blob: ff6c19211e514718bc0a30b25a57a1834716720b [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Backtracing functions for ARM.
*
* This implementation uses the exception unwinding tables provided by
* the compiler to unwind call frames. Refer to the ARM Exception Handling ABI
* documentation (EHABI) for more details about what's going on here.
*
* An ELF binary may contain an EXIDX section that provides an index to
* the exception handling table of each function, sorted by program
* counter address.
*
* This implementation also supports unwinding other processes via ptrace().
* In that case, the EXIDX section is found by reading the ELF section table
* structures using ptrace().
*
* Because the tables are used for exception handling, it can happen that
* a given function will not have an exception handling table. In particular,
* exceptions are assumed to only ever be thrown at call sites. Therefore,
* by definition leaf functions will not have exception handling tables.
* This may make unwinding impossible in some cases although we can still get
* some idea of the call stack by examining the PC and LR registers.
*
* As we are only interested in backtrace information, we do not need
* to perform all of the work of unwinding such as restoring register
* state and running cleanup functions. Unwinding is performed virtually on
* an abstract machine context consisting of just the ARM core registers.
* Furthermore, we do not run generic "personality functions" because
* we may not be in a position to execute arbitrary code, especially if
* we are running in a signal handler or using ptrace()!
*/
#define LOG_TAG "Corkscrew"
//#define LOG_NDEBUG 0
#include "../backtrace-arch.h"
#include "../backtrace-helper.h"
#include "../ptrace-arch.h"
#include <corkscrew/ptrace.h>
#include <stdlib.h>
#include <signal.h>
#include <stdbool.h>
#include <limits.h>
#include <errno.h>
#include <sys/ptrace.h>
#include <sys/exec_elf.h>
#include <cutils/log.h>
#if !defined(__BIONIC_HAVE_UCONTEXT_T)
/* Old versions of the Android <signal.h> didn't define ucontext_t. */
#include <asm/sigcontext.h> /* Ensure 'struct sigcontext' is defined. */
/* Machine context at the time a signal was raised. */
typedef struct ucontext {
uint32_t uc_flags;
struct ucontext* uc_link;
stack_t uc_stack;
struct sigcontext uc_mcontext;
uint32_t uc_sigmask;
} ucontext_t;
#endif /* !__BIONIC_HAVE_UCONTEXT_T */
/* Unwind state. */
typedef struct {
uint32_t gregs[16];
} unwind_state_t;
static const int R_SP = 13;
static const int R_LR = 14;
static const int R_PC = 15;
/* Special EXIDX value that indicates that a frame cannot be unwound. */
static const uint32_t EXIDX_CANTUNWIND = 1;
/* Get the EXIDX section start and size for the module that contains a
* given program counter address.
*
* When the executable is statically linked, the EXIDX section can be
* accessed by querying the values of the __exidx_start and __exidx_end
* symbols.
*
* When the executable is dynamically linked, the linker exports a function
* called dl_unwind_find_exidx that obtains the EXIDX section for a given
* absolute program counter address.
*
* Bionic exports a helpful function called __gnu_Unwind_Find_exidx that
* handles both cases, so we use that here.
*/
typedef long unsigned int* _Unwind_Ptr;
extern _Unwind_Ptr __gnu_Unwind_Find_exidx(_Unwind_Ptr pc, int *pcount);
static uintptr_t find_exidx(uintptr_t pc, size_t* out_exidx_size) {
int count;
uintptr_t start = (uintptr_t)__gnu_Unwind_Find_exidx((_Unwind_Ptr)pc, &count);
*out_exidx_size = count;
return start;
}
/* Transforms a 31-bit place-relative offset to an absolute address.
