blob: 8a95a19074c381b2a32debdcb9ed3099d999f6f6 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define TRACE_TAG USB
#include "sysdeps.h"
#include <CoreFoundation/CoreFoundation.h>
#include <IOKit/IOKitLib.h>
#include <IOKit/IOCFPlugIn.h>
#include <IOKit/usb/IOUSBLib.h>
#include <IOKit/IOMessage.h>
#include <mach/mach_port.h>
#include <inttypes.h>
#include <stdio.h>
#include <atomic>
#include <chrono>
#include <memory>
#include <mutex>
#include <thread>
#include <vector>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <android-base/thread_annotations.h>
#include "adb.h"
#include "transport.h"
using namespace std::chrono_literals;
namespace native {
struct usb_handle
{
UInt8 bulkIn;
UInt8 bulkOut;
IOUSBInterfaceInterface550** interface;
unsigned int zero_mask;
size_t max_packet_size;
// For garbage collecting disconnected devices.
bool mark;
std::string devpath;
std::atomic<bool> dead;
usb_handle()
: bulkIn(0),
bulkOut(0),
interface(nullptr),
zero_mask(0),
max_packet_size(0),
mark(false),
dead(false) {}
};
static std::atomic<bool> usb_inited_flag;
static auto& g_usb_handles_mutex = *new std::mutex();
static auto& g_usb_handles = *new std::vector<std::unique_ptr<usb_handle>>();
static bool IsKnownDevice(const std::string& devpath) {
std::lock_guard<std::mutex> lock_guard(g_usb_handles_mutex);
for (auto& usb : g_usb_handles) {
if (usb->devpath == devpath) {
// Set mark flag to indicate this device is still alive.
usb->mark = true;
return true;
}
}
return false;
}
static void usb_kick_locked(usb_handle* handle);
static void KickDisconnectedDevices() {
std::lock_guard<std::mutex> lock_guard(g_usb_handles_mutex);
for (auto& usb : g_usb_handles) {
if (!usb->mark) {
usb_kick_locked(usb.get());
} else {
usb->mark = false;
}
}
}
static void AddDevice(std::unique_ptr<usb_handle> handle) {
handle->mark = true;
std::lock_guard<std::mutex> lock(g_usb_handles_mutex);
g_usb_handles.push_back(std::move(handle));
}
static void AndroidInterfaceAdded(io_iterator_t iterator);
static std::unique_ptr<usb_handle> CheckInterface(IOUSBInterfaceInterface550** iface, UInt16 vendor,
UInt16 product);
static bool FindUSBDevices() {
// Create the matching dictionary to find the Android device's adb interface.
CFMutableDictionaryRef matchingDict = IOServiceMatching(kIOUSBInterfaceClassName);
if (!matchingDict) {
LOG(ERROR) << "couldn't create USB matching dictionary";
return false;
}
// Create an iterator for all I/O Registry objects that match the dictionary.
io_iterator_t iter = 0;
kern_return_t kr = IOServiceGetMatchingServices(kIOMasterPortDefault, matchingDict, &iter);
if (kr != KERN_SUCCESS) {
LOG(ERROR) << "failed to get matching services";
return false;
}
// Iterate over all matching objects.
AndroidInterfaceAdded(iter);
IOObjectRelease(iter);
return true;
}
static void
AndroidInterfaceAdded(io_iterator_t iterator)
{
kern_return_t kr;
io_service_t usbDevice;
io_service_t usbInterface;
IOCFPlugInInterface **plugInInterface = NULL;
IOUSBInterfaceInterface220 **iface = NULL;
IOUSBDeviceInterface197 **dev = NULL;
HRESULT result;
SInt32 score;
uint32_t locationId;
UInt8 if_class, subclass, protocol;
UInt16 vendor;
UInt16 product;
UInt8 serialIndex;
char serial[256];
std::string devpath;
while ((usbInterface = IOIteratorNext(iterator))) {
//* Create an intermediate interface plugin
kr = IOCreatePlugInInterfaceForService(usbInterface,
kIOUSBInterfaceUserClientTypeID,
kIOCFPlugInInterfaceID,
&plugInInterface, &score);
IOObjectRelease(usbInterface);
if ((kIOReturnSuccess != kr) || (!plugInInterface)) {
LOG(ERROR) << "Unable to create an interface plug-in (" << std::hex << kr << ")";
continue;
}
//* This gets us the interface object
result = (*plugInInterface)->QueryInterface(
plugInInterface,
CFUUIDGetUUIDBytes(kIOUSBInterfaceInterfaceID), (LPVOID*)&iface);
//* We only needed the plugin to get the interface, so discard it
(*plugInInterface)->Release(plugInInterface);
if (result || !iface) {
LOG(ERROR) << "Couldn't query the interface (" << std::hex << result << ")";
continue;
}
kr = (*iface)->GetInterfaceClass(iface, &if_class);
kr = (*iface)->GetInterfaceSubClass(iface, &subclass);
kr = (*iface)->GetInterfaceProtocol(iface, &protocol);
if (!is_adb_interface(if_class, subclass, protocol)) {
// Ignore non-ADB devices.
