| /* |
| * Android "Almost" C Compiler. |
| * This is a compiler for a small subset of the C language, intended for use |
| * in scripting environments where speed and memory footprint are important. |
| * |
| * This code is based upon the "unobfuscated" version of the |
| * Obfuscated Tiny C compiler, see the file LICENSE for details. |
| * |
| */ |
| |
| #define LOG_TAG "acc" |
| #include <cutils/log.h> |
| |
| #include <ctype.h> |
| #include <errno.h> |
| #include <limits.h> |
| #include <stdarg.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <unistd.h> |
| |
| #include <cutils/hashmap.h> |
| |
| #if defined(__i386__) |
| #include <sys/mman.h> |
| #endif |
| |
| |
| #if defined(__arm__) |
| #define DEFAULT_ARM_CODEGEN |
| #define PROVIDE_ARM_CODEGEN |
| #elif defined(__i386__) |
| #define DEFAULT_X86_CODEGEN |
| #define PROVIDE_X86_CODEGEN |
| #elif defined(__x86_64__) |
| #define DEFAULT_X64_CODEGEN |
| #define PROVIDE_X64_CODEGEN |
| #endif |
| |
| #if (defined(__VFP_FP__) && !defined(__SOFTFP__)) |
| #define ARM_USE_VFP |
| #endif |
| |
| #include <acc/acc.h> |
| |
| #define LOG_API(...) do {} while(0) |
| // #define LOG_API(...) fprintf (stderr, __VA_ARGS__) |
| |
| #define LOG_STACK(...) do {} while(0) |
| // #define LOG_STACK(...) fprintf (stderr, __VA_ARGS__) |
| |
| // #define PROVIDE_TRACE_CODEGEN |
| |
| // Uncomment to disable ARM peephole optimizations |
| // #define DISABLE_ARM_PEEPHOLE |
| |
| // Uncomment to save input to a text file in DEBUG_DUMP_PATTERN |
| // #define DEBUG_SAVE_INPUT_TO_FILE |
| |
| #ifdef DEBUG_SAVE_INPUT_TO_FILE |
| #ifdef ARM_USE_VFP |
| #define DEBUG_DUMP_PATTERN "/data/misc/acc_dump/%d.c" |
| #else |
| #define DEBUG_DUMP_PATTERN "/tmp/acc_dump/%d.c" |
| #endif |
| #endif |
| |
| #define assert(b) assertImpl(b, __LINE__) |
| |
| namespace acc { |
| |
| // Subset of STL vector. |
| template<class E> class Vector { |
| public: |
| Vector() { |
| mpBase = 0; |
| mUsed = 0; |
| mSize = 0; |
| } |
| |
| ~Vector() { |
| if (mpBase) { |
| for(size_t i = 0; i < mUsed; i++) { |
| mpBase[mUsed].~E(); |
| } |
| free(mpBase); |
| } |
| } |
| |
| inline E& operator[](size_t i) { |
| return mpBase[i]; |
| } |
| |
| inline E& front() { |
| return mpBase[0]; |
| } |
| |
| inline E& back() { |
| return mpBase[mUsed - 1]; |
| } |
| |
| void pop_back() { |
| mUsed -= 1; |
| mpBase[mUsed].~E(); |
| } |
| |
| void push_back(const E& item) { |
| * ensure(1) = item; |
| } |
| |
| size_t size() { |
| return mUsed; |
| } |
| |
| private: |
| E* ensure(int n) { |
| size_t newUsed = mUsed + n; |
| if (newUsed > mSize) { |
| size_t newSize = mSize * 2 + 10; |
| if (newSize < newUsed) { |
| newSize = newUsed; |
| } |
| mpBase = (E*) realloc(mpBase, sizeof(E) * newSize); |
| mSize = newSize; |
| } |
| E* result = mpBase + mUsed; |
| mUsed = newUsed; |
| return result; |
| } |
| |
| E* mpBase; |
| size_t mUsed; |
| size_t mSize; |
| }; |
| |
| class ErrorSink { |
| public: |
| void error(const char *fmt, ...) { |
| va_list ap; |
| va_start(ap, fmt); |
| verror(fmt, ap); |
| va_end(ap); |
| } |
| |
| virtual ~ErrorSink() {} |
| virtual void verror(const char* fmt, va_list ap) = 0; |
| }; |
| |
| class Compiler : public ErrorSink { |
| typedef int tokenid_t; |
| enum TypeTag { |
| TY_INT, // 0 |
| TY_CHAR, // 1 |
| TY_SHORT, // 2 |
| TY_VOID, // 3 |
| TY_FLOAT, // 4 |
| TY_DOUBLE, // 5 |
| TY_POINTER, // 6 |
| TY_ARRAY, // 7 |
| TY_STRUCT, // 8 |
| TY_FUNC, // 9 |
| TY_PARAM // 10 |
| }; |
| |
| struct Type { |
| TypeTag tag; |
| tokenid_t id; // For function arguments, global vars, local vars, struct elements |
| tokenid_t structTag; // For structs the name of the struct |
| int length; // length of array, offset of struct element. -1 means struct is forward defined |
| int alignment; // for structs only |
| Type* pHead; // For a struct this is the prototype struct. |
| Type* pTail; |
| }; |
| |
| enum ExpressionType { |
| ET_RVALUE, |
| ET_LVALUE |
| }; |
| |
| struct ExpressionValue { |
| ExpressionValue() { |
| et = ET_RVALUE; |
| pType = NULL; |
| } |
| ExpressionType et; |
| Type* pType; |
| }; |
| |
| class ICodeBuf { |
| public: |
| virtual ~ICodeBuf() {} |
| virtual void init(int size) = 0; |
| virtual void setErrorSink(ErrorSink* pErrorSink) = 0; |
| virtual void o4(int n) = 0; |
| virtual void ob(int n) = 0; |
| virtual void* getBase() = 0; |
| virtual intptr_t getSize() = 0; |
| virtual intptr_t getPC() = 0; |
| // Call this before trying to modify code in the buffer. |
| virtual void flush() = 0; |
| }; |
| |
| class CodeBuf : public ICodeBuf { |
| char* ind; // Output code pointer |
| char* pProgramBase; |
| ErrorSink* mErrorSink; |
| int mSize; |
| bool mOverflowed; |
| |
| void release() { |
| if (pProgramBase != 0) { |
| free(pProgramBase); |
| pProgramBase = 0; |
| } |
| } |
| |
| bool check(int n) { |
| int newSize = ind - pProgramBase + n; |
| bool overflow = newSize > mSize; |
| if (overflow && !mOverflowed) { |
| mOverflowed = true; |
| if (mErrorSink) { |
| mErrorSink->error("Code too large: %d bytes", newSize); |
| } |
| } |
| return overflow; |
| } |
| |
| public: |
| CodeBuf() { |
| pProgramBase = 0; |
| ind = 0; |
| mErrorSink = 0; |
| mSize = 0; |
| mOverflowed = false; |
| } |
| |
| virtual ~CodeBuf() { |
| release(); |
| } |
| |
| virtual void init(int size) { |
| release(); |
| mSize = size; |
| pProgramBase = (char*) calloc(1, size); |
| ind = pProgramBase; |
| } |
| |
| virtual void setErrorSink(ErrorSink* pErrorSink) { |
| mErrorSink = pErrorSink; |
| } |
| |
| virtual void o4(int n) { |
| if(check(4)) { |
| return; |
| } |
| * (int*) ind = n; |
| ind += 4; |
| } |
| |
| /* |
| * Output a byte. Handles all values, 0..ff. |
| */ |
| virtual void ob(int n) { |
| if(check(1)) { |
| return; |
| } |
| *ind++ = n; |
| } |
| |
| virtual void* getBase() { |
| return (void*) pProgramBase; |
| } |
| |
| virtual intptr_t getSize() { |
| return ind - pProgramBase; |
| } |
| |
| virtual intptr_t getPC() { |
| return (intptr_t) ind; |
| } |
| |
| virtual void flush() {} |
| }; |
| |
| /** |
| * A code generator creates an in-memory program, generating the code on |
| * the fly. There is one code generator implementation for each supported |
| * architecture. |
| * |