* We assume the most significant bit is clear. */
static uintptr_t prel_to_absolute(uintptr_t place, uint32_t prel_offset) {
return place + (((int32_t)(prel_offset << 1)) >> 1);
}
static uintptr_t get_exception_handler(const memory_t* memory,
const map_info_t* map_info_list, uintptr_t pc) {
if (!pc) {
ALOGV("get_exception_handler: pc is zero, no handler");
return 0;
}
uintptr_t exidx_start;
size_t exidx_size;
const map_info_t* mi;
if (memory->tid < 0) {
mi = NULL;
exidx_start = find_exidx(pc, &exidx_size);
} else {
mi = find_map_info(map_info_list, pc);
if (mi && mi->data) {
const map_info_data_t* data = (const map_info_data_t*)mi->data;
exidx_start = data->exidx_start;
exidx_size = data->exidx_size;
} else {
exidx_start = 0;
exidx_size = 0;
}
}
uintptr_t handler = 0;
int32_t handler_index = -1;
if (exidx_start) {
uint32_t low = 0;
uint32_t high = exidx_size;
while (low < high) {
uint32_t index = (low + high) / 2;
uintptr_t entry = exidx_start + index * 8;
uint32_t entry_prel_pc;
ALOGV("XXX low=%u, high=%u, index=%u", low, high, index);
if (!try_get_word(memory, entry, &entry_prel_pc)) {
break;
}
uintptr_t entry_pc = prel_to_absolute(entry, entry_prel_pc);
ALOGV("XXX entry_pc=0x%08x", entry_pc);
if (pc < entry_pc) {
high = index;
continue;
}
if (index + 1 < exidx_size) {
uintptr_t next_entry = entry + 8;
uint32_t next_entry_prel_pc;
if (!try_get_word(memory, next_entry, &next_entry_prel_pc)) {
break;
}
uintptr_t next_entry_pc = prel_to_absolute(next_entry, next_entry_prel_pc);
ALOGV("XXX next_entry_pc=0x%08x", next_entry_pc);
if (pc >= next_entry_pc) {
low = index + 1;
continue;
}
}
uintptr_t entry_handler_ptr = entry + 4;
uint32_t entry_handler;
if (!try_get_word(memory, entry_handler_ptr, &entry_handler)) {
break;
}
if (entry_handler & (1L << 31)) {
handler = entry_handler_ptr; // in-place handler data
} else if (entry_handler != EXIDX_CANTUNWIND) {
handler = prel_to_absolute(entry_handler_ptr, entry_handler);
}
handler_index = index;
break;
}
}
if (mi) {
ALOGV("get_exception_handler: pc=0x%08x, module='%s', module_start=0x%08x, "
"exidx_start=0x%08x, exidx_size=%d, handler=0x%08x, handler_index=%d",
pc, mi->name, mi->start, exidx_start, exidx_size, handler, handler_index);
} else {
ALOGV("get_exception_handler: pc=0x%08x, "
"exidx_start=0x%08x, exidx_size=%d, handler=0x%08x, handler_index=%d",
pc, exidx_start, exidx_size, handler, handler_index);
}
return handler;
}
typedef struct {
uintptr_t ptr;
uint32_t word;
} byte_stream_t;
static bool try_next_byte(const memory_t* memory, byte_stream_t* stream, uint8_t* out_value) {
uint8_t result;
switch (stream->ptr & 3) {
case 0:
if (!try_get_word(memory, stream->ptr, &stream->word)) {
*out_value = 0;
return false;
}
*out_value = stream->word >> 24;
break;
case 1:
*out_value = stream->word >> 16;
break;
case 2:
*out_value = stream->word >> 8;
break;
default:
*out_value = stream->word;
break;
}
ALOGV("next_byte: ptr=0x%08x, value=0x%02x", stream->ptr, *out_value);
stream->ptr += 1;
return true;
}
static void set_reg(unwind_state_t* state, uint32_t reg, uint32_t value) {
ALOGV("set_reg: reg=%d, value=0x%08x", reg, value);
state->gregs[reg] = value;
}
static bool try_pop_registers(const memory_t* memory, unwind_state_t* state, uint32_t mask) {
uint32_t sp = state->gregs[R_SP];
bool sp_updated = false;
for (int i = 0; i < 16; i++) {
if (mask & (1 << i)) {
uint32_t value;
if (!try_get_word(memory, sp, &value)) {
return false;
}
if (i == R_SP) {
sp_updated = true;
}
set_reg(state, i, value);
sp += 4;
}
}
if (!sp_updated) {
set_reg(state, R_SP, sp);
}
return true;
}
/* Executes a built-in personality routine as defined in the EHABI.