LOG(DEBUG) << "Ignoring interface with incorrect class/subclass/protocol - " << if_class
<< ", " << subclass << ", " << protocol;
(*iface)->Release(iface);
continue;
}
//* this gets us an ioservice, with which we will find the actual
//* device; after getting a plugin, and querying the interface, of
//* course.
//* Gotta love OS X
kr = (*iface)->GetDevice(iface, &usbDevice);
if (kIOReturnSuccess != kr || !usbDevice) {
LOG(ERROR) << "Couldn't grab device from interface (" << std::hex << kr << ")";
(*iface)->Release(iface);
continue;
}
plugInInterface = NULL;
score = 0;
//* create an intermediate device plugin
kr = IOCreatePlugInInterfaceForService(usbDevice,
kIOUSBDeviceUserClientTypeID,
kIOCFPlugInInterfaceID,
&plugInInterface, &score);
//* only needed this to find the plugin
(void)IOObjectRelease(usbDevice);
if ((kIOReturnSuccess != kr) || (!plugInInterface)) {
LOG(ERROR) << "Unable to create a device plug-in (" << std::hex << kr << ")";
(*iface)->Release(iface);
continue;
}
result = (*plugInInterface)->QueryInterface(plugInInterface,
CFUUIDGetUUIDBytes(kIOUSBDeviceInterfaceID), (LPVOID*)&dev);
//* only needed this to query the plugin
(*plugInInterface)->Release(plugInInterface);
if (result || !dev) {
LOG(ERROR) << "Couldn't create a device interface (" << std::hex << result << ")";
(*iface)->Release(iface);
continue;
}
//* Now after all that, we actually have a ref to the device and
//* the interface that matched our criteria
kr = (*dev)->GetDeviceVendor(dev, &vendor);
kr = (*dev)->GetDeviceProduct(dev, &product);
kr = (*dev)->GetLocationID(dev, &locationId);
if (kr == KERN_SUCCESS) {
devpath = android::base::StringPrintf("usb:%" PRIu32 "X", locationId);
if (IsKnownDevice(devpath)) {
(*dev)->Release(dev);
(*iface)->Release(iface);
continue;
}
}
kr = (*dev)->USBGetSerialNumberStringIndex(dev, &serialIndex);
if (serialIndex > 0) {
IOUSBDevRequest req;
UInt16 buffer[256];
UInt16 languages[128];
memset(languages, 0, sizeof(languages));
req.bmRequestType =
USBmakebmRequestType(kUSBIn, kUSBStandard, kUSBDevice);
req.bRequest = kUSBRqGetDescriptor;
req.wValue = (kUSBStringDesc << 8) | 0;
req.wIndex = 0;
req.pData = languages;
req.wLength = sizeof(languages);
kr = (*dev)->DeviceRequest(dev, &req);
if (kr == kIOReturnSuccess && req.wLenDone > 0) {
int langCount = (req.wLenDone - 2) / 2, lang;
for (lang = 1; lang <= langCount; lang++) {
memset(buffer, 0, sizeof(buffer));
memset(&req, 0, sizeof(req));
req.bmRequestType =
USBmakebmRequestType(kUSBIn, kUSBStandard, kUSBDevice);
req.bRequest = kUSBRqGetDescriptor;
req.wValue = (kUSBStringDesc << 8) | serialIndex;
req.wIndex = languages[lang];
req.pData = buffer;
req.wLength = sizeof(buffer);
kr = (*dev)->DeviceRequest(dev, &req);
if (kr == kIOReturnSuccess && req.wLenDone > 0) {
int i, count;
// skip first word, and copy the rest to the serial string,
// changing shorts to bytes.
