d_un.d_val;
break;
case DT_JMPREL:
jmprel = entry->d_un.d_ptr;
break;
default:
break;
}
if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
{
Elf32_External_Lib * elib;
size_t cnt;
elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
liblistno,
sizeof (Elf32_External_Lib),
_("liblist section data"));
if (elib)
{
printf (_("\nSection '.liblist' contains %lu entries:\n"),
(unsigned long) liblistno);
fputs (_(" Library Time Stamp Checksum Version Flags\n"),
stdout);
for (cnt = 0; cnt < liblistno; ++cnt)
{
Elf32_Lib liblist;
time_t atime;
char timebuf[128];
struct tm * tmp;
liblist.l_name = BYTE_GET (elib[cnt].l_name);
atime = BYTE_GET (elib[cnt].l_time_stamp);
liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
liblist.l_version = BYTE_GET (elib[cnt].l_version);
liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
tmp = gmtime (&atime);
snprintf (timebuf, sizeof (timebuf),
"%04u-%02u-%02uT%02u:%02u:%02u",
tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
printf ("%3lu: ", (unsigned long) cnt);
if (VALID_DYNAMIC_NAME (liblist.l_name))
print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
else
printf (_("<corrupt: %9ld>"), liblist.l_name);
printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
liblist.l_version);
if (liblist.l_flags == 0)
puts (_(" NONE"));
else
{
static const struct
{
const char * name;
int bit;
}
l_flags_vals[] =
{
{ " EXACT_MATCH", LL_EXACT_MATCH },
{ " IGNORE_INT_VER", LL_IGNORE_INT_VER },
{ " REQUIRE_MINOR", LL_REQUIRE_MINOR },
{ " EXPORTS", LL_EXPORTS },
{ " DELAY_LOAD", LL_DELAY_LOAD },
{ " DELTA", LL_DELTA }
};
int flags = liblist.l_flags;
size_t fcnt;
for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
if ((flags & l_flags_vals[fcnt].bit) != 0)
{
fputs (l_flags_vals[fcnt].name, stdout);
flags ^= l_flags_vals[fcnt].bit;
}
if (flags != 0)
printf (" %#x", (unsigned int) flags);
puts ("");
}
}
free (elib);
}
}
if (options_offset != 0)
{
Elf_External_Options * eopt;
Elf_Internal_Options * iopt;
Elf_Internal_Options * option;
size_t offset;
int cnt;
sect = section_headers;
/* Find the section header so that we get the size. */
sect = find_section_by_type (SHT_MIPS_OPTIONS);
/* PR 17533 file: 012-277276-0.004. */
if (sect == NULL)
{
error (_("No MIPS_OPTIONS header found\n"));
return 0;
}
eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
sect->sh_size, _("options"));
if (eopt)
{
iopt = (Elf_Internal_Options *)
cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
if (iopt == NULL)
{
error (_("Out of memory allocatinf space for MIPS options\n"));
return 0;
}
offset = cnt = 0;
option = iopt;
while (offset <= sect->sh_size - sizeof (* eopt))
{
Elf_External_Options * eoption;
eoption = (Elf_External_Options *) ((char *) eopt + offset);
option->kind = BYTE_GET (eoption->kind);
option->size = BYTE_GET (eoption->size);
option->section = BYTE_GET (eoption->section);
option->info = BYTE_GET (eoption->info);
/* PR 17531: file: ffa0fa3b. */
if (option->size < sizeof (* eopt)
|| offset + option->size > sect->sh_size)
{
error (_("Invalid size (%u) for MIPS option\n"), option->size);
return 0;
}
offset += option->size;
++option;
++cnt;
}
printf (_("\nSection '%s' contains %d entries:\n"),
printable_section_name (sect), cnt);
option = iopt;
offset = 0;
while (cnt-- > 0)
{
size_t len;
switch (option->kind)
{
case ODK_NULL:
/* This shouldn't happen. */
printf (" NULL %d %lx", option->section, option->info);
break;
case ODK_REGINFO:
printf (" REGINFO ");
if (elf_header.e_machine == EM_MIPS)
{
/* 32bit form. */
Elf32_External_RegInfo * ereg;
Elf32_RegInfo reginfo;
ereg = (Elf32_External_RegInfo *) (option + 1);
reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
printf ("GPR %08lx GP 0x%lx\n",
reginfo.ri_gprmask,
(unsigned long) reginfo.ri_gp_value);
printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
}
else
{
/* 64 bit form. */
Elf64_External_RegInfo * ereg;
Elf64_Internal_RegInfo reginfo;
ereg = (Elf64_External_RegInfo *) (option + 1);
reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
printf ("GPR %08lx GP 0x",
reginfo.ri_gprmask);
printf_vma (reginfo.ri_gp_value);
printf ("\n");
printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
}
++option;
continue;
case ODK_EXCEPTIONS:
fputs (" EXCEPTIONS fpe_min(", stdout);
process_mips_fpe_exception (option->info & OEX_FPU_MIN);
fputs (") fpe_max(", stdout);
process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
fputs (")", stdout);
if (option->info & OEX_PAGE0)
fputs (" PAGE0", stdout);
if (option->info & OEX_SMM)
fputs (" SMM", stdout);
if (option->info & OEX_FPDBUG)
fputs (" FPDBUG", stdout);
if (option->info & OEX_DISMISS)
fputs (" DISMISS", stdout);
break;
case ODK_PAD:
fputs (" PAD ", stdout);
if (option->info & OPAD_PREFIX)
fputs (" PREFIX", stdout);
if (option->info & OPAD_POSTFIX)
fputs (" POSTFIX", stdout);
if (option->info & OPAD_SYMBOL)
fputs (" SYMBOL", stdout);
break;
case ODK_HWPATCH:
fputs (" HWPATCH ", stdout);
if (option->info & OHW_R4KEOP)
fputs (" R4KEOP", stdout);
if (option->info & OHW_R8KPFETCH)
fputs (" R8KPFETCH", stdout);
if (option->info & OHW_R5KEOP)
fputs (" R5KEOP", stdout);
if (option->info & OHW_R5KCVTL)
fputs (" R5KCVTL", stdout);
break;
case ODK_FILL:
fputs (" FILL ", stdout);
/* XXX Print content of info word? */
break;
case ODK_TAGS:
fputs (" TAGS ", stdout);
/* XXX Print content of info word? */
break;
case ODK_HWAND:
fputs (" HWAND ", stdout);
if (option->info & OHWA0_R4KEOP_CHECKED)
fputs (" R4KEOP_CHECKED", stdout);
if (option->info & OHWA0_R4KEOP_CLEAN)
fputs (" R4KEOP_CLEAN", stdout);
break;
case ODK_HWOR:
fputs (" HWOR ", stdout);
if (option->info & OHWA0_R4KEOP_CHECKED)
fputs (" R4KEOP_CHECKED", stdout);
if (option->info & OHWA0_R4KEOP_CLEAN)
fputs (" R4KEOP_CLEAN", stdout);
break;
case ODK_GP_GROUP:
printf (" GP_GROUP %#06lx self-contained %#06lx",
option->info & OGP_GROUP,
(option->info & OGP_SELF) >> 16);
break;
case ODK_IDENT:
printf (" IDENT %#06lx self-contained %#06lx",
option->info & OGP_GROUP,
(option->info & OGP_SELF) >> 16);
break;
default:
/* This shouldn't happen. */
printf (" %3d ??? %d %lx",
option->kind, option->section, option->info);
break;
}
len = sizeof (* eopt);
while (len < option->size)
{
unsigned char datum = * ((unsigned char *) eopt + offset + len);
if (ISPRINT (datum))
printf ("%c", datum);
else
printf ("\\%03o", datum);
len ++;
}
fputs ("\n", stdout);
offset += option->size;
++option;
}
free (eopt);
}
}
if (conflicts_offset != 0 && conflictsno != 0)
{
Elf32_Conflict * iconf;
size_t cnt;
if (dynamic_symbols == NULL)
{
error (_("conflict list found without a dynamic symbol table\n"));
return 0;
}
iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
if (iconf == NULL)
{
error (_("Out of memory allocating space for dynamic conflicts\n"));
return 0;
}
if (is_32bit_elf)
{
Elf32_External_Conflict * econf32;
econf32 = (Elf32_External_Conflict *)
get_data (NULL, file, conflicts_offset, conflictsno,
sizeof (* econf32), _("conflict"));
if (!econf32)
return 0;
for (cnt = 0; cnt < conflictsno; ++cnt)
iconf[cnt] = BYTE_GET (econf32[cnt]);
free (econf32);
}
else
{
Elf64_External_Conflict * econf64;
econf64 = (Elf64_External_Conflict *)
get_data (NULL, file, conflicts_offset, conflictsno,
sizeof (* econf64), _("conflict"));
if (!econf64)
return 0;
for (cnt = 0; cnt < conflictsno; ++cnt)
iconf[cnt] = BYTE_GET (econf64[cnt]);
free (econf64);
}
printf (_("\nSection '.conflict' contains %lu entries:\n"),
(unsigned long) conflictsno);
puts (_(" Num: Index Value Name"));
for (cnt = 0; cnt < conflictsno; ++cnt)
{
printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
if (iconf[cnt] >= num_dynamic_syms)
printf (_("<corrupt symbol index>"));
else
{
Elf_Internal_Sym * psym;
psym = & dynamic_symbols[iconf[cnt]];
print_vma (psym->st_value, FULL_HEX);
putchar (' ');
if (VALID_DYNAMIC_NAME (psym->st_name))
print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
else
printf (_("<corrupt: %14ld>"), psym->st_name);
}
putchar ('\n');
}
free (iconf);
}
if (pltgot != 0 && local_gotno != 0)
{
bfd_vma ent, local_end, global_end;
size_t i, offset;
unsigned char * data;
unsigned char * data_end;
int addr_size;
ent = pltgot;
addr_size = (is_32bit_elf ? 4 : 8);
local_end = pltgot + local_gotno * addr_size;
/* PR binutils/17533 file: 012-111227-0.004 */
if (symtabno < gotsym)
{
error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
(unsigned long) gotsym, (unsigned long) symtabno);
return 0;
}
global_end = local_end + (symtabno - gotsym) * addr_size;
/* PR 17531: file: 54c91a34. */
if (global_end < local_end)
{
error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
return 0;
}
offset = offset_from_vma (file, pltgot, global_end - pltgot);
data = (unsigned char *) get_data (NULL, file, offset,
global_end - pltgot, 1,
_("Global Offset Table data"));
if (data == NULL)
return 0;
data_end = data + (global_end - pltgot);
printf (_("\nPrimary GOT:\n"));
printf (_(" Canonical gp value: "));
print_vma (pltgot + 0x7ff0, LONG_HEX);
printf ("\n\n");
printf (_(" Reserved entries:\n"));
printf (_(" %*s %10s %*s Purpose\n"),
addr_size * 2, _("Address"), _("Access"),
addr_size * 2, _("Initial"));
ent = print_mips_got_entry (data, pltgot, ent, data_end);
printf (_(" Lazy resolver\n"));
if (ent == (bfd_vma) -1)
goto got_print_fail;
if (data
&& (byte_get (data + ent - pltgot, addr_size)
>> (addr_size * 8 - 1)) != 0)
{
ent = print_mips_got_entry (data, pltgot, ent, data_end);
printf (_(" Module pointer (GNU extension)\n"));
if (ent == (bfd_vma) -1)
goto got_print_fail;
}
printf ("\n");
if (ent < local_end)
{
printf (_(" Local entries:\n"));
printf (" %*s %10s %*s\n",
addr_size * 2, _("Address"), _("Access"),
addr_size * 2, _("Initial"));
while (ent < local_end)
{
ent = print_mips_got_entry (data, pltgot, ent, data_end);
printf ("\n");
if (ent == (bfd_vma) -1)
goto got_print_fail;
}
printf ("\n");
}
if (gotsym < symtabno)
{
int sym_width;
printf (_(" Global entries:\n"));
printf (" %*s %10s %*s %*s %-7s %3s %s\n",
addr_size * 2, _("Address"),
_("Access"),
addr_size * 2, _("Initial"),
addr_size * 2, _("Sym.Val."),
_("Type"),
/* Note for translators: "Ndx" = abbreviated form of "Index". */
_("Ndx"), _("Name"));
sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
for (i = gotsym; i < symtabno; i++)
{
ent = print_mips_got_entry (data, pltgot, ent, data_end);
printf (" ");
if (dynamic_symbols == NULL)
printf (_("<no dynamic symbols>"));
else if (i < num_dynamic_syms)
{
Elf_Internal_Sym * psym = dynamic_symbols + i;
print_vma (psym->st_value, LONG_HEX);
printf (" %-7s %3s ",
get_symbol_type (ELF_ST_TYPE (psym->st_info)),
get_symbol_index_type (psym->st_shndx));
if (VALID_DYNAMIC_NAME (psym->st_name))
print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
else
printf (_("<corrupt: %14ld>"), psym->st_name);
}
else
printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
(unsigned long) i);
printf ("\n");
if (ent == (bfd_vma) -1)
break;
}
printf ("\n");
}
got_print_fail:
if (data)
free (data);
}
if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
{
bfd_vma ent, end;
size_t offset, rel_offset;
unsigned long count, i;
unsigned char * data;
int addr_size, sym_width;
Elf_Internal_Rela * rels;
rel_offset = offset_from_vma (file, jmprel, pltrelsz);
if (pltrel == DT_RELA)
{
if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
return 0;
}
else
{
if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
return 0;
}
ent = mips_pltgot;
addr_size = (is_32bit_elf ? 4 : 8);
end = mips_pltgot + (2 + count) * addr_size;
offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
1, _("Procedure Linkage Table data"));
if (data == NULL)
return 0;
printf ("\nPLT GOT:\n\n");
printf (_(" Reserved entries:\n"));
printf (_(" %*s %*s Purpose\n"),
addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
printf (_(" PLT lazy resolver\n"));
ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
printf (_(" Module pointer\n"));
printf ("\n");
printf (_(" Entries:\n"));
printf (" %*s %*s %*s %-7s %3s %s\n",
addr_size * 2, _("Address"),
addr_size * 2, _("Initial"),
addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