* Returns true if unwinding should continue.
*
* The data for the built-in personality routines consists of a sequence
* of unwinding instructions, followed by a sequence of scope descriptors,
* each of which has a length and offset encoded using 16-bit or 32-bit
* values.
*
* We only care about the unwinding instructions. They specify the
* operations of an abstract machine whose purpose is to transform the
* virtual register state (including the stack pointer) such that
* the call frame is unwound and the PC register points to the call site.
*/
static bool execute_personality_routine(const memory_t* memory,
unwind_state_t* state, byte_stream_t* stream, int pr_index) {
size_t size;
switch (pr_index) {
case 0: // Personality routine #0, short frame, descriptors have 16-bit scope.
size = 3;
break;
case 1: // Personality routine #1, long frame, descriptors have 16-bit scope.
case 2: { // Personality routine #2, long frame, descriptors have 32-bit scope.
uint8_t size_byte;
if (!try_next_byte(memory, stream, &size_byte)) {
return false;
}
size = (uint32_t)size_byte * sizeof(uint32_t) + 2;
break;
}
default: // Unknown personality routine. Stop here.
return false;
}
bool pc_was_set = false;
while (size--) {
uint8_t op;
if (!try_next_byte(memory, stream, &op)) {
return false;
}
if ((op & 0xc0) == 0x00) {
// "vsp = vsp + (xxxxxx << 2) + 4"
set_reg(state, R_SP, state->gregs[R_SP] + ((op & 0x3f) << 2) + 4);
} else if ((op & 0xc0) == 0x40) {
// "vsp = vsp - (xxxxxx << 2) - 4"
set_reg(state, R_SP, state->gregs[R_SP] - ((op & 0x3f) << 2) - 4);
} else if ((op & 0xf0) == 0x80) {
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
uint32_t mask = (((uint32_t)op & 0x0f) << 12) | ((uint32_t)op2 << 4);
if (mask) {
// "Pop up to 12 integer registers under masks {r15-r12}, {r11-r4}"
if (!try_pop_registers(memory, state, mask)) {
return false;
}
if (mask & (1 << R_PC)) {
pc_was_set = true;
}
} else {
// "Refuse to unwind"
return false;
}
} else if ((op & 0xf0) == 0x90) {
if (op != 0x9d && op != 0x9f) {
// "Set vsp = r[nnnn]"
set_reg(state, R_SP, state->gregs[op & 0x0f]);
} else {
// "Reserved as prefix for ARM register to register moves"
// "Reserved as prefix for Intel Wireless MMX register to register moves"
return false;
}
} else if ((op & 0xf8) == 0xa0) {
// "Pop r4-r[4+nnn]"
uint32_t mask = (0x0ff0 >> (7 - (op & 0x07))) & 0x0ff0;
if (!try_pop_registers(memory, state, mask)) {
return false;
}
} else if ((op & 0xf8) == 0xa8) {
// "Pop r4-r[4+nnn], r14"
uint32_t mask = ((0x0ff0 >> (7 - (op & 0x07))) & 0x0ff0) | 0x4000;
if (!try_pop_registers(memory, state, mask)) {
return false;
}
} else if (op == 0xb0) {
// "Finish"
break;
} else if (op == 0xb1) {
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
if (op2 != 0x00 && (op2 & 0xf0) == 0x00) {
// "Pop integer registers under mask {r3, r2, r1, r0}"
if (!try_pop_registers(memory, state, op2)) {
return false;
}
} else {
// "Spare"
return false;
}
} else if (op == 0xb2) {
// "vsp = vsp + 0x204 + (uleb128 << 2)"
uint32_t value = 0;
uint32_t shift = 0;
uint8_t op2;
do {
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
value |= (op2 & 0x7f) << shift;
shift += 7;
} while (op2 & 0x80);
set_reg(state, R_SP, state->gregs[R_SP] + (value << 2) + 0x204);
} else if (op == 0xb3) {
// "Pop VFP double-precision registers D[ssss]-D[ssss+cccc] saved (as if) by FSTMFDX"
