blob: bd202ff14d08a5eb4e265934d32e1138599e549b [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "debuggerd/handler.h"
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <linux/futex.h>
#include <pthread.h>
#include <sched.h>
#include <signal.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/capability.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#include <sys/un.h>
#include <sys/wait.h>
#include <unistd.h>
#include <android-base/unique_fd.h>
#include <async_safe/log.h>
#include "dump_type.h"
using android::base::unique_fd;
// see man(2) prctl, specifically the section about PR_GET_NAME
#define MAX_TASK_NAME_LEN (16)
#if defined(__LP64__)
#define CRASH_DUMP_NAME "crash_dump64"
#else
#define CRASH_DUMP_NAME "crash_dump32"
#endif
#define CRASH_DUMP_PATH "/system/bin/" CRASH_DUMP_NAME
// Wrappers that directly invoke the respective syscalls, in case the cached values are invalid.
#pragma GCC poison getpid gettid
static pid_t __getpid() {
return syscall(__NR_getpid);
}
static pid_t __gettid() {
return syscall(__NR_gettid);
}
static inline void futex_wait(volatile void* ftx, int value) {
syscall(__NR_futex, ftx, FUTEX_WAIT, value, nullptr, nullptr, 0);
}
class ErrnoRestorer {
public:
ErrnoRestorer() : saved_errno_(errno) {
}
~ErrnoRestorer() {
errno = saved_errno_;
}
private:
int saved_errno_;
};
extern "C" void debuggerd_fallback_handler(siginfo_t*, ucontext_t*, void*);
static debuggerd_callbacks_t g_callbacks;
// Mutex to ensure only one crashing thread dumps itself.
static pthread_mutex_t crash_mutex = PTHREAD_MUTEX_INITIALIZER;
// Don't use async_safe_fatal because it exits via abort, which might put us back into
// a signal handler.
static void __noreturn __printflike(1, 2) fatal(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
async_safe_format_log_va_list(ANDROID_LOG_FATAL, "libc", fmt, args);
_exit(1);
}
static void __noreturn __printflike(1, 2) fatal_errno(const char* fmt, ...) {
int err = errno;
va_list args;
va_start(args, fmt);
char buf[4096];
async_safe_format_buffer_va_list(buf, sizeof(buf), fmt, args);
fatal("%s: %s", buf, strerror(err));
}
static bool get_main_thread_name(char* buf, size_t len) {
unique_fd fd(open("/proc/self/comm", O_RDONLY | O_CLOEXEC));
if (fd == -1) {
return false;
}
ssize_t rc = read(fd, buf, len);
if (rc == -1) {
return false;
} else if (rc == 0) {
// Should never happen?
return false;
}
// There's a trailing newline, replace it with a NUL.
buf[rc - 1] = '\0';
return true;
}
/*
* Writes a summary of the signal to the log file. We do this so that, if
* for some reason we're not able to contact debuggerd, there is still some
* indication of the failure in the log.
*
* We could be here as a result of native heap corruption, or while a
* mutex is being held, so we don't want to use any libc functions that
* could allocate memory or hold a lock.
*/
static void log_signal_summary(int signum, const siginfo_t* info) {
char thread_name[MAX_TASK_NAME_LEN + 1]; // one more for termination
if (prctl(PR_GET_NAME, reinterpret_cast<unsigned long>(thread_name), 0, 0, 0) != 0) {
strcpy(thread_name, "<name unknown>");
} else {
// short names are null terminated by prctl, but the man page
// implies that 16 byte names are not.
thread_name[MAX_TASK_NAME_LEN] = 0;
}
if (signum == DEBUGGER_SIGNAL) {
async_safe_format_log(ANDROID_LOG_INFO, "libc", "Requested dump for tid %d (%s)", __gettid(),
thread_name);
return;
}
const char* signal_name = "???";
bool has_address = false;
switch (signum) {
case SIGABRT:
signal_name = "SIGABRT";
break;
case SIGBUS:
signal_name = "SIGBUS";
has_address = true;
break;
case SIGFPE:
signal_name = "SIGFPE";
has_address = true;
break;
case SIGILL:
signal_name = "SIGILL";
has_address = true;
break;
case SIGSEGV:
signal_name = "SIGSEGV";
has_address = true;
break;
#if defined(SIGSTKFLT)
case SIGSTKFLT:
signal_name = "SIGSTKFLT";
break;
#endif
case SIGSYS:
signal_name = "SIGSYS";
break;
case SIGTRAP:
signal_name = "SIGTRAP";
break;
}
// "info" will be null if the siginfo_t information was not available.