for (i = 0; i < count; i++)
{
unsigned long idx = get_reloc_symindex (rels[i].r_info);
ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
printf (" ");
if (idx >= num_dynamic_syms)
printf (_("<corrupt symbol index: %lu>"), idx);
else
{
Elf_Internal_Sym * psym = dynamic_symbols + idx;
print_vma (psym->st_value, LONG_HEX);
printf (" %-7s %3s ",
get_symbol_type (ELF_ST_TYPE (psym->st_info)),
get_symbol_index_type (psym->st_shndx));
if (VALID_DYNAMIC_NAME (psym->st_name))
print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
else
printf (_("<corrupt: %14ld>"), psym->st_name);
}
printf ("\n");
}
printf ("\n");
if (data)
free (data);
free (rels);
}
return 1;
}
static int
process_nds32_specific (FILE * file)
{
Elf_Internal_Shdr *sect = NULL;
sect = find_section (".nds32_e_flags");
if (sect != NULL)
{
unsigned int *flag;
printf ("\nNDS32 elf flags section:\n");
flag = get_data (NULL, file, sect->sh_offset, 1,
sect->sh_size, _("NDS32 elf flags section"));
switch ((*flag) & 0x3)
{
case 0:
printf ("(VEC_SIZE):\tNo entry.\n");
break;
case 1:
printf ("(VEC_SIZE):\t4 bytes\n");
break;
case 2:
printf ("(VEC_SIZE):\t16 bytes\n");
break;
case 3:
printf ("(VEC_SIZE):\treserved\n");
break;
}
}
return TRUE;
}
static int
process_gnu_liblist (FILE * file)
{
Elf_Internal_Shdr * section;
Elf_Internal_Shdr * string_sec;
Elf32_External_Lib * elib;
char * strtab;
size_t strtab_size;
size_t cnt;
unsigned i;
if (! do_arch)
return 0;
for (i = 0, section = section_headers;
i < elf_header.e_shnum;
i++, section++)
{
switch (section->sh_type)
{
case SHT_GNU_LIBLIST:
if (section->sh_link >= elf_header.e_shnum)
break;
elib = (Elf32_External_Lib *)
get_data (NULL, file, section->sh_offset, 1, section->sh_size,
_("liblist section data"));
if (elib == NULL)
break;
string_sec = section_headers + section->sh_link;
strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
string_sec->sh_size,
_("liblist string table"));
if (strtab == NULL
|| section->sh_entsize != sizeof (Elf32_External_Lib))
{
free (elib);
free (strtab);
break;
}
strtab_size = string_sec->sh_size;
printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
printable_section_name (section),
(unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
puts (_(" Library Time Stamp Checksum Version Flags"));
for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
++cnt)
{
Elf32_Lib liblist;
time_t atime;
char timebuf[128];
struct tm * tmp;
liblist.l_name = BYTE_GET (elib[cnt].l_name);
atime = BYTE_GET (elib[cnt].l_time_stamp);
liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
liblist.l_version = BYTE_GET (elib[cnt].l_version);
liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
tmp = gmtime (&atime);
snprintf (timebuf, sizeof (timebuf),
"%04u-%02u-%02uT%02u:%02u:%02u",
tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
printf ("%3lu: ", (unsigned long) cnt);
if (do_wide)
printf ("%-20s", liblist.l_name < strtab_size
? strtab + liblist.l_name : _("<corrupt>"));
else
printf ("%-20.20s", liblist.l_name < strtab_size
? strtab + liblist.l_name : _("<corrupt>"));
printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
liblist.l_version, liblist.l_flags);
}
free (elib);
free (strtab);
}
}
return 1;
}
static const char *
get_note_type (unsigned e_type)
{
static char buff[64];
if (elf_header.e_type == ET_CORE)
switch (e_type)
{
case NT_AUXV:
return _("NT_AUXV (auxiliary vector)");
case NT_PRSTATUS:
return _("NT_PRSTATUS (prstatus structure)");
case NT_FPREGSET:
return _("NT_FPREGSET (floating point registers)");
case NT_PRPSINFO:
return _("NT_PRPSINFO (prpsinfo structure)");
case NT_TASKSTRUCT:
return _("NT_TASKSTRUCT (task structure)");
case NT_PRXFPREG:
return _("NT_PRXFPREG (user_xfpregs structure)");
case NT_PPC_VMX:
return _("NT_PPC_VMX (ppc Altivec registers)");
case NT_PPC_VSX:
return _("NT_PPC_VSX (ppc VSX registers)");
case NT_386_TLS:
return _("NT_386_TLS (x86 TLS information)");
case NT_386_IOPERM:
return _("NT_386_IOPERM (x86 I/O permissions)");
case NT_X86_XSTATE:
return _("NT_X86_XSTATE (x86 XSAVE extended state)");
case NT_S390_HIGH_GPRS:
return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
case NT_S390_TIMER:
return _("NT_S390_TIMER (s390 timer register)");
case NT_S390_TODCMP:
return _("NT_S390_TODCMP (s390 TOD comparator register)");
case NT_S390_TODPREG:
return _("NT_S390_TODPREG (s390 TOD programmable register)");
case NT_S390_CTRS:
return _("NT_S390_CTRS (s390 control registers)");
case NT_S390_PREFIX:
return _("NT_S390_PREFIX (s390 prefix register)");
case NT_S390_LAST_BREAK:
return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
case NT_S390_SYSTEM_CALL:
return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
case NT_S390_TDB:
return _("NT_S390_TDB (s390 transaction diagnostic block)");
case NT_S390_VXRS_LOW:
return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
case NT_S390_VXRS_HIGH:
return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
case NT_ARM_VFP:
return _("NT_ARM_VFP (arm VFP registers)");
case NT_ARM_TLS:
return _("NT_ARM_TLS (AArch TLS registers)");
case NT_ARM_HW_BREAK:
return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
case NT_ARM_HW_WATCH:
return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
case NT_PSTATUS:
return _("NT_PSTATUS (pstatus structure)");
case NT_FPREGS:
return _("NT_FPREGS (floating point registers)");
case NT_PSINFO:
return _("NT_PSINFO (psinfo structure)");
case NT_LWPSTATUS:
return _("NT_LWPSTATUS (lwpstatus_t structure)");
case NT_LWPSINFO:
return _("NT_LWPSINFO (lwpsinfo_t structure)");
case NT_WIN32PSTATUS:
return _("NT_WIN32PSTATUS (win32_pstatus structure)");
case NT_SIGINFO:
return _("NT_SIGINFO (siginfo_t data)");
case NT_FILE:
return _("NT_FILE (mapped files)");
default:
break;
}
else
switch (e_type)
{
case NT_VERSION:
return _("NT_VERSION (version)");
case NT_ARCH:
return _("NT_ARCH (architecture)");
default:
break;
}
snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
return buff;
}
static int
print_core_note (Elf_Internal_Note *pnote)
{
unsigned int addr_size = is_32bit_elf ? 4 : 8;