| * The code generator implements the following abstract machine: |
| * R0 - the accumulator. |
| * FP - a frame pointer for accessing function arguments and local |
| * variables. |
| * SP - a stack pointer for storing intermediate results while evaluating |
| * expressions. The stack pointer grows downwards. |
| * |
| * The function calling convention is that all arguments are placed on the |
| * stack such that the first argument has the lowest address. |
| * After the call, the result is in R0. The caller is responsible for |
| * removing the arguments from the stack. |
| * The R0 register is not saved across function calls. The |
| * FP and SP registers are saved. |
| */ |
| |
| class CodeGenerator { |
| public: |
| CodeGenerator() { |
| mErrorSink = 0; |
| pCodeBuf = 0; |
| pushType(); |
| } |
| virtual ~CodeGenerator() {} |
| |
| virtual void init(ICodeBuf* pCodeBuf) { |
| this->pCodeBuf = pCodeBuf; |
| pCodeBuf->setErrorSink(mErrorSink); |
| } |
| |
| virtual void setErrorSink(ErrorSink* pErrorSink) { |
| mErrorSink = pErrorSink; |
| if (pCodeBuf) { |
| pCodeBuf->setErrorSink(mErrorSink); |
| } |
| } |
| |
| /* Give the code generator some utility types so it can |
| * use its own types as needed for the results of some |
| * operations like gcmp. |
| */ |
| |
| void setTypes(Type* pInt) { |
| mkpInt = pInt; |
| } |
| |
| /* Emit a function prolog. |
| * pDecl is the function declaration, which gives the arguments. |
| * Save the old value of the FP. |
| * Set the new value of the FP. |
| * Convert from the native platform calling convention to |
| * our stack-based calling convention. This may require |
| * pushing arguments from registers to the stack. |
| * Allocate "N" bytes of stack space. N isn't known yet, so |
| * just emit the instructions for adjusting the stack, and return |
| * the address to patch up. The patching will be done in |
| * functionExit(). |
| * returns address to patch with local variable size. |
| */ |
| virtual int functionEntry(Type* pDecl) = 0; |
| |
| /* Emit a function epilog. |
| * Restore the old SP and FP register values. |
| * Return to the calling function. |
| * argCount - the number of arguments to the function. |
| * localVariableAddress - returned from functionEntry() |
| * localVariableSize - the size in bytes of the local variables. |
| */ |
| virtual void functionExit(Type* pDecl, int localVariableAddress, |
| int localVariableSize) = 0; |
| |
| /* load immediate value to R0 */ |
| virtual void li(int i) = 0; |
| |
| /* Load floating point value from global address. */ |
| virtual void loadFloat(int address, Type* pType) = 0; |
| |
| /* Add the struct offset in bytes to R0, change the type to pType */ |
| virtual void addStructOffsetR0(int offset, Type* pType) = 0; |
| |
| /* Jump to a target, and return the address of the word that |
| * holds the target data, in case it needs to be fixed up later. |
| */ |
| virtual int gjmp(int t) = 0; |
| |
| /* Test R0 and jump to a target if the test succeeds. |
| * l = 0: je, l == 1: jne |
| * Return the address of the word that holds the targed data, in |
| * case it needs to be fixed up later. |
| */ |
| virtual int gtst(bool l, int t) = 0; |
| |
| /* Compare TOS against R0, and store the boolean result in R0. |
| * Pops TOS. |
| * op specifies the comparison. |
| */ |
| virtual void gcmp(int op) = 0; |
| |
| /* Perform the arithmetic op specified by op. TOS is the |
| * left argument, R0 is the right argument. |
| * Pops TOS. |
| */ |
| virtual void genOp(int op) = 0; |
| |
| /* Compare 0 against R0, and store the boolean result in R0. |
| * op specifies the comparison. |
| */ |
| virtual void gUnaryCmp(int op) = 0; |
| |
| /* Perform the arithmetic op specified by op. 0 is the |
| * left argument, R0 is the right argument. |
| */ |
| virtual void genUnaryOp(int op) = 0; |
| |
| /* Push R0 onto the stack. (Also known as "dup" for duplicate.) |
| */ |
| virtual void pushR0() = 0; |
| |
| /* Turn R0, TOS into R0 TOS R0 */ |
| |
| virtual void over() = 0; |
| |
| /* Pop R0 from the stack. (Also known as "drop") |
| */ |
| virtual void popR0() = 0; |
| |
| /* Store R0 to the address stored in TOS. |
| * The TOS is popped. |
| */ |
| virtual void storeR0ToTOS() = 0; |
| |
| /* Load R0 from the address stored in R0. |
| */ |
| virtual void loadR0FromR0() = 0; |
| |
| /* Load the absolute address of a variable to R0. |
| * If ea <= LOCAL, then this is a local variable, or an |
| * argument, addressed relative to FP. |
| * else it is an absolute global address. |
| * |
| * et is ET_RVALUE for things like string constants, ET_LVALUE for |
| * variables. |
| */ |
| virtual void leaR0(int ea, Type* pPointerType, ExpressionType et) = 0; |
| |
| /* Load the pc-relative address of a forward-referenced variable to R0. |
| * Return the address of the 4-byte constant so that it can be filled |
| * in later. |
| */ |
| virtual int leaForward(int ea, Type* pPointerType) = 0; |
| |
| /** |
| * Convert R0 to the given type. |
| */ |
| |
| void convertR0(Type* pType) { |
| convertR0Imp(pType, false); |
| } |
| |
| void castR0(Type* pType) { |
| convertR0Imp(pType, true); |
| } |
| |
| virtual void convertR0Imp(Type* pType, bool isCast) = 0; |
| |
| /* Emit code to adjust the stack for a function call. Return the |
| * label for the address of the instruction that adjusts the |
| * stack size. This will be passed as argument "a" to |
| * endFunctionCallArguments. |
| */ |
| virtual int beginFunctionCallArguments() = 0; |
| |
| /* Emit code to store R0 to the stack at byte offset l. |
| * Returns stack size of object (typically 4 or 8 bytes) |
| */ |
| virtual size_t storeR0ToArg(int l, Type* pArgType) = 0; |
| |
| /* Patch the function call preamble. |
| * a is the address returned from beginFunctionCallArguments |
| * l is the number of bytes the arguments took on the stack. |
| * Typically you would also emit code to convert the argument |
| * list into whatever the native function calling convention is. |
| * On ARM for example you would pop the first 5 arguments into |
| * R0..R4 |
| */ |
| virtual void endFunctionCallArguments(Type* pDecl, int a, int l) = 0; |
| |
| /* Emit a call to an unknown function. The argument "symbol" needs to |
| * be stored in the location where the address should go. It forms |