// Many signals don't have an address or a code.
char code_desc[32]; // ", code -6"
char addr_desc[32]; // ", fault addr 0x1234"
addr_desc[0] = code_desc[0] = 0;
if (info != nullptr) {
async_safe_format_buffer(code_desc, sizeof(code_desc), ", code %d", info->si_code);
if (has_address) {
async_safe_format_buffer(addr_desc, sizeof(addr_desc), ", fault addr %p", info->si_addr);
}
}
char main_thread_name[MAX_TASK_NAME_LEN + 1];
if (!get_main_thread_name(main_thread_name, sizeof(main_thread_name))) {
strncpy(main_thread_name, "<unknown>", sizeof(main_thread_name));
}
async_safe_format_log(
ANDROID_LOG_FATAL, "libc", "Fatal signal %d (%s)%s%s in tid %d (%s), pid %d (%s)", signum,
signal_name, code_desc, addr_desc, __gettid(), thread_name, __getpid(), main_thread_name);
}
/*
* Returns true if the handler for signal "signum" has SA_SIGINFO set.
*/
static bool have_siginfo(int signum) {
struct sigaction old_action;
if (sigaction(signum, nullptr, &old_action) < 0) {
async_safe_format_log(ANDROID_LOG_WARN, "libc", "Failed testing for SA_SIGINFO: %s",
strerror(errno));
return false;
}
return (old_action.sa_flags & SA_SIGINFO) != 0;
}
static void raise_caps() {
// Raise CapInh to match CapPrm, so that we can set the ambient bits.
__user_cap_header_struct capheader;
memset(&capheader, 0, sizeof(capheader));
capheader.version = _LINUX_CAPABILITY_VERSION_3;
capheader.pid = 0;
__user_cap_data_struct capdata[2];
if (capget(&capheader, &capdata[0]) == -1) {
fatal_errno("capget failed");
}
if (capdata[0].permitted != capdata[0].inheritable ||
capdata[1].permitted != capdata[1].inheritable) {
capdata[0].inheritable = capdata[0].permitted;
capdata[1].inheritable = capdata[1].permitted;
if (capset(&capheader, &capdata[0]) == -1) {
async_safe_format_log(ANDROID_LOG_ERROR, "libc", "capset failed: %s", strerror(errno));
}
}
// Set the ambient capability bits so that crash_dump gets all of our caps and can ptrace us.
uint64_t capmask = capdata[0].inheritable;
capmask |= static_cast<uint64_t>(capdata[1].inheritable) << 32;
for (unsigned long i = 0; i < 64; ++i) {
if (capmask & (1ULL << i)) {
if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, i, 0, 0) != 0) {
async_safe_format_log(ANDROID_LOG_ERROR, "libc",
"failed to raise ambient capability %lu: %s", i, strerror(errno));
}
}
}
}
struct debugger_thread_info {
bool crash_dump_started;
pid_t crashing_tid;
pid_t pseudothread_tid;
int signal_number;
siginfo_t* info;
};
// Logging and contacting debuggerd requires free file descriptors, which we might not have.
// Work around this by spawning a "thread" that shares its parent's address space, but not its file
// descriptor table, so that we can close random file descriptors without affecting the original
// process. Note that this doesn't go through pthread_create, so TLS is shared with the spawning
// process.
static void* pseudothread_stack;
static DebuggerdDumpType get_dump_type(const debugger_thread_info* thread_info) {
if (thread_info->signal_number == DEBUGGER_SIGNAL && thread_info->info->si_value.sival_int) {
return kDebuggerdNativeBacktrace;
}
return kDebuggerdTombstone;
}
static int debuggerd_dispatch_pseudothread(void* arg) {
debugger_thread_info* thread_info = static_cast<debugger_thread_info*>(arg);
for (int i = 0; i < 1024; ++i) {
close(i);
}
int devnull = TEMP_FAILURE_RETRY(open("/dev/null", O_RDWR));
// devnull will be 0.
TEMP_FAILURE_RETRY(dup2(devnull, STDOUT_FILENO));
TEMP_FAILURE_RETRY(dup2(devnull, STDERR_FILENO));
unique_fd pipe_read, pipe_write;
if (!android::base::Pipe(&pipe_read, &pipe_write)) {
fatal_errno("failed to create pipe");
}
// Don't use fork(2) to avoid calling pthread_atfork handlers.