bfd_vma count, page_size;
unsigned char *descdata, *filenames, *descend;
if (pnote->type != NT_FILE)
return 1;
#ifndef BFD64
if (!is_32bit_elf)
{
printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
/* Still "successful". */
return 1;
}
#endif
if (pnote->descsz < 2 * addr_size)
{
printf (_(" Malformed note - too short for header\n"));
return 0;
}
descdata = (unsigned char *) pnote->descdata;
descend = descdata + pnote->descsz;
if (descdata[pnote->descsz - 1] != '\0')
{
printf (_(" Malformed note - does not end with \\0\n"));
return 0;
}
count = byte_get (descdata, addr_size);
descdata += addr_size;
page_size = byte_get (descdata, addr_size);
descdata += addr_size;
if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
{
printf (_(" Malformed note - too short for supplied file count\n"));
return 0;
}
printf (_(" Page size: "));
print_vma (page_size, DEC);
printf ("\n");
printf (_(" %*s%*s%*s\n"),
(int) (2 + 2 * addr_size), _("Start"),
(int) (4 + 2 * addr_size), _("End"),
(int) (4 + 2 * addr_size), _("Page Offset"));
filenames = descdata + count * 3 * addr_size;
while (count-- > 0)
{
bfd_vma start, end, file_ofs;
if (filenames == descend)
{
printf (_(" Malformed note - filenames end too early\n"));
return 0;
}
start = byte_get (descdata, addr_size);
descdata += addr_size;
end = byte_get (descdata, addr_size);
descdata += addr_size;
file_ofs = byte_get (descdata, addr_size);
descdata += addr_size;
printf (" ");
print_vma (start, FULL_HEX);
printf (" ");
print_vma (end, FULL_HEX);
printf (" ");
print_vma (file_ofs, FULL_HEX);
printf ("\n %s\n", filenames);
filenames += 1 + strlen ((char *) filenames);
}
return 1;
}
static const char *
get_gnu_elf_note_type (unsigned e_type)
{
static char buff[64];
switch (e_type)
{
case NT_GNU_ABI_TAG:
return _("NT_GNU_ABI_TAG (ABI version tag)");
case NT_GNU_HWCAP:
return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
case NT_GNU_BUILD_ID:
return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
case NT_GNU_GOLD_VERSION:
return _("NT_GNU_GOLD_VERSION (gold version)");
default:
break;
}
snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
return buff;
}
static int
print_gnu_note (Elf_Internal_Note *pnote)
{
switch (pnote->type)
{
case NT_GNU_BUILD_ID:
{
unsigned long i;
printf (_(" Build ID: "));
for (i = 0; i < pnote->descsz; ++i)
printf ("%02x", pnote->descdata[i] & 0xff);
printf ("\n");
}
break;
case NT_GNU_ABI_TAG:
{
unsigned long os, major, minor, subminor;
const char *osname;
/* PR 17531: file: 030-599401-0.004. */
if (pnote->descsz < 16)
{
printf (_(" <corrupt GNU_ABI_TAG>\n"));
break;
}
os = byte_get ((unsigned char *) pnote->descdata, 4);
major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
switch (os)
{
case GNU_ABI_TAG_LINUX:
osname = "Linux";
break;
case GNU_ABI_TAG_HURD:
osname = "Hurd";
break;
case GNU_ABI_TAG_SOLARIS:
osname = "Solaris";
break;
case GNU_ABI_TAG_FREEBSD:
osname = "FreeBSD";
break;
case GNU_ABI_TAG_NETBSD:
osname = "NetBSD";
break;
case GNU_ABI_TAG_SYLLABLE:
osname = "Syllable";
break;
case GNU_ABI_TAG_NACL:
osname = "NaCl";
break;
default:
osname = "Unknown";
break;
}
printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
major, minor, subminor);
}
break;
case NT_GNU_GOLD_VERSION:
{
unsigned long i;
printf (_(" Version: "));
for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
printf ("%c", pnote->descdata[i]);
printf ("\n");
}
break;
}
return 1;
}
static const char *
get_v850_elf_note_type (enum v850_notes n_type)
{
static char buff[64];
switch (n_type)
{
case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
case V850_NOTE_CACHE_INFO: return _("Use of cache");
case V850_NOTE_MMU_INFO: return _("Use of MMU");
default:
snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
return buff;
}
}
static int
print_v850_note (Elf_Internal_Note * pnote)
{
unsigned int val;
if (pnote->descsz != 4)
return 0;
val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
if (val == 0)
{
printf (_("not set\n"));
return 1;
}
switch (pnote->type)
{
case V850_NOTE_ALIGNMENT:
switch (val)
{
case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return 1;
case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return 1;
}
break;
case V850_NOTE_DATA_SIZE:
switch (val)
{
case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return 1;
case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return 1;
}
break;
case V850_NOTE_FPU_INFO:
switch (val)
{
case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return 1;
case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return 1;
}
break;
case V850_NOTE_MMU_INFO:
case V850_NOTE_CACHE_INFO:
case V850_NOTE_SIMD_INFO:
if (val == EF_RH850_SIMD)
{
printf (_("yes\n"));
return 1;
}
break;
default:
/* An 'unknown note type' message will already have been displayed. */
break;
}
printf (_("unknown value: %x\n"), val);
return 0;
}
static int
process_netbsd_elf_note (Elf_Internal_Note * pnote)
{
unsigned int version;
switch (pnote->type)
{
case NT_NETBSD_IDENT:
version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
if ((version / 10000) % 100)
printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
version, version / 100000000, (version / 1000000) % 100,
(version / 10000) % 100 > 26 ? "Z" : "",
'A' + (version / 10000) % 26);
else
printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
version, version / 100000000, (version / 1000000) % 100,
(version / 100) % 100);
return 1;
case NT_NETBSD_MARCH:
printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
pnote->descdata);
return 1;
default:
break;
}
printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
pnote->type);
return 1;
}
static const char *
get_freebsd_elfcore_note_type (unsigned e_type)
{
switch (e_type)
{
case NT_FREEBSD_THRMISC:
return _("NT_THRMISC (thrmisc structure)");
case NT_FREEBSD_PROCSTAT_PROC:
return _("NT_PROCSTAT_PROC (proc data)");
case NT_FREEBSD_PROCSTAT_FILES:
return _("NT_PROCSTAT_FILES (files data)");
case NT_FREEBSD_PROCSTAT_VMMAP:
return _("NT_PROCSTAT_VMMAP (vmmap data)");
