blob: 394db12153067b12eed4556fffc81c7c8a5cb86c [file] [log] [blame]
/*
* Copyright (C) 2005 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_SORTED_VECTOR_H
#define ANDROID_SORTED_VECTOR_H
#include <assert.h>
#include <stdint.h>
#include <sys/types.h>
#include <log/log.h>
#include <utils/TypeHelpers.h>
#include <utils/Vector.h>
#include <utils/VectorImpl.h>
// ---------------------------------------------------------------------------
namespace android {
// DO NOT USE: please use std::set
template <class TYPE>
class SortedVector : private SortedVectorImpl
{
friend class Vector<TYPE>;
public:
typedef TYPE value_type;
/*!
* Constructors and destructors
*/
SortedVector();
SortedVector(const SortedVector<TYPE>& rhs);
virtual ~SortedVector();
/*! copy operator */
const SortedVector<TYPE>& operator = (const SortedVector<TYPE>& rhs) const;
SortedVector<TYPE>& operator = (const SortedVector<TYPE>& rhs);
/*
* empty the vector
*/
inline void clear() { VectorImpl::clear(); }
/*!
* vector stats
*/
//! returns number of items in the vector
inline size_t size() const { return VectorImpl::size(); }
//! returns whether or not the vector is empty
inline bool isEmpty() const { return VectorImpl::isEmpty(); }
//! returns how many items can be stored without reallocating the backing store
inline size_t capacity() const { return VectorImpl::capacity(); }
//! sets the capacity. capacity can never be reduced less than size()
inline ssize_t setCapacity(size_t size) { return VectorImpl::setCapacity(size); }
/*!
* C-style array access
*/
//! read-only C-style access
inline const TYPE* array() const;
//! read-write C-style access. BE VERY CAREFUL when modifying the array
//! you must keep it sorted! You usually don't use this function.
TYPE* editArray();
//! finds the index of an item
ssize_t indexOf(const TYPE& item) const;
//! finds where this item should be inserted
size_t orderOf(const TYPE& item) const;
/*!
* accessors
*/
//! read-only access to an item at a given index
inline const TYPE& operator [] (size_t index) const;
//! alternate name for operator []
inline const TYPE& itemAt(size_t index) const;
//! stack-usage of the vector. returns the top of the stack (last element)
const TYPE& top() const;
/*!
* modifying the array
*/
//! add an item in the right place (and replace the one that is there)
ssize_t add(const TYPE& item);
//! editItemAt() MUST NOT change the order of this item
TYPE& editItemAt(size_t index) {
return *( static_cast<TYPE *>(VectorImpl::editItemLocation(index)) );
}
//! merges a vector into this one
ssize_t merge(const Vector<TYPE>& vector);
ssize_t merge(const SortedVector<TYPE>& vector);
//! removes an item
ssize_t remove(const TYPE&);
//! remove several items
inline ssize_t removeItemsAt(size_t index, size_t count = 1);
//! remove one item
inline ssize_t removeAt(size_t index) { return removeItemsAt(index); }
/*
* these inlines add some level of compatibility with STL.
*/
typedef TYPE* iterator;
typedef TYPE const* const_iterator;
inline iterator begin() { return editArray(); }
inline iterator end() { return editArray() + size(); }
inline const_iterator begin() const { return array(); }
inline const_iterator end() const { return array() + size(); }
inline void reserve(size_t n) { setCapacity(n); }
inline bool empty() const{ return isEmpty(); }
inline iterator erase(iterator pos) {
ssize_t index = removeItemsAt(pos-array());
return begin() + index;
}
protected:
virtual void do_construct(void* storage, size_t num) const;
virtual void do_destroy(void* storage, size_t num) const;
virtual void do_copy(void* dest, const void* from, size_t num) const;
virtual void do_splat(void* dest, const void* item, size_t num) const;
virtual void do_move_forward(void* dest, const void* from, size_t num) const;
virtual void do_move_backward(void* dest, const void* from, size_t num) const;
virtual int do_compare(const void* lhs, const void* rhs) const;
};
// ---------------------------------------------------------------------------
// No user serviceable parts from here...
