blob: ee49ec91f6f93f07acba41ba4788743457c9819f [file] [log] [blame]
// Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Source project : https://github.com/ismaelJimenez/cpp.leastsq
// Adapted to be used with google benchmark
#if !defined(MINIMAL_LEASTSQ_H_)
#define MINIMAL_LEASTSQ_H_
#include "benchmark/benchmark_api.h"
#include <vector>
#include <functional>
// This data structure will contain the result returned by MinimalLeastSq
// - coef : Estimated coeficient for the high-order term as
// interpolated from data.
// - rms : Normalized Root Mean Squared Error.
// - complexity : Scalability form (e.g. oN, oNLogN). In case a scalability
// form has been provided to MinimalLeastSq this will return
// the same value. In case BigO::oAuto has been selected, this
// parameter will return the best fitting curve detected.
struct LeastSq {
LeastSq() :
coef(0),
rms(0),
complexity(benchmark::oNone),
caption("") {}
double coef;
double rms;
benchmark::BigO complexity;
std::string caption;
};
// Find the coefficient for the high-order term in the running time, by
// minimizing the sum of squares of relative error.
LeastSq MinimalLeastSq(const std::vector<int>& n,
const std::vector<double>& time,
const benchmark::BigO complexity = benchmark::oAuto);
// This interface is currently not used from the oustide, but it has been provided
// for future upgrades. If in the future it is not needed to support Cxx03, then
// all the calculations could be upgraded to use lambdas because they are more
// powerful and provide a cleaner inferface than enumerators, but complete
// implementation with lambdas will not work for Cxx03 (e.g. lack of std::function).
// In case lambdas are implemented, the interface would be like :
// -> Complexity([](int n) {return n;};)
// and any arbitrary and valid equation would be allowed, but the option to calculate
// the best fit to the most common scalability curves will still be kept.
LeastSq CalculateLeastSq(const std::vector<int>& n,
const std::vector<double>& time,
std::function<double(int)> fitting_curve);
#endif