case NT_FREEBSD_PROCSTAT_GROUPS:
return _("NT_PROCSTAT_GROUPS (groups data)");
case NT_FREEBSD_PROCSTAT_UMASK:
return _("NT_PROCSTAT_UMASK (umask data)");
case NT_FREEBSD_PROCSTAT_RLIMIT:
return _("NT_PROCSTAT_RLIMIT (rlimit data)");
case NT_FREEBSD_PROCSTAT_OSREL:
return _("NT_PROCSTAT_OSREL (osreldate data)");
case NT_FREEBSD_PROCSTAT_PSSTRINGS:
return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
case NT_FREEBSD_PROCSTAT_AUXV:
return _("NT_PROCSTAT_AUXV (auxv data)");
}
return get_note_type (e_type);
}
static const char *
get_netbsd_elfcore_note_type (unsigned e_type)
{
static char buff[64];
if (e_type == NT_NETBSDCORE_PROCINFO)
{
/* NetBSD core "procinfo" structure. */
return _("NetBSD procinfo structure");
}
/* As of Jan 2002 there are no other machine-independent notes
defined for NetBSD core files. If the note type is less
than the start of the machine-dependent note types, we don't
understand it. */
if (e_type < NT_NETBSDCORE_FIRSTMACH)
{
snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
return buff;
}
switch (elf_header.e_machine)
{
/* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
and PT_GETFPREGS == mach+2. */
case EM_OLD_ALPHA:
case EM_ALPHA:
case EM_SPARC:
case EM_SPARC32PLUS:
case EM_SPARCV9:
switch (e_type)
{
case NT_NETBSDCORE_FIRSTMACH + 0:
return _("PT_GETREGS (reg structure)");
case NT_NETBSDCORE_FIRSTMACH + 2:
return _("PT_GETFPREGS (fpreg structure)");
default:
break;
}
break;
/* On all other arch's, PT_GETREGS == mach+1 and
PT_GETFPREGS == mach+3. */
default:
switch (e_type)
{
case NT_NETBSDCORE_FIRSTMACH + 1:
return _("PT_GETREGS (reg structure)");
case NT_NETBSDCORE_FIRSTMACH + 3:
return _("PT_GETFPREGS (fpreg structure)");
default:
break;
}
}
snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
e_type - NT_NETBSDCORE_FIRSTMACH);
return buff;
}
static const char *
get_stapsdt_note_type (unsigned e_type)
{
static char buff[64];
switch (e_type)
{
case NT_STAPSDT:
return _("NT_STAPSDT (SystemTap probe descriptors)");
default:
break;
}
snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
return buff;
}
static int
print_stapsdt_note (Elf_Internal_Note *pnote)
{
int addr_size = is_32bit_elf ? 4 : 8;
char *data = pnote->descdata;
char *data_end = pnote->descdata + pnote->descsz;
bfd_vma pc, base_addr, semaphore;
char *provider, *probe, *arg_fmt;
pc = byte_get ((unsigned char *) data, addr_size);
data += addr_size;
base_addr = byte_get ((unsigned char *) data, addr_size);
data += addr_size;
semaphore = byte_get ((unsigned char *) data, addr_size);
data += addr_size;
provider = data;
data += strlen (data) + 1;
probe = data;
data += strlen (data) + 1;
arg_fmt = data;
data += strlen (data) + 1;
printf (_(" Provider: %s\n"), provider);
printf (_(" Name: %s\n"), probe);
printf (_(" Location: "));
print_vma (pc, FULL_HEX);
printf (_(", Base: "));
print_vma (base_addr, FULL_HEX);
printf (_(", Semaphore: "));
print_vma (semaphore, FULL_HEX);
printf ("\n");
printf (_(" Arguments: %s\n"), arg_fmt);
return data == data_end;
}
static const char *
get_ia64_vms_note_type (unsigned e_type)
{
static char buff[64];
switch (e_type)
{
case NT_VMS_MHD:
return _("NT_VMS_MHD (module header)");
case NT_VMS_LNM:
return _("NT_VMS_LNM (language name)");
case NT_VMS_SRC:
return _("NT_VMS_SRC (source files)");
case NT_VMS_TITLE:
return "NT_VMS_TITLE";
case NT_VMS_EIDC:
return _("NT_VMS_EIDC (consistency check)");
case NT_VMS_FPMODE:
return _("NT_VMS_FPMODE (FP mode)");
case NT_VMS_LINKTIME:
return "NT_VMS_LINKTIME";
case NT_VMS_IMGNAM:
return _("NT_VMS_IMGNAM (image name)");
case NT_VMS_IMGID:
return _("NT_VMS_IMGID (image id)");
case NT_VMS_LINKID:
return _("NT_VMS_LINKID (link id)");
case NT_VMS_IMGBID:
return _("NT_VMS_IMGBID (build id)");
case NT_VMS_GSTNAM:
return _("NT_VMS_GSTNAM (sym table name)");
case NT_VMS_ORIG_DYN:
return "NT_VMS_ORIG_DYN";
case NT_VMS_PATCHTIME:
return "NT_VMS_PATCHTIME";
default:
snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
return buff;
}
}
static int
print_ia64_vms_note (Elf_Internal_Note * pnote)
{
switch (pnote->type)
{
case NT_VMS_MHD:
if (pnote->descsz > 36)
{
size_t l = strlen (pnote->descdata + 34);
printf (_(" Creation date : %.17s\n"), pnote->descdata);
printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
printf (_(" Module name : %s\n"), pnote->descdata + 34);
printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
}
else
printf (_(" Invalid size\n"));
break;
case NT_VMS_LNM:
printf (_(" Language: %s\n"), pnote->descdata);
break;
#ifdef BFD64
case NT_VMS_FPMODE:
printf (_(" Floating Point mode: "));
printf ("0x%016" BFD_VMA_FMT "x\n",
(bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
break;
case NT_VMS_LINKTIME:
printf (_(" Link time: "));
print_vms_time
((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
printf ("\n");
break;
case NT_VMS_PATCHTIME:
printf (_(" Patch time: "));
print_vms_time
((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
printf ("\n");
break;
case NT_VMS_ORIG_DYN:
printf (_(" Major id: %u, minor id: %u\n"),
(unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
(unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
printf (_(" Last modified : "));
print_vms_time
((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
printf (_("\n Link flags : "));
printf ("0x%016" BFD_VMA_FMT "x\n",
(bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
printf (_(" Header flags: 0x%08x\n"),
(unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
printf (_(" Image id : %s\n"), pnote->descdata + 32);
break;
#endif
case NT_VMS_IMGNAM:
printf (_(" Image name: %s\n"), pnote->descdata);
break;
case NT_VMS_GSTNAM:
printf (_(" Global symbol table name: %s\n"), pnote->descdata);
break;
case NT_VMS_IMGID:
printf (_(" Image id: %s\n"), pnote->descdata);
break;
case NT_VMS_LINKID:
printf (_(" Linker id: %s\n"), pnote->descdata);
break;
default:
break;
}
return 1;
}
/* Note that by the ELF standard, the name field is already null byte
terminated, and namesz includes the terminating null byte.
I.E. the value of namesz for the name "FSF" is 4.