| * a chain. The address will be patched later. |
| * Return the address of the word that has to be patched. |
| */ |
| virtual int callForward(int symbol, Type* pFunc) = 0; |
| |
| /* Call a function pointer. L is the number of bytes the arguments |
| * take on the stack. The address of the function is stored at |
| * location SP + l. |
| */ |
| virtual void callIndirect(int l, Type* pFunc) = 0; |
| |
| /* Adjust SP after returning from a function call. l is the |
| * number of bytes of arguments stored on the stack. isIndirect |
| * is true if this was an indirect call. (In which case the |
| * address of the function is stored at location SP + l.) |
| */ |
| virtual void adjustStackAfterCall(Type* pDecl, int l, bool isIndirect) = 0; |
| |
| /* Generate a symbol at the current PC. t is the head of a |
| * linked list of addresses to patch. |
| */ |
| virtual void gsym(int t) = 0; |
| |
| /* Resolve a forward reference function at the current PC. |
| * t is the head of a |
| * linked list of addresses to patch. |
| * (Like gsym, but using absolute address, not PC relative address.) |
| */ |
| virtual void resolveForward(int t) = 0; |
| |
| /* |
| * Do any cleanup work required at the end of a compile. |
| * For example, an instruction cache might need to be |
| * invalidated. |
| * Return non-zero if there is an error. |
| */ |
| virtual int finishCompile() = 0; |
| |
| /** |
| * Adjust relative branches by this amount. |
| */ |
| virtual int jumpOffset() = 0; |
| |
| /** |
| * Memory alignment (in bytes) for this type of data |
| */ |
| virtual size_t alignmentOf(Type* type) = 0; |
| |
| /** |
| * Array element alignment (in bytes) for this type of data. |
| */ |
| virtual size_t sizeOf(Type* type) = 0; |
| |
| virtual Type* getR0Type() { |
| return mExpressionStack.back().pType; |
| } |
| |
| virtual ExpressionType getR0ExpressionType() { |
| return mExpressionStack.back().et; |
| } |
| |
| virtual void setR0ExpressionType(ExpressionType et) { |
| mExpressionStack.back().et = et; |
| } |
| |
| virtual size_t getExpressionStackDepth() { |
| return mExpressionStack.size(); |
| } |
| |
| virtual void forceR0RVal() { |
| if (getR0ExpressionType() == ET_LVALUE) { |
| loadR0FromR0(); |
| } |
| } |
| |
| protected: |
| /* |
| * Output a byte. Handles all values, 0..ff. |
| */ |
| void ob(int n) { |
| pCodeBuf->ob(n); |
| } |
| |
| void o4(int data) { |
| pCodeBuf->o4(data); |
| } |
| |
| intptr_t getBase() { |
| return (intptr_t) pCodeBuf->getBase(); |
| } |
| |
| intptr_t getPC() { |
| return pCodeBuf->getPC(); |
| } |
| |
| intptr_t getSize() { |
| return pCodeBuf->getSize(); |
| } |
| |
| void flush() { |
| pCodeBuf->flush(); |
| } |
| |
| void error(const char* fmt,...) { |
| va_list ap; |
| va_start(ap, fmt); |
| mErrorSink->verror(fmt, ap); |
| va_end(ap); |
| } |
| |
| void assertImpl(bool test, int line) { |
| if (!test) { |
| error("code generator assertion failed at line %s:%d.", __FILE__, line); |
| LOGD("code generator assertion failed at line %s:%d.", __FILE__, line); |
| * (char*) 0 = 0; |
| } |
| } |
| |
| void setR0Type(Type* pType) { |
| assert(pType != NULL); |
| mExpressionStack.back().pType = pType; |
| mExpressionStack.back().et = ET_RVALUE; |
| } |
| |
| void setR0Type(Type* pType, ExpressionType et) { |
| assert(pType != NULL); |
| mExpressionStack.back().pType = pType; |
| mExpressionStack.back().et = et; |
| } |
| |
| Type* getTOSType() { |
| return mExpressionStack[mExpressionStack.size()-2].pType; |
| } |
| |
| void pushType() { |
| if (mExpressionStack.size()) { |
| mExpressionStack.push_back(mExpressionStack.back()); |
| } else { |
| mExpressionStack.push_back(ExpressionValue()); |
| } |
| |
| } |
| |
| void overType() { |
| size_t size = mExpressionStack.size(); |
| if (size >= 2) { |
| mExpressionStack.push_back(mExpressionStack.back()); |
| mExpressionStack[size-1] = mExpressionStack[size-2]; |
| mExpressionStack[size-2] = mExpressionStack[size]; |
| } |
| } |
| |
| void popType() { |
| mExpressionStack.pop_back(); |
| } |
| |
| bool bitsSame(Type* pA, Type* pB) { |
| return collapseType(pA->tag) == collapseType(pB->tag); |
| } |
| |
| TypeTag collapseType(TypeTag tag) { |
| static const TypeTag collapsedTag[] = { |
| TY_INT, |
| TY_INT, |
| TY_INT, |
| TY_VOID, |
| TY_FLOAT, |
| TY_DOUBLE, |
| TY_INT, |
| TY_INT, |
| TY_VOID, |
| TY_VOID, |
| TY_VOID |
| }; |
| return collapsedTag[tag]; |
| } |
| |
| TypeTag collapseTypeR0() { |
| return collapseType(getR0Type()->tag); |
| } |
| |
| static bool isFloatType(Type* pType) { |
| return isFloatTag(pType->tag); |
| } |
| |
| static bool isFloatTag(TypeTag tag) { |
| return tag == TY_FLOAT || tag == TY_DOUBLE; |
| } |
| |
| static bool isPointerType(Type* pType) { |
| return isPointerTag(pType->tag); |
| } |
| |
| static bool isPointerTag(TypeTag tag) { |
| return tag == TY_POINTER || tag == TY_ARRAY; |
| } |
| |
| Type* getPointerArithmeticResultType(Type* a, Type* b) { |
| TypeTag aTag = a->tag; |
| TypeTag bTag = b->tag; |
| if (aTag == TY_POINTER) { |
| return a; |
| } |
| if (bTag == TY_POINTER) { |
| return b; |
| } |
| if (aTag == TY_ARRAY) { |
| return a->pTail; |
| } |
| if (bTag == TY_ARRAY) { |
| return b->pTail; |
| } |
| return NULL; |
| } |
| Type* mkpInt; |
| |
| private: |
| Vector<ExpressionValue> mExpressionStack; |
| ICodeBuf* pCodeBuf; |
| ErrorSink* mErrorSink; |
| }; |
| |
| #ifdef PROVIDE_ARM_CODEGEN |
| |
| static size_t rotateRight(size_t n, size_t rotate) { |
| return (n >> rotate) | (n << (32 - rotate)); |
| } |
| |
| static size_t rotateLeft(size_t n, size_t rotate) { |
| return (n << rotate) | (n >> (32 - rotate)); |
| } |
| |
| static bool encode12BitImmediate(size_t immediate, size_t* pResult) { |
| for(size_t i = 0; i < 16; i++) { |
| size_t rotate = i * 2; |
| size_t mask = rotateRight(0xff, rotate); |
| if ((immediate | mask) == mask) { |
| size_t bits8 = rotateLeft(immediate, rotate); |
| // assert(bits8 <= 0xff); |
| *pResult = (i << 8) | bits8; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static size_t decode12BitImmediate(size_t immediate) { |
| size_t data = immediate & 0xff; |
| size_t rotate = 2 * ((immediate >> 8) & 0xf); |
| return rotateRight(data, rotate); |
| } |
| |
| static bool isPowerOfTwo(size_t n) { |