int forkpid = clone(nullptr, nullptr, 0, nullptr);
if (forkpid == -1) {
async_safe_format_log(ANDROID_LOG_FATAL, "libc",
"failed to fork in debuggerd signal handler: %s", strerror(errno));
} else if (forkpid == 0) {
TEMP_FAILURE_RETRY(dup2(pipe_write.get(), STDOUT_FILENO));
pipe_write.reset();
pipe_read.reset();
raise_caps();
char main_tid[10];
char pseudothread_tid[10];
char debuggerd_dump_type[10];
async_safe_format_buffer(main_tid, sizeof(main_tid), "%d", thread_info->crashing_tid);
async_safe_format_buffer(pseudothread_tid, sizeof(pseudothread_tid), "%d",
thread_info->pseudothread_tid);
async_safe_format_buffer(debuggerd_dump_type, sizeof(debuggerd_dump_type), "%d",
get_dump_type(thread_info));
execle(CRASH_DUMP_PATH, CRASH_DUMP_NAME, main_tid, pseudothread_tid, debuggerd_dump_type,
nullptr, nullptr);
fatal_errno("exec failed");
} else {
pipe_write.reset();
char buf[4];
ssize_t rc = TEMP_FAILURE_RETRY(read(pipe_read.get(), &buf, sizeof(buf)));
if (rc == -1) {
async_safe_format_log(ANDROID_LOG_FATAL, "libc", "read of IPC pipe failed: %s",
strerror(errno));
} else if (rc == 0) {
async_safe_format_log(ANDROID_LOG_FATAL, "libc", "crash_dump helper failed to exec");
} else if (rc != 1) {
async_safe_format_log(ANDROID_LOG_FATAL, "libc",
"read of IPC pipe returned unexpected value: %zd", rc);
} else {
if (buf[0] != '\1') {
async_safe_format_log(ANDROID_LOG_FATAL, "libc", "crash_dump helper reported failure");
} else {
thread_info->crash_dump_started = true;
}
}
pipe_read.reset();
// Don't leave a zombie child.
int status;
if (TEMP_FAILURE_RETRY(waitpid(forkpid, &status, 0)) == -1) {
async_safe_format_log(ANDROID_LOG_FATAL, "libc", "failed to wait for crash_dump helper: %s",
strerror(errno));
} else if (WIFSTOPPED(status) || WIFSIGNALED(status)) {
async_safe_format_log(ANDROID_LOG_FATAL, "libc", "crash_dump helper crashed or stopped");
thread_info->crash_dump_started = false;
}
}
syscall(__NR_exit, 0);
return 0;
}
static void resend_signal(siginfo_t* info, bool crash_dump_started) {
// Signals can either be fatal or nonfatal.
// For fatal signals, crash_dump will send us the signal we crashed with
// before resuming us, so that processes using waitpid on us will see that we
// exited with the correct exit status (e.g. so that sh will report
// "Segmentation fault" instead of "Killed"). For this to work, we need
// to deregister our signal handler for that signal before continuing.
if (info->si_signo != DEBUGGER_SIGNAL) {
signal(info->si_signo, SIG_DFL);
}
// We need to return from our signal handler so that crash_dump can see the
// signal via ptrace and dump the thread that crashed. However, returning
// does not guarantee that the signal will be thrown again, even for SIGSEGV
// and friends, since the signal could have been sent manually. We blocked
// all signals when registering the handler, so resending the signal (using
// rt_tgsigqueueinfo(2) to preserve SA_SIGINFO) will cause it to be delivered
// when our signal handler returns.
if (crash_dump_started || info->si_signo != DEBUGGER_SIGNAL) {
int rc = syscall(SYS_rt_tgsigqueueinfo, __getpid(), __gettid(), info->si_signo, info);
if (rc != 0) {
fatal_errno("failed to resend signal during crash");
}
}
}
// Handler that does crash dumping by forking and doing the processing in the child.
// Do this by ptracing the relevant thread, and then execing debuggerd to do the actual dump.
static void debuggerd_signal_handler(int signal_number, siginfo_t* info, void* context) {
// Make sure we don't change the value of errno, in case a signal comes in between the process
// making a syscall and checking errno.
ErrnoRestorer restorer;
// It's possible somebody cleared the SA_SIGINFO flag, which would mean
// our "info" arg holds an undefined value.
if (!have_siginfo(signal_number)) {
info = nullptr;
}
struct siginfo si = {};
if (!info) {
memset(&si, 0, sizeof(si));
si.si_signo = signal_number;
si.si_code = SI_USER;
si.si_pid = __getpid();
si.si_uid = getuid();
info = &si;
} else if (info->si_code >= 0 || info->si_code == SI_TKILL) {
// rt_tgsigqueueinfo(2)'s documentation appears to be incorrect on kernels
// that contain commit 66dd34a (3.9+). The manpage claims to only allow
// negative si_code values that are not SI_TKILL, but 66dd34a changed the
// check to allow all si_code values in calls coming from inside the house.