count = (req.wLenDone - 1) / 2;
for (i = 0; i < count; i++)
serial[i] = buffer[i + 1];
serial[i] = 0;
break;
}
}
}
}
(*dev)->Release(dev);
VLOG(USB) << android::base::StringPrintf("Found vid=%04x pid=%04x serial=%s\n",
vendor, product, serial);
if (devpath.empty()) {
devpath = serial;
}
if (IsKnownDevice(devpath)) {
(*iface)->USBInterfaceClose(iface);
(*iface)->Release(iface);
continue;
}
std::unique_ptr<usb_handle> handle =
CheckInterface((IOUSBInterfaceInterface550**)iface, vendor, product);
if (handle == nullptr) {
LOG(ERROR) << "Could not find device interface";
(*iface)->Release(iface);
continue;
}
handle->devpath = devpath;
usb_handle* handle_p = handle.get();
VLOG(USB) << "Add usb device " << serial;
LOG(INFO) << "reported max packet size for " << serial << " is " << handle->max_packet_size;
AddDevice(std::move(handle));
register_usb_transport(reinterpret_cast<::usb_handle*>(handle_p), serial, devpath.c_str(),
1);
}
}
// Used to clear both the endpoints before starting.
// When adb quits, we might clear the host endpoint but not the device.
// So we make sure both sides are clear before starting up.
static bool ClearPipeStallBothEnds(IOUSBInterfaceInterface550** interface, UInt8 bulkEp) {
IOReturn rc = (*interface)->ClearPipeStallBothEnds(interface, bulkEp);
if (rc != kIOReturnSuccess) {
LOG(ERROR) << "Could not clear pipe stall both ends: " << std::hex << rc;
return false;
}
return true;
}
//* TODO: simplify this further since we only register to get ADB interface
//* subclass+protocol events
static std::unique_ptr<usb_handle> CheckInterface(IOUSBInterfaceInterface550** interface,
UInt16 vendor, UInt16 product) {
std::unique_ptr<usb_handle> handle;
IOReturn kr;
UInt8 interfaceNumEndpoints, interfaceClass, interfaceSubClass, interfaceProtocol;
UInt8 endpoint;
//* Now open the interface. This will cause the pipes associated with
//* the endpoints in the interface descriptor to be instantiated
kr = (*interface)->USBInterfaceOpen(interface);
if (kr != kIOReturnSuccess) {
LOG(ERROR) << "Could not open interface: " << std::hex << kr;
return NULL;
}
//* Get the number of endpoints associated with this interface
kr = (*interface)->GetNumEndpoints(interface, &interfaceNumEndpoints);
if (kr != kIOReturnSuccess) {
LOG(ERROR) << "Unable to get number of endpoints: " << std::hex << kr;
goto err_get_num_ep;
}
//* Get interface class, subclass and protocol
if ((*interface)->GetInterfaceClass(interface, &interfaceClass) != kIOReturnSuccess ||
(*interface)->GetInterfaceSubClass(interface, &interfaceSubClass) != kIOReturnSuccess ||
(*interface)->GetInterfaceProtocol(interface, &interfaceProtocol) != kIOReturnSuccess) {
LOG(ERROR) << "Unable to get interface class, subclass and protocol";
goto err_get_interface_class;
}
//* check to make sure interface class, subclass and protocol match ADB
//* avoid opening mass storage endpoints
if (!is_adb_interface(interfaceClass, interfaceSubClass, interfaceProtocol)) {
goto err_bad_adb_interface;
}
handle.reset(new usb_handle);
if (handle == nullptr) {
goto err_bad_adb_interface;
}
//* Iterate over the endpoints for this interface and find the first
//* bulk in/out pipes available. These will be our read/write pipes.
for (endpoint = 1; endpoint <= interfaceNumEndpoints; endpoint++) {
UInt8 transferType;
UInt16 maxPacketSize;
UInt8 interval;
UInt8 number;
UInt8 direction;
UInt8 maxBurst;
UInt8 mult;
UInt16 bytesPerInterval;
kr = (*interface)
->GetPipePropertiesV2(interface, endpoint, &direction, &number, &transferType,
&maxPacketSize, &interval, &maxBurst, &mult,
&bytesPerInterval);
if (kr != kIOReturnSuccess) {
LOG(ERROR) << "FindDeviceInterface - could not get pipe properties: "
<< std::hex << kr;
goto err_get_pipe_props;
}
if (kUSBBulk != transferType) continue;
if (kUSBIn == direction) {
handle->bulkIn = endpoint;
if (!ClearPipeStallBothEnds(interface, handle->bulkIn)) goto err_get_pipe_props;
}
if (kUSBOut == direction) {
handle->bulkOut = endpoint;
if (!ClearPipeStallBothEnds(interface, handle->bulkOut)) goto err_get_pipe_props;
}
if (maxBurst != 0)
// bMaxBurst is the number of additional packets in the burst.
maxPacketSize /= (maxBurst + 1);
// mult is only relevant for isochronous endpoints.