| return (n != 0) & ((n & (n-1)) == 0); |
| } |
| |
| static size_t log2(size_t n) { |
| int result = 0; |
| while (n >>= 1) { |
| result++; |
| } |
| return result; |
| } |
| |
| class ARMCodeBuf : public ICodeBuf { |
| ICodeBuf* mpBase; |
| ErrorSink* mErrorSink; |
| |
| class CircularQueue { |
| static const int SIZE = 16; // Must be power of 2 |
| static const int MASK = SIZE-1; |
| unsigned int mBuf[SIZE]; |
| int mHead; |
| int mCount; |
| |
| public: |
| CircularQueue() { |
| mHead = 0; |
| mCount = 0; |
| } |
| |
| void pushBack(unsigned int data) { |
| mBuf[(mHead + mCount) & MASK] = data; |
| mCount += 1; |
| } |
| |
| unsigned int popFront() { |
| unsigned int result = mBuf[mHead]; |
| mHead = (mHead + 1) & MASK; |
| mCount -= 1; |
| return result; |
| } |
| |
| void popBack(int n) { |
| mCount -= n; |
| } |
| |
| inline int count() { |
| return mCount; |
| } |
| |
| bool empty() { |
| return mCount == 0; |
| } |
| |
| bool full() { |
| return mCount == SIZE; |
| } |
| |
| // The valid indexes are 1 - count() to 0 |
| unsigned int operator[](int i) { |
| return mBuf[(mHead + mCount + i) & MASK]; |
| } |
| }; |
| |
| CircularQueue mQ; |
| |
| void error(const char* fmt,...) { |
| va_list ap; |
| va_start(ap, fmt); |
| mErrorSink->verror(fmt, ap); |
| va_end(ap); |
| } |
| |
| void flush() { |
| while (!mQ.empty()) { |
| mpBase->o4(mQ.popFront()); |
| } |
| mpBase->flush(); |
| } |
| |
| public: |
| ARMCodeBuf(ICodeBuf* pBase) { |
| mpBase = pBase; |
| } |
| |
| virtual ~ARMCodeBuf() { |
| delete mpBase; |
| } |
| |
| void init(int size) { |
| mpBase->init(size); |
| } |
| |
| void setErrorSink(ErrorSink* pErrorSink) { |
| mErrorSink = pErrorSink; |
| mpBase->setErrorSink(pErrorSink); |
| } |
| |
| void o4(int n) { |
| if (mQ.full()) { |
| mpBase->o4(mQ.popFront()); |
| } |
| mQ.pushBack(n); |
| |
| #ifndef DISABLE_ARM_PEEPHOLE |
| // Peephole check |
| bool didPeep; |
| do { |
| static const unsigned int opMask = 0x01e00000; |
| static const unsigned int immediateMask = 0x00000fff; |
| static const unsigned int BMask = 0x00400000; |
| didPeep = false; |
| if (mQ.count() >= 4) { |
| |
| // Operand by a small constant |
| // push;mov #imm;pop;op ==> op #imm |
| |
| if (mQ[-4] == 0xe92d0001 && // stmfd r13!, {r0} |
| (mQ[-3] & ~immediateMask) == 0xe3a00000 && // mov r0, #X |
| mQ[-2] == 0xe8bd0002 && // ldmea r13!, {r1} |
| (mQ[-1] & ~opMask) == (0xe0810000 & ~opMask)) { // OP r0, r1, r0 |
| unsigned int movConst = mQ[-3]; |
| unsigned int op = mQ[-1]; |
| unsigned int combined = 0xe2000000 | (op & opMask) | (movConst & immediateMask); |
| // fprintf(stderr, "op %x movConst %x combined %x\n", op, movConst, combined); |
| if (! (combined == 0xe2800000 || combined == 0xe2400000)) { // add/sub #0 |
| mQ.popBack(4); |
| mQ.pushBack(combined); |
| didPeep = true; |
| } else { |
| mQ.popBack(4); |
| didPeep = true; |
| } |
| } |
| } |
| |
| // Load local variable |
| // sub r0,r11,#imm;ldr/ldrb r0,[r0] ==> ldr/ldrb r0, [r11,#-imm] |
| if (mQ.count() >= 2) { |
| if ((mQ[-2] & ~immediateMask) == 0xe24b0000) { // sub r0,r11,#imm |
| const unsigned int encodedImmediate = mQ[-2] & immediateMask; |
| const unsigned int ld = mQ[-1]; |
| if ((ld & ~BMask) == 0xe5900000) { // ldr{b} r0, [r0] |
| unsigned int combined = encodedImmediate | (0xE51B0000 | (ld & BMask)); // ldr r0, [r11, #-0] |
| mQ.popBack(2); |
| mQ.pushBack(combined); |
| didPeep = true; |
| } else if (ld == 0xedd07a00) { // ldcl p10, c7, [r0, #0x000] |
| unsigned int decodedImmediate = decode12BitImmediate(encodedImmediate); |
| if (decodedImmediate <= 1020 && ((decodedImmediate & 3) == 0)) { |
| unsigned int combined = (decodedImmediate >> 2) | 0xed5b7a00; // ldcl p10, c7, [r11, #-0] |
| mQ.popBack(2); |
| mQ.pushBack(combined); |
| didPeep = true; |
| } |
| } |
| } |
| } |
| |
| // Constant array lookup |
| |
| if (mQ.count() >= 6 && |
| mQ[-6] == 0xe92d0001 && // stmfd r13!, {r0} |
| (mQ[-5] & ~immediateMask)== 0xe3a00000 && // mov r0, #0x00000001 |
| mQ[-4] == 0xe8bd0002 && // ldmea r13!, {r1} |
| (mQ[-3] & ~immediateMask)== 0xe3a02000 && // mov r2, #0x00000004 |
| mQ[-2] == 0xe0000092 && // mul r0, r2, r0 |
| mQ[-1] == 0xe0810000) { // add r0, r1, r0 |
| unsigned int mov1 = mQ[-5]; |
| unsigned int mov2 = mQ[-3]; |
| unsigned int const1 = decode12BitImmediate(mov1); |
| unsigned int const2 = decode12BitImmediate(mov2); |
| unsigned int comboConst = const1 * const2; |
| size_t immediate = 0; |
| if (encode12BitImmediate(comboConst, &immediate)) { |
| mQ.popBack(6); |
| unsigned int add = immediate | 0xE2800000; // add r0, r0, #n |
| if (comboConst) { |
| mQ.pushBack(add); |
| } |
| didPeep = true; |
| } |
| } |
| |
| // Pointer arithmetic with a stride that is a power of two |
| |
| if (mQ.count() >= 3 && |
| (mQ[-3] & ~ immediateMask) == 0xe3a02000 && // mov r2, #stride |
| mQ[-2] == 0xe0000092 && // mul r0, r2, r0 |
| mQ[-1] == 0xe0810000) { // add r0, r1, r0 |
| int stride = decode12BitImmediate(mQ[-3]); |
| if (isPowerOfTwo(stride)) { |
| mQ.popBack(3); |
| unsigned int add = 0xe0810000 | (log2(stride) << 7); // add r0, r1, r0, LSL #log2(stride) |
| mQ.pushBack(add); |
| didPeep = true; |
| } |
| } |
| |
| } while (didPeep); |
| #endif |
| } |
| |
| void ob(int n) { |
| error("ob() not supported."); |
| } |
| |
| void* getBase() { |
| flush(); |
| return mpBase->getBase(); |
| } |
| |
| intptr_t getSize() { |
| flush(); |
| return mpBase->getSize(); |
| } |
| |
| intptr_t getPC() { |
| flush(); |
| return mpBase->getPC(); |
| } |
| }; |
| |
| class ARMCodeGenerator : public CodeGenerator { |
| public: |
| ARMCodeGenerator() { |
| #ifdef ARM_USE_VFP |
| // LOGD("Using ARM VFP hardware floating point."); |
| #else |
| // LOGD("Using ARM soft floating point."); |
| #endif |
| } |
| |
| virtual ~ARMCodeGenerator() {} |
| |
| /* returns address to patch with local variable size |
| */ |
| virtual int functionEntry(Type* pDecl) { |
| mStackUse = 0; |
| // sp -> arg4 arg5 ... |
| // Push our register-based arguments back on the stack |
| int regArgCount = calcRegArgCount(pDecl); |
| if (regArgCount > 0) { |
| mStackUse += regArgCount * 4; |
| o4(0xE92D0000 | ((1 << regArgCount) - 1)); // stmfd sp!, {} |
| } |
| // sp -> arg0 arg1 ... |