}
void* abort_message = nullptr;
if (g_callbacks.get_abort_message) {
abort_message = g_callbacks.get_abort_message();
}
// If sival_int is ~0, it means that the fallback handler has been called
// once before and this function is being called again to dump the stack
// of a specific thread. It is possible that the prctl call might return 1,
// then return 0 in subsequent calls, so check the sival_int to determine if
// the fallback handler should be called first.
if (info->si_value.sival_int == ~0 || prctl(PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0) == 1) {
// This check might be racy if another thread sets NO_NEW_PRIVS, but this should be unlikely,
// you can only set NO_NEW_PRIVS to 1, and the effect should be at worst a single missing
// ANR trace.
debuggerd_fallback_handler(info, static_cast<ucontext_t*>(context), abort_message);
resend_signal(info, false);
return;
}
// Only allow one thread to handle a signal at a time.
int ret = pthread_mutex_lock(&crash_mutex);
if (ret != 0) {
async_safe_format_log(ANDROID_LOG_INFO, "libc", "pthread_mutex_lock failed: %s", strerror(ret));
return;
}
log_signal_summary(signal_number, info);
// If this was a fatal crash, populate si_value with the abort message address if possible.
// Note that applications can set an abort message without aborting.
if (abort_message && signal_number != DEBUGGER_SIGNAL) {
info->si_value.sival_ptr = abort_message;
}
debugger_thread_info thread_info = {
.crash_dump_started = false,
.pseudothread_tid = -1,
.crashing_tid = __gettid(),
.signal_number = signal_number,
.info = info
};
// Set PR_SET_DUMPABLE to 1, so that crash_dump can ptrace us.
int orig_dumpable = prctl(PR_GET_DUMPABLE);
if (prctl(PR_SET_DUMPABLE, 1) != 0) {
fatal_errno("failed to set dumpable");
}
// Essentially pthread_create without CLONE_FILES (see debuggerd_dispatch_pseudothread).
pid_t child_pid =
clone(debuggerd_dispatch_pseudothread, pseudothread_stack,
CLONE_THREAD | CLONE_SIGHAND | CLONE_VM | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID,
&thread_info, nullptr, nullptr, &thread_info.pseudothread_tid);
if (child_pid == -1) {
fatal_errno("failed to spawn debuggerd dispatch thread");
}
// Wait for the child to start...
futex_wait(&thread_info.pseudothread_tid, -1);
// and then wait for it to finish.
futex_wait(&thread_info.pseudothread_tid, child_pid);
// Restore PR_SET_DUMPABLE to its original value.
if (prctl(PR_SET_DUMPABLE, orig_dumpable) != 0) {
fatal_errno("failed to restore dumpable");
}
// Signals can either be fatal or nonfatal.
// For fatal signals, crash_dump will PTRACE_CONT us with the signal we
// crashed with, so that processes using waitpid on us will see that we
// exited with the correct exit status (e.g. so that sh will report
// "Segmentation fault" instead of "Killed"). For this to work, we need
// to deregister our signal handler for that signal before continuing.
if (signal_number != DEBUGGER_SIGNAL) {
signal(signal_number, SIG_DFL);
}
resend_signal(info, thread_info.crash_dump_started);
if (info->si_signo == DEBUGGER_SIGNAL) {
// If the signal is fatal, don't unlock the mutex to prevent other crashing threads from
// starting to dump right before our death.
pthread_mutex_unlock(&crash_mutex);
}
}
void debuggerd_init(debuggerd_callbacks_t* callbacks) {
if (callbacks) {
g_callbacks = *callbacks;
}
void* thread_stack_allocation =
mmap(nullptr, PAGE_SIZE * 3, PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
if (thread_stack_allocation == MAP_FAILED) {
fatal_errno("failed to allocate debuggerd thread stack");
}
char* stack = static_cast<char*>(thread_stack_allocation) + PAGE_SIZE;
if (mprotect(stack, PAGE_SIZE, PROT_READ | PROT_WRITE) != 0) {
fatal_errno("failed to mprotect debuggerd thread stack");
}
// Stack grows negatively, set it to the last byte in the page...
stack = (stack + PAGE_SIZE - 1);
// and align it.
stack -= 15;
pseudothread_stack = stack;
struct sigaction action;
memset(&action, 0, sizeof(action));
sigfillset(&action.sa_mask);
action.sa_sigaction = debuggerd_signal_handler;
action.sa_flags = SA_RESTART | SA_SIGINFO;
// Use the alternate signal stack if available so we can catch stack overflows.
action.sa_flags |= SA_ONSTACK;
debuggerd_register_handlers(&action);
}