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 12);
} else if ((op & 0xf8) == 0xb8) {
// "Pop VFP double-precision registers D[8]-D[8+nnn] saved (as if) by FSTMFDX"
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 12);
} else if ((op & 0xf8) == 0xc0) {
// "Intel Wireless MMX pop wR[10]-wR[10+nnn]"
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 8);
} else if (op == 0xc6) {
// "Intel Wireless MMX pop wR[ssss]-wR[ssss+cccc]"
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8);
} else if (op == 0xc7) {
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
if (op2 != 0x00 && (op2 & 0xf0) == 0x00) {
// "Intel Wireless MMX pop wCGR registers under mask {wCGR3,2,1,0}"
set_reg(state, R_SP, state->gregs[R_SP] + __builtin_popcount(op2) * 4);
} else {
// "Spare"
return false;
}
} else if (op == 0xc8) {
// "Pop VFP double precision registers D[16+ssss]-D[16+ssss+cccc]
// saved (as if) by FSTMFD"
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8);
} else if (op == 0xc9) {
// "Pop VFP double precision registers D[ssss]-D[ssss+cccc] saved (as if) by FSTMFDD"
uint8_t op2;
if (!(size--) || !try_next_byte(memory, stream, &op2)) {
return false;
}
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8);
} else if ((op == 0xf8) == 0xd0) {
// "Pop VFP double-precision registers D[8]-D[8+nnn] saved (as if) by FSTMFDD"
set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 8);
} else {
// "Spare"
return false;
}
}
if (!pc_was_set) {
set_reg(state, R_PC, state->gregs[R_LR]);
}
return true;
}
static bool try_get_half_word(const memory_t* memory, uint32_t pc, uint16_t* out_value) {
uint32_t word;
if (try_get_word(memory, pc & ~2, &word)) {
*out_value = pc & 2 ? word >> 16 : word & 0xffff;
return true;
}
return false;
}
uintptr_t rewind_pc_arch(const memory_t* memory, uintptr_t pc) {
if (pc & 1) {
/* Thumb mode - need to check whether the bl(x) has long offset or not.
* Examples:
*
* arm blx in the middle of thumb:
* 187ae: 2300 movs r3, #0
* 187b0: f7fe ee1c blx 173ec
* 187b4: 2c00 cmp r4, #0
*
* arm bl in the middle of thumb:
* 187d8: 1c20 adds r0, r4, #0
* 187da: f136 fd15 bl 14f208
* 187de: 2800 cmp r0, #0
*
* pure thumb:
* 18894: 189b adds r3, r3, r2
* 18896: 4798 blx r3
* 18898: b001 add sp, #4
*/
uint16_t prev1, prev2;
if (try_get_half_word(memory, pc - 5, &prev1)
&& ((prev1 & 0xf000) == 0xf000)
&& try_get_half_word(memory, pc - 3, &prev2)
&& ((prev2 & 0xe000) == 0xe000)) {
pc -= 4; // long offset
} else {
pc -= 2;
}
} else {
/* ARM mode, all instructions are 32bit. Yay! */
pc -= 4;
}
return pc;
}
static ssize_t unwind_backtrace_common(const memory_t* memory,
const map_info_t* map_info_list,
unwind_state_t* state, backtrace_frame_t* backtrace,
size_t ignore_depth, size_t max_depth) {
size_t ignored_frames = 0;
size_t returned_frames = 0;
for (size_t index = 0; returned_frames < max_depth; index++) {
uintptr_t pc = index ? rewind_pc_arch(memory, state->gregs[R_PC])
: state->gregs[R_PC];
backtrace_frame_t* frame = add_backtrace_entry(pc,
backtrace, ignore_depth, max_depth, &ignored_frames, &returned_frames);
if (frame) {
frame->stack_top = state->gregs[R_SP];
}
uintptr_t handler = get_exception_handler(memory, map_info_list, pc);
if (!handler) {
// If there is no handler for the PC and this is the first frame,
// then the program may have branched to an invalid address.