| o4(0xE92D4800); // stmfd sp!, {fp, lr} |
| mStackUse += 2 * 4; |
| // sp, fp -> oldfp, retadr, arg0 arg1 .... |
| o4(0xE1A0B00D); // mov fp, sp |
| LOG_STACK("functionEntry: %d\n", mStackUse); |
| int pc = getPC(); |
| o4(0xE24DD000); // sub sp, sp, # <local variables> |
| // We don't know how many local variables we are going to use, |
| // but we will round the allocation up to a multiple of |
| // STACK_ALIGNMENT, so it won't affect the stack alignment. |
| return pc; |
| } |
| |
| virtual void functionExit(Type* pDecl, int localVariableAddress, int localVariableSize) { |
| // Round local variable size up to a multiple of stack alignment |
| localVariableSize = ((localVariableSize + STACK_ALIGNMENT - 1) / |
| STACK_ALIGNMENT) * STACK_ALIGNMENT; |
| // Patch local variable allocation code: |
| if (localVariableSize < 0 || localVariableSize > 255) { |
| error("localVariables out of range: %d", localVariableSize); |
| } |
| *(char*) (localVariableAddress) = localVariableSize; |
| |
| #ifdef ARM_USE_VFP |
| { |
| Type* pReturnType = pDecl->pHead; |
| switch(pReturnType->tag) { |
| case TY_FLOAT: |
| o4(0xEE170A90); // fmrs r0, s15 |
| break; |
| case TY_DOUBLE: |
| o4(0xEC510B17); // fmrrd r0, r1, d7 |
| break; |
| default: |
| break; |
| } |
| } |
| #endif |
| |
| // sp -> locals .... fp -> oldfp, retadr, arg0, arg1, ... |
| o4(0xE1A0E00B); // mov lr, fp |
| o4(0xE59BB000); // ldr fp, [fp] |
| o4(0xE28ED004); // add sp, lr, #4 |
| // sp -> retadr, arg0, ... |
| o4(0xE8BD4000); // ldmfd sp!, {lr} |
| // sp -> arg0 .... |
| |
| // We store the PC into the lr so we can adjust the sp before |
| // returning. We need to pull off the registers we pushed |
| // earlier. We don't need to actually store them anywhere, |
| // just adjust the stack. |
| int regArgCount = calcRegArgCount(pDecl); |
| if (regArgCount) { |
| o4(0xE28DD000 | (regArgCount << 2)); // add sp, sp, #argCount << 2 |
| } |
| o4(0xE12FFF1E); // bx lr |
| } |
| |
| /* load immediate value */ |
| virtual void li(int t) { |
| liReg(t, 0); |
| setR0Type(mkpInt); |
| } |
| |
| virtual void loadFloat(int address, Type* pType) { |
| setR0Type(pType); |
| // Global, absolute address |
| o4(0xE59F0000); // ldr r0, .L1 |
| o4(0xEA000000); // b .L99 |
| o4(address); // .L1: .word ea |
| // .L99: |
| |
| switch (pType->tag) { |
| case TY_FLOAT: |
| #ifdef ARM_USE_VFP |
| o4(0xEDD07A00); // flds s15, [r0] |
| #else |
| o4(0xE5900000); // ldr r0, [r0] |
| #endif |
| break; |
| case TY_DOUBLE: |
| #ifdef ARM_USE_VFP |
| o4(0xED907B00); // fldd d7, [r0] |
| #else |
| o4(0xE1C000D0); // ldrd r0, [r0] |
| #endif |
| break; |
| default: |
| assert(false); |
| break; |
| } |
| } |
| |
| |
| virtual void addStructOffsetR0(int offset, Type* pType) { |
| if (offset) { |
| size_t immediate = 0; |
| if (encode12BitImmediate(offset, &immediate)) { |
| o4(0xE2800000 | immediate); // add r0, r0, #offset |
| } else { |
| error("structure offset out of range: %d", offset); |
| } |
| } |
| setR0Type(pType, ET_LVALUE); |
| } |
| |
| virtual int gjmp(int t) { |
| int pc = getPC(); |
| o4(0xEA000000 | encodeAddress(t)); // b .L33 |
| return pc; |
| } |
| |
| /* l = 0: je, l == 1: jne */ |
| virtual int gtst(bool l, int t) { |
| Type* pR0Type = getR0Type(); |
| TypeTag tagR0 = pR0Type->tag; |
| switch(tagR0) { |
| case TY_FLOAT: |
| #ifdef ARM_USE_VFP |
| o4(0xEEF57A40); // fcmpzs s15 |
| o4(0xEEF1FA10); // fmstat |
| #else |
| callRuntime((void*) runtime_is_non_zero_f); |
| o4(0xE3500000); // cmp r0,#0 |
| #endif |
| break; |
| case TY_DOUBLE: |
| #ifdef ARM_USE_VFP |
| o4(0xEEB57B40); // fcmpzd d7 |
| o4(0xEEF1FA10); // fmstat |
| #else |
| callRuntime((void*) runtime_is_non_zero_d); |
| o4(0xE3500000); // cmp r0,#0 |
| #endif |
| break; |
| default: |
| o4(0xE3500000); // cmp r0,#0 |
| break; |
| } |
| int branch = l ? 0x1A000000 : 0x0A000000; // bne : beq |
| int pc = getPC(); |
| o4(branch | encodeAddress(t)); |
| return pc; |
| } |
| |
| virtual void gcmp(int op) { |
| Type* pR0Type = getR0Type(); |
| Type* pTOSType = getTOSType(); |
| TypeTag tagR0 = collapseType(pR0Type->tag); |
| TypeTag tagTOS = collapseType(pTOSType->tag); |
| if (tagR0 == TY_INT && tagTOS == TY_INT) { |
| setupIntPtrArgs(); |
| o4(0xE1510000); // cmp r1, r1 |
| switch(op) { |
| case OP_EQUALS: |
| o4(0x03A00001); // moveq r0,#1 |
| o4(0x13A00000); // movne r0,#0 |
| break; |
| case OP_NOT_EQUALS: |
| o4(0x03A00000); // moveq r0,#0 |
| o4(0x13A00001); // movne r0,#1 |
| break; |
| case OP_LESS_EQUAL: |
| o4(0xD3A00001); // movle r0,#1 |
| o4(0xC3A00000); // movgt r0,#0 |
| break; |
| case OP_GREATER: |
| o4(0xD3A00000); // movle r0,#0 |
| o4(0xC3A00001); // movgt r0,#1 |
| break; |
| case OP_GREATER_EQUAL: |
| o4(0xA3A00001); // movge r0,#1 |
| o4(0xB3A00000); // movlt r0,#0 |
| break; |
| case OP_LESS: |
| o4(0xA3A00000); // movge r0,#0 |
| o4(0xB3A00001); // movlt r0,#1 |
| break; |
| default: |
| error("Unknown comparison op %d", op); |
| break; |
| } |
| } else if (tagR0 == TY_DOUBLE || tagTOS == TY_DOUBLE) { |
| setupDoubleArgs(); |
| #ifdef ARM_USE_VFP |
| o4(0xEEB46BC7); // fcmped d6, d7 |
| o4(0xEEF1FA10); // fmstat |
| switch(op) { |
| case OP_EQUALS: |
| o4(0x03A00001); // moveq r0,#1 |
| o4(0x13A00000); // movne r0,#0 |
| break; |
| case OP_NOT_EQUALS: |
| o4(0x03A00000); // moveq r0,#0 |
| o4(0x13A00001); // movne r0,#1 |
| break; |
| case OP_LESS_EQUAL: |
| o4(0xD3A00001); // movle r0,#1 |
| o4(0xC3A00000); // movgt r0,#0 |
| break; |
| case OP_GREATER: |
| o4(0xD3A00000); // movle r0,#0 |
| o4(0xC3A00001); // movgt r0,#1 |
| break; |
| case OP_GREATER_EQUAL: |
| o4(0xA3A00001); // movge r0,#1 |
| o4(0xB3A00000); // movlt r0,#0 |
| break; |
| case OP_LESS: |
| o4(0xA3A00000); // movge r0,#0 |
| o4(0xB3A00001); // movlt r0,#1 |
| break; |
| default: |
| error("Unknown comparison op %d", op); |
| break; |
| } |
| #else |
| switch(op) { |
| case OP_EQUALS: |
| callRuntime((void*) runtime_cmp_eq_dd); |
| break; |
| case OP_NOT_EQUALS: |
| callRuntime((void*) runtime_cmp_ne_dd); |
| break; |
| case OP_LESS_EQUAL: |
| callRuntime((void*) runtime_cmp_le_dd); |
| break; |
| case OP_GREATER: |
| callRuntime((void*) runtime_cmp_gt_dd); |
| break; |
| case OP_GREATER_EQUAL: |
| callRuntime((void*) runtime_cmp_ge_dd); |
| break; |
| case OP_LESS: |