If the value of namesz is zero, there is no name present. */
static int
process_note (Elf_Internal_Note * pnote)
{
const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
const char * nt;
if (pnote->namesz == 0)
/* If there is no note name, then use the default set of
note type strings. */
nt = get_note_type (pnote->type);
else if (const_strneq (pnote->namedata, "GNU"))
/* GNU-specific object file notes. */
nt = get_gnu_elf_note_type (pnote->type);
else if (const_strneq (pnote->namedata, "FreeBSD"))
/* FreeBSD-specific core file notes. */
nt = get_freebsd_elfcore_note_type (pnote->type);
else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
/* NetBSD-specific core file notes. */
nt = get_netbsd_elfcore_note_type (pnote->type);
else if (const_strneq (pnote->namedata, "NetBSD"))
/* NetBSD-specific core file notes. */
return process_netbsd_elf_note (pnote);
else if (strneq (pnote->namedata, "SPU/", 4))
{
/* SPU-specific core file notes. */
nt = pnote->namedata + 4;
name = "SPU";
}
else if (const_strneq (pnote->namedata, "IPF/VMS"))
/* VMS/ia64-specific file notes. */
nt = get_ia64_vms_note_type (pnote->type);
else if (const_strneq (pnote->namedata, "stapsdt"))
nt = get_stapsdt_note_type (pnote->type);
else
/* Don't recognize this note name; just use the default set of
note type strings. */
nt = get_note_type (pnote->type);
printf (" %-20s 0x%08lx\t%s\n", name, pnote->descsz, nt);
if (const_strneq (pnote->namedata, "IPF/VMS"))
return print_ia64_vms_note (pnote);
else if (const_strneq (pnote->namedata, "GNU"))
return print_gnu_note (pnote);
else if (const_strneq (pnote->namedata, "stapsdt"))
return print_stapsdt_note (pnote);
else if (const_strneq (pnote->namedata, "CORE"))
return print_core_note (pnote);
else
return 1;
}
static int
process_corefile_note_segment (FILE * file, bfd_vma offset, bfd_vma length)
{
Elf_External_Note * pnotes;
Elf_External_Note * external;
char * end;
int res = 1;
if (length <= 0)
return 0;
pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
_("notes"));
if (pnotes == NULL)
return 0;
external = pnotes;
printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
(unsigned long) offset, (unsigned long) length);
printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
end = (char *) pnotes + length;
while ((char *) external < end)
{
Elf_Internal_Note inote;
size_t min_notesz;
char *next;
char * temp = NULL;
size_t data_remaining = end - (char *) external;
if (!is_ia64_vms ())
{
/* PR binutils/15191
Make sure that there is enough data to read. */
min_notesz = offsetof (Elf_External_Note, name);
if (data_remaining < min_notesz)
{
warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
(int) data_remaining);
break;
}
inote.type = BYTE_GET (external->type);
inote.namesz = BYTE_GET (external->namesz);
inote.namedata = external->name;
inote.descsz = BYTE_GET (external->descsz);
inote.descdata = inote.namedata + align_power (inote.namesz, 2);
/* PR 17531: file: 3443835e. */
if (inote.descdata < (char *) pnotes || inote.descdata > end)
{
warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
inote.descdata = inote.namedata;
inote.namesz = 0;
}
inote.descpos = offset + (inote.descdata - (char *) pnotes);
next = inote.descdata + align_power (inote.descsz, 2);
}
else
{
Elf64_External_VMS_Note *vms_external;
/* PR binutils/15191
Make sure that there is enough data to read. */
min_notesz = offsetof (Elf64_External_VMS_Note, name);
if (data_remaining < min_notesz)
{
warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
(int) data_remaining);
break;
}
vms_external = (Elf64_External_VMS_Note *) external;
inote.type = BYTE_GET (vms_external->type);
inote.namesz = BYTE_GET (vms_external->namesz);
inote.namedata = vms_external->name;
inote.descsz = BYTE_GET (vms_external->descsz);
inote.descdata = inote.namedata + align_power (inote.namesz, 3);
inote.descpos = offset + (inote.descdata - (char *) pnotes);
next = inote.descdata + align_power (inote.descsz, 3);
}
if (inote.descdata < (char *) external + min_notesz
|| next < (char *) external + min_notesz
/* PR binutils/17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
|| inote.namedata + inote.namesz < inote.namedata
|| inote.descdata + inote.descsz < inote.descdata
|| data_remaining < (size_t)(next - (char *) external))
{
warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
(unsigned long) ((char *) external - (char *) pnotes));
warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
inote.type, inote.namesz, inote.descsz);
break;
}
external = (Elf_External_Note *) next;
/* Verify that name is null terminated. It appears that at least
one version of Linux (RedHat 6.0) generates corefiles that don't
comply with the ELF spec by failing to include the null byte in
namesz. */
if (inote.namedata[inote.namesz - 1] != '\0')
{
temp = (char *) malloc (inote.namesz + 1);
if (temp == NULL)
{
error (_("Out of memory allocating space for inote name\n"));
res = 0;
break;
}
strncpy (temp, inote.namedata, inote.namesz);
temp[inote.namesz] = 0;
/* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
inote.namedata = temp;
}
res &= process_note (& inote);
if (temp != NULL)
{
free (temp);
temp = NULL;
}
}
free (pnotes);
return res;
}
static int
process_corefile_note_segments (FILE * file)
{
Elf_Internal_Phdr * segment;
unsigned int i;
int res = 1;
if (! get_program_headers (file))
return 0;
for (i = 0, segment = program_headers;
i < elf_header.e_phnum;
i++, segment++)
{
if (segment->p_type == PT_NOTE)
res &= process_corefile_note_segment (file,
(bfd_vma) segment->p_offset,
(bfd_vma) segment->p_filesz);
}
return res;
}
static int
process_v850_notes (FILE * file, bfd_vma offset, bfd_vma length)
{
Elf_External_Note * pnotes;
Elf_External_Note * external;
char * end;
int res = 1;
if (length <= 0)
return 0;
pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
_("v850 notes"));
if (pnotes == NULL)
return 0;
external = pnotes;
end = (char*) pnotes + length;
printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
(unsigned long) offset, (unsigned long) length);
while ((char *) external + sizeof (Elf_External_Note) < end)
{
Elf_External_Note * next;
Elf_Internal_Note inote;
inote.type = BYTE_GET (external->type);
inote.namesz = BYTE_GET (external->namesz);
inote.namedata = external->name;
inote.descsz = BYTE_GET (external->descsz);
inote.descdata = inote.namedata + align_power (inote.namesz, 2);
inote.descpos = offset + (inote.descdata - (char *) pnotes);
if (inote.descdata < (char *) pnotes || inote.descdata >= end)
{
warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
inote.descdata = inote.namedata;
inote.namesz = 0;
}
next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
if ( ((char *) next > end)
|| ((char *) next < (char *) pnotes))
{
warn (_("corrupt descsz found in note at offset 0x%lx\n"),
(unsigned long) ((char *) external - (char *) pnotes));
warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
inote.type, inote.namesz, inote.descsz);
break;
}
external = next;
/* Prevent out-of-bounds indexing. */
if ( inote.namedata + inote.namesz > end
|| inote.namedata + inote.namesz < inote.namedata)