CHECK_EQ(0, mult);
handle->zero_mask = maxPacketSize - 1;
handle->max_packet_size = maxPacketSize;
}
handle->interface = interface;
return handle;
err_get_pipe_props:
err_bad_adb_interface:
err_get_interface_class:
err_get_num_ep:
(*interface)->USBInterfaceClose(interface);
return nullptr;
}
std::mutex& operate_device_lock = *new std::mutex();
static void RunLoopThread() {
adb_thread_setname("RunLoop");
VLOG(USB) << "RunLoopThread started";
while (true) {
{
std::lock_guard<std::mutex> lock_guard(operate_device_lock);
FindUSBDevices();
KickDisconnectedDevices();
}
// Signal the parent that we are running
usb_inited_flag = true;
std::this_thread::sleep_for(1s);
}
VLOG(USB) << "RunLoopThread done";
}
void usb_cleanup() NO_THREAD_SAFETY_ANALYSIS {
VLOG(USB) << "usb_cleanup";
// Wait until usb operations in RunLoopThread finish, and prevent further operations.
operate_device_lock.lock();
close_usb_devices();
}
void usb_init() {
static bool initialized = false;
if (!initialized) {
usb_inited_flag = false;
std::thread(RunLoopThread).detach();
// Wait for initialization to finish
while (!usb_inited_flag) {
std::this_thread::sleep_for(100ms);
}
initialized = true;
}
}
int usb_write(usb_handle *handle, const void *buf, int len)
{
IOReturn result;
if (!len)
return 0;
if (!handle || handle->dead)
return -1;
if (NULL == handle->interface) {
LOG(ERROR) << "usb_write interface was null";
return -1;
}
if (0 == handle->bulkOut) {
LOG(ERROR) << "bulkOut endpoint not assigned";
return -1;
}
result =
(*handle->interface)->WritePipe(handle->interface, handle->bulkOut, (void *)buf, len);
if ((result == 0) && (handle->zero_mask)) {
/* we need 0-markers and our transfer */
if(!(len & handle->zero_mask)) {
result =
(*handle->interface)->WritePipe(
handle->interface, handle->bulkOut, (void *)buf, 0);
}
}
if (0 == result)
return 0;
LOG(ERROR) << "usb_write failed with status: " << std::hex << result;
return -1;
}
int usb_read(usb_handle *handle, void *buf, int len)
{
IOReturn result;
UInt32 numBytes = len;
if (!len) {
return 0;
}
if (!handle || handle->dead) {
return -1;
}
if (NULL == handle->interface) {
LOG(ERROR) << "usb_read interface was null";
return -1;
}
if (0 == handle->bulkIn) {
LOG(ERROR) << "bulkIn endpoint not assigned";
return -1;
}
result = (*handle->interface)->ReadPipe(handle->interface, handle->bulkIn, buf, &numBytes);
if (kIOUSBPipeStalled == result) {
LOG(ERROR) << "Pipe stalled, clearing stall.\n";
(*handle->interface)->ClearPipeStall(handle->interface, handle->bulkIn);
result = (*handle->interface)->ReadPipe(handle->interface, handle->bulkIn, buf, &numBytes);
}
if (kIOReturnSuccess == result)
return numBytes;
else {
LOG(ERROR) << "usb_read failed with status: " << std::hex << result;
}
return -1;
}
int usb_close(usb_handle *handle)
{
std::lock_guard<std::mutex> lock(g_usb_handles_mutex);
for (auto it = g_usb_handles.begin(); it != g_usb_handles.end(); ++it) {
if ((*it).get() == handle) {
g_usb_handles.erase(it);
break;
}
}
return 0;
}
static void usb_kick_locked(usb_handle *handle)
{
LOG(INFO) << "Kicking handle";
/* release the interface */
if (!handle)
return;
if (!handle->dead)
{
handle->dead = true;
(*handle->interface)->USBInterfaceClose(handle->interface);
(*handle->interface)->Release(handle->interface);
}
}
void usb_kick(usb_handle *handle) {
// Use the lock to avoid multiple thread kicking the device at the same time.
std::lock_guard<std::mutex> lock_guard(g_usb_handles_mutex);
usb_kick_locked(handle);
}
size_t usb_get_max_packet_size(usb_handle* handle) {
return handle->max_packet_size;
}
} // namespace native