| callRuntime((void*) runtime_cmp_lt_dd); |
| break; |
| default: |
| error("Unknown comparison op %d", op); |
| break; |
| } |
| #endif |
| } else { |
| setupFloatArgs(); |
| #ifdef ARM_USE_VFP |
| o4(0xEEB47AE7); // fcmpes s14, s15 |
| o4(0xEEF1FA10); // fmstat |
| switch(op) { |
| case OP_EQUALS: |
| o4(0x03A00001); // moveq r0,#1 |
| o4(0x13A00000); // movne r0,#0 |
| break; |
| case OP_NOT_EQUALS: |
| o4(0x03A00000); // moveq r0,#0 |
| o4(0x13A00001); // movne r0,#1 |
| break; |
| case OP_LESS_EQUAL: |
| o4(0xD3A00001); // movle r0,#1 |
| o4(0xC3A00000); // movgt r0,#0 |
| break; |
| case OP_GREATER: |
| o4(0xD3A00000); // movle r0,#0 |
| o4(0xC3A00001); // movgt r0,#1 |
| break; |
| case OP_GREATER_EQUAL: |
| o4(0xA3A00001); // movge r0,#1 |
| o4(0xB3A00000); // movlt r0,#0 |
| break; |
| case OP_LESS: |
| o4(0xA3A00000); // movge r0,#0 |
| o4(0xB3A00001); // movlt r0,#1 |
| break; |
| default: |
| error("Unknown comparison op %d", op); |
| break; |
| } |
| #else |
| switch(op) { |
| case OP_EQUALS: |
| callRuntime((void*) runtime_cmp_eq_ff); |
| break; |
| case OP_NOT_EQUALS: |
| callRuntime((void*) runtime_cmp_ne_ff); |
| break; |
| case OP_LESS_EQUAL: |
| callRuntime((void*) runtime_cmp_le_ff); |
| break; |
| case OP_GREATER: |
| callRuntime((void*) runtime_cmp_gt_ff); |
| break; |
| case OP_GREATER_EQUAL: |
| callRuntime((void*) runtime_cmp_ge_ff); |
| break; |
| case OP_LESS: |
| callRuntime((void*) runtime_cmp_lt_ff); |
| break; |
| default: |
| error("Unknown comparison op %d", op); |
| break; |
| } |
| #endif |
| } |
| setR0Type(mkpInt); |
| } |
| |
| virtual void genOp(int op) { |
| Type* pR0Type = getR0Type(); |
| Type* pTOSType = getTOSType(); |
| TypeTag tagR0 = pR0Type->tag; |
| TypeTag tagTOS = pTOSType->tag; |
| bool isFloatR0 = isFloatTag(tagR0); |
| bool isFloatTOS = isFloatTag(tagTOS); |
| if (!isFloatR0 && !isFloatTOS) { |
| setupIntPtrArgs(); |
| bool isPtrR0 = isPointerTag(tagR0); |
| bool isPtrTOS = isPointerTag(tagTOS); |
| if (isPtrR0 || isPtrTOS) { |
| if (isPtrR0 && isPtrTOS) { |
| if (op != OP_MINUS) { |
| error("Unsupported pointer-pointer operation %d.", op); |
| } |
| if (! typeEqual(pR0Type, pTOSType)) { |
| error("Incompatible pointer types for subtraction."); |
| } |
| o4(0xE0410000); // sub r0,r1,r0 |
| setR0Type(mkpInt); |
| int size = sizeOf(pR0Type->pHead); |
| if (size != 1) { |
| pushR0(); |
| li(size); |
| // TODO: Optimize for power-of-two. |
| genOp(OP_DIV); |
| } |
| } else { |
| if (! (op == OP_PLUS || (op == OP_MINUS && isPtrR0))) { |
| error("Unsupported pointer-scalar operation %d", op); |
| } |
| Type* pPtrType = getPointerArithmeticResultType( |
| pR0Type, pTOSType); |
| int size = sizeOf(pPtrType->pHead); |
| if (size != 1) { |
| // TODO: Optimize for power-of-two. |
| liReg(size, 2); |
| if (isPtrR0) { |
| o4(0x0E0010192); // mul r1,r2,r1 |
| } else { |
| o4(0x0E0000092); // mul r0,r2,r0 |
| } |
| } |
| switch(op) { |
| case OP_PLUS: |
| o4(0xE0810000); // add r0,r1,r0 |
| break; |
| case OP_MINUS: |
| o4(0xE0410000); // sub r0,r1,r0 |
| break; |
| } |
| setR0Type(pPtrType); |
| } |
| } else { |
| switch(op) { |
| case OP_MUL: |
| o4(0x0E0000091); // mul r0,r1,r0 |
| break; |
| case OP_DIV: |
| callRuntime((void*) runtime_DIV); |
| break; |
| case OP_MOD: |
| callRuntime((void*) runtime_MOD); |
| break; |
| case OP_PLUS: |
| o4(0xE0810000); // add r0,r1,r0 |
| break; |
| case OP_MINUS: |
| o4(0xE0410000); // sub r0,r1,r0 |
| break; |
| case OP_SHIFT_LEFT: |
| o4(0xE1A00011); // lsl r0,r1,r0 |
| break; |
| case OP_SHIFT_RIGHT: |
| o4(0xE1A00051); // asr r0,r1,r0 |
| break; |
| case OP_BIT_AND: |
| o4(0xE0010000); // and r0,r1,r0 |
| break; |
| case OP_BIT_XOR: |
| o4(0xE0210000); // eor r0,r1,r0 |
| break; |
| case OP_BIT_OR: |
| o4(0xE1810000); // orr r0,r1,r0 |
| break; |
| case OP_BIT_NOT: |
| o4(0xE1E00000); // mvn r0, r0 |
| break; |
| default: |
| error("Unimplemented op %d\n", op); |
| break; |
| } |
| } |
| } else { |
| Type* pResultType = tagR0 > tagTOS ? pR0Type : pTOSType; |
| if (pResultType->tag == TY_DOUBLE) { |
| setupDoubleArgs(); |
| |
| switch(op) { |
| case OP_MUL: |
| #ifdef ARM_USE_VFP |
| o4(0xEE267B07); // fmuld d7, d6, d7 |
| #else |
| callRuntime((void*) runtime_op_mul_dd); |
| #endif |
| break; |
| case OP_DIV: |
| #ifdef ARM_USE_VFP |
| o4(0xEE867B07); // fdivd d7, d6, d7 |
| #else |
| callRuntime((void*) runtime_op_div_dd); |
| #endif |
| break; |
| case OP_PLUS: |
| #ifdef ARM_USE_VFP |
| o4(0xEE367B07); // faddd d7, d6, d7 |
| #else |
| callRuntime((void*) runtime_op_add_dd); |
| #endif |
| break; |
| case OP_MINUS: |
| #ifdef ARM_USE_VFP |
| o4(0xEE367B47); // fsubd d7, d6, d7 |
| #else |
| callRuntime((void*) runtime_op_sub_dd); |
| #endif |
| break; |
| default: |
| error("Unsupported binary floating operation %d\n", op); |
| break; |
| } |
| } else { |
| setupFloatArgs(); |
| switch(op) { |
| case OP_MUL: |
| #ifdef ARM_USE_VFP |
| o4(0xEE677A27); // fmuls s15, s14, s15 |
| #else |
| callRuntime((void*) runtime_op_mul_ff); |
| #endif |
| break; |
| case OP_DIV: |
| #ifdef ARM_USE_VFP |
| o4(0xEEC77A27); // fdivs s15, s14, s15 |
| #else |
| callRuntime((void*) runtime_op_div_ff); |
| #endif |
| break; |
| case OP_PLUS: |
| #ifdef ARM_USE_VFP |
| o4(0xEE777A27); // fadds s15, s14, s15 |
| #else |
| callRuntime((void*) runtime_op_add_ff); |
| #endif |
| break; |
| case OP_MINUS: |
| #ifdef ARM_USE_VFP |
| o4(0xEE777A67); // fsubs s15, s14, s15 |
| #else |
| callRuntime((void*) runtime_op_sub_ff); |
| #endif |
| break; |
| default: |
| error("Unsupported binary floating operation %d\n", op); |
| break; |
| } |
| } |
| setR0Type(pResultType); |
| } |
| } |
| |
| virtual void gUnaryCmp(int op) { |
| if (op != OP_LOGICAL_NOT) { |
| error("Unknown unary cmp %d", op); |
| } else { |
| Type* pR0Type = getR0Type(); |
| TypeTag tag = collapseType(pR0Type->tag); |
| switch(tag) { |
| case TY_INT: |
| o4(0xE3A01000); // mov r1, #0 |
| o4(0xE1510000); // cmp r1, r0 |
| o4(0x03A00001); // moveq r0,#1 |
| o4(0x13A00000); // movne r0,#0 |
| break; |
| case TY_FLOAT: |
| #ifdef ARM_USE_VFP |
| o4(0xEEF57A40); // fcmpzs s15 |
| o4(0xEEF1FA10); // fmstat |
| o4(0x03A00001); // moveq r0,#1 |
| o4(0x13A00000); // movne r0,#0 |
| #else |
| callRuntime((void*) runtime_is_zero_f); |