{
warn (_("corrupt namesz found in note at offset 0x%lx\n"),
(unsigned long) ((char *) external - (char *) pnotes));
warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
inote.type, inote.namesz, inote.descsz);
break;
}
printf (" %s: ", get_v850_elf_note_type (inote.type));
if (! print_v850_note (& inote))
{
res = 0;
printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
inote.namesz, inote.descsz);
}
}
free (pnotes);
return res;
}
static int
process_note_sections (FILE * file)
{
Elf_Internal_Shdr * section;
unsigned long i;
int n = 0;
int res = 1;
for (i = 0, section = section_headers;
i < elf_header.e_shnum && section != NULL;
i++, section++)
{
if (section->sh_type == SHT_NOTE)
{
res &= process_corefile_note_segment (file,
(bfd_vma) section->sh_offset,
(bfd_vma) section->sh_size);
n++;
}
if (( elf_header.e_machine == EM_V800
|| elf_header.e_machine == EM_V850
|| elf_header.e_machine == EM_CYGNUS_V850)
&& section->sh_type == SHT_RENESAS_INFO)
{
res &= process_v850_notes (file,
(bfd_vma) section->sh_offset,
(bfd_vma) section->sh_size);
n++;
}
}
if (n == 0)
/* Try processing NOTE segments instead. */
return process_corefile_note_segments (file);
return res;
}
static int
process_notes (FILE * file)
{
/* If we have not been asked to display the notes then do nothing. */
if (! do_notes)
return 1;
if (elf_header.e_type != ET_CORE)
return process_note_sections (file);
/* No program headers means no NOTE segment. */
if (elf_header.e_phnum > 0)
return process_corefile_note_segments (file);
printf (_("No note segments present in the core file.\n"));
return 1;
}
static int
process_arch_specific (FILE * file)
{
if (! do_arch)
return 1;
switch (elf_header.e_machine)
{
case EM_ARM:
return process_arm_specific (file);
case EM_MIPS:
case EM_MIPS_RS3_LE:
return process_mips_specific (file);
break;
case EM_NDS32:
return process_nds32_specific (file);
break;
case EM_PPC:
return process_power_specific (file);
break;
case EM_S390:
case EM_S390_OLD:
return process_s390_specific (file);
break;
case EM_SPARC:
case EM_SPARC32PLUS:
case EM_SPARCV9:
return process_sparc_specific (file);
break;
case EM_TI_C6000:
return process_tic6x_specific (file);
break;
case EM_MSP430:
return process_msp430x_specific (file);
default:
break;
}
return 1;
}
static int
get_file_header (FILE * file)
{
/* Read in the identity array. */
if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
return 0;
/* Determine how to read the rest of the header. */
switch (elf_header.e_ident[EI_DATA])
{
default: /* fall through */
case ELFDATANONE: /* fall through */
case ELFDATA2LSB:
byte_get = byte_get_little_endian;
byte_put = byte_put_little_endian;
break;
case ELFDATA2MSB:
byte_get = byte_get_big_endian;
byte_put = byte_put_big_endian;
break;
}
/* For now we only support 32 bit and 64 bit ELF files. */
is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
/* Read in the rest of the header. */
if (is_32bit_elf)
{
Elf32_External_Ehdr ehdr32;
if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
return 0;
elf_header.e_type = BYTE_GET (ehdr32.e_type);
elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
elf_header.e_version = BYTE_GET (ehdr32.e_version);
elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
}
else
{
Elf64_External_Ehdr ehdr64;
/* If we have been compiled with sizeof (bfd_vma) == 4, then
we will not be able to cope with the 64bit data found in
64 ELF files. Detect this now and abort before we start
overwriting things. */
if (sizeof (bfd_vma) < 8)
{
error (_("This instance of readelf has been built without support for a\n\
64 bit data type and so it cannot read 64 bit ELF files.\n"));
return 0;
}
if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
return 0;
elf_header.e_type = BYTE_GET (ehdr64.e_type);
elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
elf_header.e_version = BYTE_GET (ehdr64.e_version);
elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
}
if (elf_header.e_shoff)
{
/* There may be some extensions in the first section header. Don't
bomb if we can't read it. */
if (is_32bit_elf)
get_32bit_section_headers (file, TRUE);
else
get_64bit_section_headers (file, TRUE);
}
return 1;
}
/* Process one ELF object file according to the command line options.
This file may actually be stored in an archive. The file is
positioned at the start of the ELF object. */
static int
process_object (char * file_name, FILE * file)
{
unsigned int i;
if (! get_file_header (file))
{
error (_("%s: Failed to read file header\n"), file_name);
return 1;
}
/* Initialise per file variables. */
for (i = ARRAY_SIZE (version_info); i--;)
version_info[i] = 0;
for (i = ARRAY_SIZE (dynamic_info); i--;)
dynamic_info[i] = 0;
dynamic_info_DT_GNU_HASH = 0;
/* Process the file. */
if (show_name)
printf (_("\nFile: %s\n"), file_name);
/* Initialise the dump_sects array from the cmdline_dump_sects array.
Note we do this even if cmdline_dump_sects is empty because we
must make sure that the dump_sets array is zeroed out before each
object file is processed. */
if (num_dump_sects > num_cmdline_dump_sects)
memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
if (num_cmdline_dump_sects > 0)
{
if (num_dump_sects == 0)
/* A sneaky way of allocating the dump_sects array. */
request_dump_bynumber (num_cmdline_dump_sects, 0);
assert (num_dump_sects >= num_cmdline_dump_sects);
memcpy (dump_sects, cmdline_dump_sects,
num_cmdline_dump_sects * sizeof (* dump_sects));
}
if (! process_file_header ())
return 1;
if (! process_section_headers (file))
{
/* Without loaded section headers we cannot process lots of
things. */
do_unwind = do_version = do_dump = do_arch = 0;
if (! do_using_dynamic)
do_syms = do_dyn_syms = do_reloc = 0;
}
if (! process_section_groups (file))
{
/* Without loaded section groups we cannot process unwind. */
do_unwind = 0;
}
if (process_program_headers (file))
process_dynamic_section (file);
process_relocs (file);
process_unwind (file);
process_symbol_table (file);
process_syminfo (file);
process_version_sections (file);
process_section_contents (file);
process_notes (file);
process_gnu_liblist (file);
process_arch_specific (file);
if (program_headers)
{
free (program_headers);
program_headers = NULL;
}
if (section_headers)
{
free (section_headers);
section_headers = NULL;
}
if (string_table)
{
free (string_table);
string_table = NULL;
string_table_length = 0;
}
if (dynamic_strings)
{
free (dynamic_strings);
dynamic_strings = NULL;
dynamic_strings_length = 0;
}
if (dynamic_symbols)
{
free (dynamic_symbols);
dynamic_symbols = NULL;
num_dynamic_syms = 0;
}
if (dynamic_syminfo)
{
free (dynamic_syminfo);
dynamic_syminfo = NULL;
}
if (dynamic_section)
{
free (dynamic_section);
dynamic_section = NULL;
}
if (section_headers_groups)
{
free (section_headers_groups);
section_headers_groups = NULL;
}
if (section_groups)
{
struct group_list * g;
struct group_list * next;
for (i = 0; i < group_count; i++)
{
for (g = section_groups [i].root; g != NULL; g = next)
{
next = g->next;
free (g);
}
}
free (section_groups);
section_groups = NULL;
}
free_debug_memory ();
return 0;
}
/* Process an ELF archive.