// ---------------------------------------------------------------------------
template<class TYPE> inline
SortedVector<TYPE>::SortedVector()
: SortedVectorImpl(sizeof(TYPE),
((traits<TYPE>::has_trivial_ctor ? HAS_TRIVIAL_CTOR : 0)
|(traits<TYPE>::has_trivial_dtor ? HAS_TRIVIAL_DTOR : 0)
|(traits<TYPE>::has_trivial_copy ? HAS_TRIVIAL_COPY : 0))
)
{
}
template<class TYPE> inline
SortedVector<TYPE>::SortedVector(const SortedVector<TYPE>& rhs)
: SortedVectorImpl(rhs) {
}
template<class TYPE> inline
SortedVector<TYPE>::~SortedVector() {
finish_vector();
}
template<class TYPE> inline
SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) {
SortedVectorImpl::operator = (rhs);
return *this;
}
template<class TYPE> inline
const SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const {
SortedVectorImpl::operator = (rhs);
return *this;
}
template<class TYPE> inline
const TYPE* SortedVector<TYPE>::array() const {
return static_cast<const TYPE *>(arrayImpl());
}
template<class TYPE> inline
TYPE* SortedVector<TYPE>::editArray() {
return static_cast<TYPE *>(editArrayImpl());
}
template<class TYPE> inline
const TYPE& SortedVector<TYPE>::operator[](size_t index) const {
LOG_FATAL_IF(index>=size(),
"%s: index=%u out of range (%u)", __PRETTY_FUNCTION__,
int(index), int(size()));
return *(array() + index);
}
template<class TYPE> inline
const TYPE& SortedVector<TYPE>::itemAt(size_t index) const {
return operator[](index);
}
template<class TYPE> inline
const TYPE& SortedVector<TYPE>::top() const {
return *(array() + size() - 1);
}
template<class TYPE> inline
ssize_t SortedVector<TYPE>::add(const TYPE& item) {
return SortedVectorImpl::add(&item);
}
template<class TYPE> inline
ssize_t SortedVector<TYPE>::indexOf(const TYPE& item) const {
return SortedVectorImpl::indexOf(&item);
}
template<class TYPE> inline
size_t SortedVector<TYPE>::orderOf(const TYPE& item) const {
return SortedVectorImpl::orderOf(&item);
}
template<class TYPE> inline
ssize_t SortedVector<TYPE>::merge(const Vector<TYPE>& vector) {
return SortedVectorImpl::merge(reinterpret_cast<const VectorImpl&>(vector));
}
template<class TYPE> inline
ssize_t SortedVector<TYPE>::merge(const SortedVector<TYPE>& vector) {
return SortedVectorImpl::merge(reinterpret_cast<const SortedVectorImpl&>(vector));
}
template<class TYPE> inline
ssize_t SortedVector<TYPE>::remove(const TYPE& item) {
return SortedVectorImpl::remove(&item);
}
template<class TYPE> inline
ssize_t SortedVector<TYPE>::removeItemsAt(size_t index, size_t count) {
return VectorImpl::removeItemsAt(index, count);
}
// ---------------------------------------------------------------------------
template<class TYPE>
UTILS_VECTOR_NO_CFI void SortedVector<TYPE>::do_construct(void* storage, size_t num) const {
construct_type( reinterpret_cast<TYPE*>(storage), num );
}
template<class TYPE>
void SortedVector<TYPE>::do_destroy(void* storage, size_t num) const {
destroy_type( reinterpret_cast<TYPE*>(storage), num );
}
template<class TYPE>
UTILS_VECTOR_NO_CFI void SortedVector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
}
template<class TYPE>
UTILS_VECTOR_NO_CFI void SortedVector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
}
template<class TYPE>
UTILS_VECTOR_NO_CFI void SortedVector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
}
template<class TYPE>
UTILS_VECTOR_NO_CFI void SortedVector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
}
template<class TYPE>
int SortedVector<TYPE>::do_compare(const void* lhs, const void* rhs) const {
return compare_type( *reinterpret_cast<const TYPE*>(lhs), *reinterpret_cast<const TYPE*>(rhs) );
}
} // namespace android
// ---------------------------------------------------------------------------
#endif // ANDROID_SORTED_VECTOR_H