| #endif |
| break; |
| case TY_DOUBLE: |
| #ifdef ARM_USE_VFP |
| o4(0xEEB57B40); // fcmpzd d7 |
| o4(0xEEF1FA10); // fmstat |
| o4(0x03A00001); // moveq r0,#1 |
| o4(0x13A00000); // movne r0,#0 |
| #else |
| callRuntime((void*) runtime_is_zero_d); |
| #endif |
| break; |
| default: |
| error("gUnaryCmp unsupported type"); |
| break; |
| } |
| } |
| setR0Type(mkpInt); |
| } |
| |
| virtual void genUnaryOp(int op) { |
| Type* pR0Type = getR0Type(); |
| TypeTag tag = collapseType(pR0Type->tag); |
| switch(tag) { |
| case TY_INT: |
| switch(op) { |
| case OP_MINUS: |
| o4(0xE3A01000); // mov r1, #0 |
| o4(0xE0410000); // sub r0,r1,r0 |
| break; |
| case OP_BIT_NOT: |
| o4(0xE1E00000); // mvn r0, r0 |
| break; |
| default: |
| error("Unknown unary op %d\n", op); |
| break; |
| } |
| break; |
| case TY_FLOAT: |
| case TY_DOUBLE: |
| switch (op) { |
| case OP_MINUS: |
| if (tag == TY_FLOAT) { |
| #ifdef ARM_USE_VFP |
| o4(0xEEF17A67); // fnegs s15, s15 |
| #else |
| callRuntime((void*) runtime_op_neg_f); |
| #endif |
| } else { |
| #ifdef ARM_USE_VFP |
| o4(0xEEB17B47); // fnegd d7, d7 |
| #else |
| callRuntime((void*) runtime_op_neg_d); |
| #endif |
| } |
| break; |
| case OP_BIT_NOT: |
| error("Can't apply '~' operator to a float or double."); |
| break; |
| default: |
| error("Unknown unary op %d\n", op); |
| break; |
| } |
| break; |
| default: |
| error("genUnaryOp unsupported type"); |
| break; |
| } |
| } |
| |
| virtual void pushR0() { |
| Type* pR0Type = getR0Type(); |
| TypeTag r0ct = collapseType(pR0Type->tag); |
| |
| #ifdef ARM_USE_VFP |
| switch (r0ct ) { |
| case TY_FLOAT: |
| o4(0xED6D7A01); // fstmfds sp!,{s15} |
| mStackUse += 4; |
| break; |
| case TY_DOUBLE: |
| o4(0xED2D7B02); // fstmfdd sp!,{d7} |
| mStackUse += 8; |
| break; |
| default: |
| o4(0xE92D0001); // stmfd sp!,{r0} |
| mStackUse += 4; |
| } |
| #else |
| |
| if (r0ct != TY_DOUBLE) { |
| o4(0xE92D0001); // stmfd sp!,{r0} |
| mStackUse += 4; |
| } else { |
| o4(0xE92D0003); // stmfd sp!,{r0,r1} |
| mStackUse += 8; |
| } |
| #endif |
| pushType(); |
| LOG_STACK("pushR0: %d\n", mStackUse); |
| } |
| |
| virtual void over() { |
| // We know it's only used for int-ptr ops (++/--) |
| |
| Type* pR0Type = getR0Type(); |
| TypeTag r0ct = collapseType(pR0Type->tag); |
| |
| Type* pTOSType = getTOSType(); |
| TypeTag tosct = collapseType(pTOSType->tag); |
| |
| assert (r0ct == TY_INT && tosct == TY_INT); |
| |
| o4(0xE8BD0002); // ldmfd sp!,{r1} |
| o4(0xE92D0001); // stmfd sp!,{r0} |
| o4(0xE92D0002); // stmfd sp!,{r1} |
| overType(); |
| mStackUse += 4; |
| } |
| |
| virtual void popR0() { |
| Type* pTOSType = getTOSType(); |
| TypeTag tosct = collapseType(pTOSType->tag); |
| #ifdef ARM_USE_VFP |
| if (tosct == TY_FLOAT || tosct == TY_DOUBLE) { |
| error("Unsupported popR0 float/double"); |
| } |
| #endif |
| switch (tosct){ |
| case TY_INT: |
| case TY_FLOAT: |
| o4(0xE8BD0001); // ldmfd sp!,{r0} |
| mStackUse -= 4; |
| break; |
| case TY_DOUBLE: |
| o4(0xE8BD0003); // ldmfd sp!,{r0, r1} // Restore R0 |
| mStackUse -= 8; |
| break; |
| default: |
| error("Can't pop this type."); |
| break; |
| } |
| popType(); |
| LOG_STACK("popR0: %d\n", mStackUse); |
| } |
| |
| virtual void storeR0ToTOS() { |
| Type* pPointerType = getTOSType(); |
| assert(pPointerType->tag == TY_POINTER); |
| Type* pDestType = pPointerType->pHead; |
| convertR0(pDestType); |
| o4(0xE8BD0004); // ldmfd sp!,{r2} |
| popType(); |
| mStackUse -= 4; |
| switch (pDestType->tag) { |
| case TY_POINTER: |
| case TY_INT: |
| o4(0xE5820000); // str r0, [r2] |
| break; |
| case TY_FLOAT: |
| #ifdef ARM_USE_VFP |
| o4(0xEDC27A00); // fsts s15, [r2, #0] |
| #else |
| o4(0xE5820000); // str r0, [r2] |
| #endif |
| break; |
| case TY_SHORT: |
| o4(0xE1C200B0); // strh r0, [r2] |
| break; |
| case TY_CHAR: |
| o4(0xE5C20000); // strb r0, [r2] |
| break; |
| case TY_DOUBLE: |
| #ifdef ARM_USE_VFP |
| o4(0xED827B00); // fstd d7, [r2, #0] |
| #else |
| o4(0xE1C200F0); // strd r0, [r2] |
| #endif |
| break; |
| case TY_STRUCT: |
| { |
| int size = sizeOf(pDestType); |
| if (size > 0) { |
| liReg(size, 1); |
| callRuntime((void*) runtime_structCopy); |
| } |
| } |
| break; |
| default: |
| error("storeR0ToTOS: unimplemented type %d", |
| pDestType->tag); |
| break; |
| } |
| setR0Type(pDestType); |
| } |
| |
| virtual void loadR0FromR0() { |
| Type* pPointerType = getR0Type(); |
| assert(pPointerType->tag == TY_POINTER); |
| Type* pNewType = pPointerType->pHead; |
| TypeTag tag = pNewType->tag; |
| switch (tag) { |
| case TY_POINTER: |
| case TY_INT: |
| o4(0xE5900000); // ldr r0, [r0] |
| break; |
| case TY_FLOAT: |
| #ifdef ARM_USE_VFP |
| o4(0xEDD07A00); // flds s15, [r0, #0] |
| #else |
| o4(0xE5900000); // ldr r0, [r0] |
| #endif |
| break; |
| case TY_SHORT: |
| o4(0xE1D000F0); // ldrsh r0, [r0] |
| break; |
| case TY_CHAR: |
| o4(0xE5D00000); // ldrb r0, [r0] |
| break; |
| case TY_DOUBLE: |
| #ifdef ARM_USE_VFP |
| o4(0xED907B00); // fldd d7, [r0, #0] |
| #else |
| o4(0xE1C000D0); // ldrd r0, [r0] |
| #endif |
| break; |
| case TY_ARRAY: |
| pNewType = pNewType->pTail; |
| break; |
| case TY_STRUCT: |
| break; |
| default: |
| error("loadR0FromR0: unimplemented type %d", tag); |
| break; |
| } |
| setR0Type(pNewType); |
| } |
| |
| virtual void leaR0(int ea, Type* pPointerType, ExpressionType et) { |
| if (ea > -LOCAL && ea < LOCAL) { |
| // Local, fp relative |
| |
| size_t immediate = 0; |
| bool inRange = false; |
| if (ea < 0) { |
| inRange = encode12BitImmediate(-ea, &immediate); |
| o4(0xE24B0000 | immediate); // sub r0, fp, #ea |
| } else { |
| inRange = encode12BitImmediate(ea, &immediate); |
| o4(0xE28B0000 | immediate); // add r0, fp, #ea |
| } |
| if (! inRange) { |
| error("Offset out of range: %08x", ea); |
| } |
| } else { |
| // Global, absolute. |
| o4(0xE59F0000); // ldr r0, .L1 |
| o4(0xEA000000); // b .L99 |
| o4(ea); // .L1: .word 0 |
| // .L99: |
| } |
| setR0Type(pPointerType, et); |
| } |
| |
| virtual int leaForward(int ea, Type* pPointerType) { |
| setR0Type(pPointerType); |
| int result = ea; |
| int pc = getPC(); |
| int offset = 0; |
| if (ea) { |
| offset = (pc - ea - 8) >> 2; |
| if ((offset & 0xffff) != offset) { |
| error("function forward reference out of bounds"); |