// Try starting from the LR instead, otherwise stop unwinding.
if (index == 0 && state->gregs[R_LR]
&& state->gregs[R_LR] != state->gregs[R_PC]) {
set_reg(state, R_PC, state->gregs[R_LR]);
continue;
} else {
break;
}
}
byte_stream_t stream;
stream.ptr = handler;
uint8_t pr;
if (!try_next_byte(memory, &stream, &pr)) {
break;
}
if ((pr & 0xf0) != 0x80) {
// The first word is a place-relative pointer to a generic personality
// routine function. We don't support invoking such functions, so stop here.
break;
}
// The first byte indicates the personality routine to execute.
// Following bytes provide instructions to the personality routine.
if (!execute_personality_routine(memory, state, &stream, pr & 0x0f)) {
break;
}
if (frame && state->gregs[R_SP] > frame->stack_top) {
frame->stack_size = state->gregs[R_SP] - frame->stack_top;
}
if (!state->gregs[R_PC]) {
break;
}
}
// Ran out of frames that we could unwind using handlers.
// Add a final entry for the LR if it looks sane and call it good.
if (returned_frames < max_depth
&& state->gregs[R_LR]
&& state->gregs[R_LR] != state->gregs[R_PC]
&& is_executable_map(map_info_list, state->gregs[R_LR])) {
// We don't know where the stack for this extra frame starts so we
// don't return any stack information for it.
add_backtrace_entry(rewind_pc_arch(memory, state->gregs[R_LR]),
backtrace, ignore_depth, max_depth, &ignored_frames, &returned_frames);
}
return returned_frames;
}
ssize_t unwind_backtrace_signal_arch(siginfo_t* siginfo, void* sigcontext,
const map_info_t* map_info_list,
backtrace_frame_t* backtrace, size_t ignore_depth, size_t max_depth) {
const ucontext_t* uc = (const ucontext_t*)sigcontext;
unwind_state_t state;
state.gregs[0] = uc->uc_mcontext.arm_r0;
state.gregs[1] = uc->uc_mcontext.arm_r1;
state.gregs[2] = uc->uc_mcontext.arm_r2;
state.gregs[3] = uc->uc_mcontext.arm_r3;
state.gregs[4] = uc->uc_mcontext.arm_r4;
state.gregs[5] = uc->uc_mcontext.arm_r5;
state.gregs[6] = uc->uc_mcontext.arm_r6;
state.gregs[7] = uc->uc_mcontext.arm_r7;
state.gregs[8] = uc->uc_mcontext.arm_r8;
state.gregs[9] = uc->uc_mcontext.arm_r9;
state.gregs[10] = uc->uc_mcontext.arm_r10;
state.gregs[11] = uc->uc_mcontext.arm_fp;
state.gregs[12] = uc->uc_mcontext.arm_ip;
state.gregs[13] = uc->uc_mcontext.arm_sp;
state.gregs[14] = uc->uc_mcontext.arm_lr;
state.gregs[15] = uc->uc_mcontext.arm_pc;
memory_t memory;
init_memory(&memory, map_info_list);
return unwind_backtrace_common(&memory, map_info_list, &state,
backtrace, ignore_depth, max_depth);
}
ssize_t unwind_backtrace_ptrace_arch(pid_t tid, const ptrace_context_t* context,
backtrace_frame_t* backtrace, size_t ignore_depth, size_t max_depth) {
struct pt_regs regs;
if (ptrace(PTRACE_GETREGS, tid, 0, &regs)) {
return -1;
}
unwind_state_t state;
for (int i = 0; i < 16; i++) {
state.gregs[i] = regs.uregs[i];
}
memory_t memory;
init_memory_ptrace(&memory, tid);
return unwind_backtrace_common(&memory, context->map_info_list, &state,
backtrace, ignore_depth, max_depth);
}