On entry the file is positioned just after the ARMAG string. */
static int
process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
{
struct archive_info arch;
struct archive_info nested_arch;
size_t got;
int ret;
show_name = 1;
/* The ARCH structure is used to hold information about this archive. */
arch.file_name = NULL;
arch.file = NULL;
arch.index_array = NULL;
arch.sym_table = NULL;
arch.longnames = NULL;
/* The NESTED_ARCH structure is used as a single-item cache of information
about a nested archive (when members of a thin archive reside within
another regular archive file). */
nested_arch.file_name = NULL;
nested_arch.file = NULL;
nested_arch.index_array = NULL;
nested_arch.sym_table = NULL;
nested_arch.longnames = NULL;
if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
{
ret = 1;
goto out;
}
if (do_archive_index)
{
if (arch.sym_table == NULL)
error (_("%s: unable to dump the index as none was found\n"), file_name);
else
{
unsigned long i, l;
unsigned long current_pos;
printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
file_name, (unsigned long) arch.index_num, arch.sym_size);
current_pos = ftell (file);
for (i = l = 0; i < arch.index_num; i++)
{
if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
{
char * member_name;
member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
if (member_name != NULL)
{
char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
if (qualified_name != NULL)
{
printf (_("Contents of binary %s at offset "), qualified_name);
(void) print_vma (arch.index_array[i], PREFIX_HEX);
putchar ('\n');
free (qualified_name);
}
}
}
if (l >= arch.sym_size)
{
error (_("%s: end of the symbol table reached before the end of the index\n"),
file_name);
break;
}
/* PR 17531: file: 0b6630b2. */
printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
}
if (arch.uses_64bit_indicies)
l = (l + 7) & ~ 7;
else
l += l & 1;
if (l < arch.sym_size)
error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
file_name, arch.sym_size - l);
if (fseek (file, current_pos, SEEK_SET) != 0)
{
error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
ret = 1;
goto out;
}
}
if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
&& !do_segments && !do_header && !do_dump && !do_version
&& !do_histogram && !do_debugging && !do_arch && !do_notes
&& !do_section_groups && !do_dyn_syms)
{
ret = 0; /* Archive index only. */
goto out;
}
}
ret = 0;
while (1)
{
char * name;
size_t namelen;
char * qualified_name;
/* Read the next archive header. */
if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
{
error (_("%s: failed to seek to next archive header\n"), file_name);
return 1;
}
got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
if (got != sizeof arch.arhdr)
{
if (got == 0)
break;
error (_("%s: failed to read archive header\n"), file_name);
ret = 1;
break;
}
if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
{
error (_("%s: did not find a valid archive header\n"), arch.file_name);
ret = 1;
break;
}
arch.next_arhdr_offset += sizeof arch.arhdr;
archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
if (archive_file_size & 01)
++archive_file_size;
name = get_archive_member_name (&arch, &nested_arch);
if (name == NULL)
{
error (_("%s: bad archive file name\n"), file_name);
ret = 1;
break;
}
namelen = strlen (name);
qualified_name = make_qualified_name (&arch, &nested_arch, name);
if (qualified_name == NULL)
{
error (_("%s: bad archive file name\n"), file_name);
ret = 1;
break;
}
if (is_thin_archive && arch.nested_member_origin == 0)
{
/* This is a proxy for an external member of a thin archive. */
FILE * member_file;
char * member_file_name = adjust_relative_path (file_name, name, namelen);
if (member_file_name == NULL)
{
ret = 1;
break;
}
member_file = fopen (member_file_name, "rb");
if (member_file == NULL)
{
error (_("Input file '%s' is not readable.\n"), member_file_name);
free (member_file_name);
ret = 1;
break;
}
archive_file_offset = arch.nested_member_origin;
ret |= process_object (qualified_name, member_file);
fclose (member_file);
free (member_file_name);
}
else if (is_thin_archive)
{
/* PR 15140: Allow for corrupt thin archives. */
if (nested_arch.file == NULL)
{
error (_("%s: contains corrupt thin archive: %s\n"),
file_name, name);
ret = 1;
break;
}
/* This is a proxy for a member of a nested archive. */
archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
/* The nested archive file will have been opened and setup by
get_archive_member_name. */
if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
{
error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
ret = 1;
break;
}
ret |= process_object (qualified_name, nested_arch.file);
}
else
{
archive_file_offset = arch.next_arhdr_offset;
arch.next_arhdr_offset += archive_file_size;
ret |= process_object (qualified_name, file);
}
if (dump_sects != NULL)
{
free (dump_sects);
dump_sects = NULL;
num_dump_sects = 0;
}
free (qualified_name);
}
out:
if (nested_arch.file != NULL)
fclose (nested_arch.file);
release_archive (&nested_arch);
release_archive (&arch);
return ret;
}
static int
process_file (char * file_name)
{
FILE * file;
struct stat statbuf;
char armag[SARMAG];
int ret;
if (stat (file_name, &statbuf) < 0)
{
if (errno == ENOENT)
error (_("'%s': No such file\n"), file_name);
else
error (_("Could not locate '%s'. System error message: %s\n"),
file_name, strerror (errno));
return 1;
}
if (! S_ISREG (statbuf.st_mode))
{
error (_("'%s' is not an ordinary file\n"), file_name);
return 1;
}
file = fopen (file_name, "rb");
if (file == NULL)
{
error (_("Input file '%s' is not readable.\n"), file_name);
return 1;
}
if (fread (armag, SARMAG, 1, file) != 1)
{
error (_("%s: Failed to read file's magic number\n"), file_name);
fclose (file);
return 1;
}
current_file_size = (bfd_size_type) statbuf.st_size;
if (memcmp (armag, ARMAG, SARMAG) == 0)
ret = process_archive (file_name, file, FALSE);
else if (memcmp (armag, ARMAGT, SARMAG) == 0)
ret = process_archive (file_name, file, TRUE);
else
{
if (do_archive_index)
error (_("File %s is not an archive so its index cannot be displayed.\n"),
file_name);
rewind (file);
archive_file_size = archive_file_offset = 0;
ret = process_object (file_name, file);
}
fclose (file);
current_file_size = 0;
return ret;
}
#ifdef SUPPORT_DISASSEMBLY
/* Needed by the i386 disassembler. For extra credit, someone could
fix this so that we insert symbolic addresses here, esp for GOT/PLT
symbols. */
void
print_address (unsigned int addr, FILE * outfile)
{
fprintf (outfile,"0x%8.8x", addr);
}
/* Needed by the i386 disassembler. */
void
db_task_printsym (unsigned int addr)
{
print_address (addr, stderr);
}
#endif
int
main (int argc, char ** argv)
{
int err;
#if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
setlocale (LC_MESSAGES, "");
#endif
#if defined (HAVE_SETLOCALE)
setlocale (LC_CTYPE, "");
#endif
bindtextdomain (PACKAGE, LOCALEDIR);
textdomain (PACKAGE);
expandargv (&argc, &argv);
parse_args (argc, argv);
if (num_dump_sects > 0)
{
/* Make a copy of the dump_sects array. */
cmdline_dump_sects = (dump_type *)
malloc (num_dump_sects * sizeof (* dump_sects));
if (cmdline_dump_sects == NULL)
error (_("Out of memory allocating dump request table.\n"));
else
{
memcpy (cmdline_dump_sects, dump_sects,
num_dump_sects * sizeof (* dump_sects));
num_cmdline_dump_sects = num_dump_sects;
}
}
if (optind < (argc - 1))
show_name = 1;
else if (optind >= argc)
{
warn (_("Nothing to do.\n"));
usage (stderr);
}
err = 0;
while (optind < argc)
err |= process_file (argv[optind++]);
if (dump_sects != NULL)
free (dump_sects);
if (cmdline_dump_sects != NULL)
free (cmdline_dump_sects);
return err;
}