| } |
| } else { |
| offset = 0; |
| } |
| o4(0xE59F0000 | offset); // ldr r0, .L1 |
| |
| if (ea == 0) { |
| o4(0xEA000000); // b .L99 |
| result = getPC(); |
| o4(ea); // .L1: .word 0 |
| // .L99: |
| } |
| return result; |
| } |
| |
| virtual void convertR0Imp(Type* pType, bool isCast){ |
| Type* pR0Type = getR0Type(); |
| if (isPointerType(pType) && isPointerType(pR0Type)) { |
| Type* pA = pR0Type; |
| Type* pB = pType; |
| // Array decays to pointer |
| if (pA->tag == TY_ARRAY && pB->tag == TY_POINTER) { |
| pA = pA->pTail; |
| } |
| if (! (typeEqual(pA, pB) |
| || pB->pHead->tag == TY_VOID |
| || (pA->tag == TY_POINTER && pB->tag == TY_POINTER && isCast) |
| )) { |
| error("Incompatible pointer or array types"); |
| } |
| } else if (bitsSame(pType, pR0Type)) { |
| // do nothing special |
| } else { |
| TypeTag r0Tag = collapseType(pR0Type->tag); |
| TypeTag destTag = collapseType(pType->tag); |
| if (r0Tag == TY_INT) { |
| if (destTag == TY_FLOAT) { |
| #ifdef ARM_USE_VFP |
| o4(0xEE070A90); // fmsr s15, r0 |
| o4(0xEEF87AE7); // fsitos s15, s15 |
| |
| #else |
| callRuntime((void*) runtime_int_to_float); |
| #endif |
| } else { |
| assert(destTag == TY_DOUBLE); |
| #ifdef ARM_USE_VFP |
| o4(0xEE070A90); // fmsr s15, r0 |
| o4(0xEEB87BE7); // fsitod d7, s15 |
| |
| #else |
| callRuntime((void*) runtime_int_to_double); |
| #endif |
| } |
| } else if (r0Tag == TY_FLOAT) { |
| if (destTag == TY_INT) { |
| #ifdef ARM_USE_VFP |
| o4(0xEEFD7AE7); // ftosizs s15, s15 |
| o4(0xEE170A90); // fmrs r0, s15 |
| #else |
| callRuntime((void*) runtime_float_to_int); |
| #endif |
| } else { |
| assert(destTag == TY_DOUBLE); |
| #ifdef ARM_USE_VFP |
| o4(0xEEB77AE7); // fcvtds d7, s15 |
| #else |
| callRuntime((void*) runtime_float_to_double); |
| #endif |
| } |
| } else { |
| if (r0Tag == TY_DOUBLE) { |
| if (destTag == TY_INT) { |
| #ifdef ARM_USE_VFP |
| o4(0xEEFD7BC7); // ftosizd s15, d7 |
| o4(0xEE170A90); // fmrs r0, s15 |
| #else |
| callRuntime((void*) runtime_double_to_int); |
| #endif |
| } else { |
| if(destTag == TY_FLOAT) { |
| #ifdef ARM_USE_VFP |
| o4(0xEEF77BC7); // fcvtsd s15, d7 |
| #else |
| callRuntime((void*) runtime_double_to_float); |
| #endif |
| } else { |
| incompatibleTypes(pR0Type, pType); |
| } |
| } |
| } else { |
| incompatibleTypes(pR0Type, pType); |
| } |
| } |
| } |
| setR0Type(pType); |
| } |
| |
| virtual int beginFunctionCallArguments() { |
| int pc = getPC(); |
| o4(0xE24DDF00); // Placeholder sub sp, sp, #0 |
| return pc; |
| } |
| |
| virtual size_t storeR0ToArg(int l, Type* pArgType) { |
| convertR0(pArgType); |
| Type* pR0Type = getR0Type(); |
| TypeTag r0ct = collapseType(pR0Type->tag); |
| #ifdef ARM_USE_VFP |
| switch(r0ct) { |
| case TY_INT: |
| if (l < 0 || l > 4096-4) { |
| error("l out of range for stack offset: 0x%08x", l); |
| } |
| o4(0xE58D0000 | l); // str r0, [sp, #l] |
| return 4; |
| case TY_FLOAT: |
| if (l < 0 || l > 1020 || (l & 3)) { |
| error("l out of range for stack offset: 0x%08x", l); |
| } |
| o4(0xEDCD7A00 | (l >> 2)); // fsts s15, [sp, #l] |
| return 4; |
| case TY_DOUBLE: { |
| // Align to 8 byte boundary |
| int l2 = (l + 7) & ~7; |
| if (l2 < 0 || l2 > 1020 || (l2 & 3)) { |
| error("l out of range for stack offset: 0x%08x", l); |
| } |
| o4(0xED8D7B00 | (l2 >> 2)); // fstd d7, [sp, #l2] |
| return (l2 - l) + 8; |
| } |
| default: |
| assert(false); |
| return 0; |
| } |
| #else |
| switch(r0ct) { |
| case TY_INT: |
| case TY_FLOAT: |
| if (l < 0 || l > 4096-4) { |
| error("l out of range for stack offset: 0x%08x", l); |
| } |
| o4(0xE58D0000 + l); // str r0, [sp, #l] |
| return 4; |
| case TY_DOUBLE: { |
| // Align to 8 byte boundary |
| int l2 = (l + 7) & ~7; |
| if (l2 < 0 || l2 > 4096-8) { |
| error("l out of range for stack offset: 0x%08x", l); |
| } |
| o4(0xE58D0000 + l2); // str r0, [sp, #l] |
| o4(0xE58D1000 + l2 + 4); // str r1, [sp, #l+4] |
| return (l2 - l) + 8; |
| } |
| default: |
| assert(false); |
| return 0; |
| } |
| #endif |
| } |
| |
| virtual void endFunctionCallArguments(Type* pDecl, int a, int l) { |
| int argumentStackUse = l; |
| // Have to calculate register arg count from actual stack size, |
| // in order to properly handle ... functions. |
| int regArgCount = l >> 2; |
| if (regArgCount > 4) { |
| regArgCount = 4; |
| } |
| if (regArgCount > 0) { |
| argumentStackUse -= regArgCount * 4; |
| o4(0xE8BD0000 | ((1 << regArgCount) - 1)); // ldmfd sp!,{} |
| } |
| mStackUse += argumentStackUse; |
| |
| // Align stack. |
| int missalignment = mStackUse - ((mStackUse / STACK_ALIGNMENT) |
| * STACK_ALIGNMENT); |
| mStackAlignmentAdjustment = 0; |
| if (missalignment > 0) { |
| mStackAlignmentAdjustment = STACK_ALIGNMENT - missalignment; |
| } |
| l += mStackAlignmentAdjustment; |
| |
| if (l < 0 || l > 0x3FC) { |
| error("L out of range for stack adjustment: 0x%08x", l); |
| } |
| flush(); |
| * (int*) a = 0xE24DDF00 | (l >> 2); // sub sp, sp, #0 << 2 |
| mStackUse += mStackAlignmentAdjustment; |
| LOG_STACK("endFunctionCallArguments mStackUse: %d, mStackAlignmentAdjustment %d\n", |
| mStackUse, mStackAlignmentAdjustment); |
| } |
| |
| virtual int callForward(int symbol, Type* pFunc) { |
| setR0Type(pFunc->pHead); |
| // Forward calls are always short (local) |
| int pc = getPC(); |
| o4(0xEB000000 | encodeAddress(symbol)); |
| return pc; |
| } |
| |
| virtual void callIndirect(int l, Type* pFunc) { |
| assert(pFunc->tag == TY_FUNC); |
| popType(); // Get rid of indirect fn pointer type |
| int argCount = l >> 2; |
| int poppedArgs = argCount > 4 ? 4 : argCount; |
| int adjustedL = l - (poppedArgs << 2) + mStackAlignmentAdjustment; |
| if (adjustedL < 0 || adjustedL > 4096-4) { |
| error("l out of range for stack offset: 0x%08x", l); |
| } |
| o4(0xE59DC000 | (0xfff & adjustedL)); // ldr r12, [sp,#adjustedL] |
| o4(0xE12FFF3C); // blx r12 |
| Type* pReturnType = pFunc->pHead; |
| setR0Type(pReturnType); |
| #ifdef ARM_USE_VFP |
| switch(pReturnType->tag) { |
| case TY_FLOAT: |
| o4(0xEE070A90); // fmsr s15, r0 |
| break; |
| case TY_DOUBLE: |
| o4(0xEC410B17); // fmdrr d7, r0, r1 |
| break; |
| default: |
| break; |
| } |
| #endif |
| } |
| |
| virtual void adjustStackAfterCall(Type* pDecl, int l, bool isIndirect) { |
| int argCount = l >> 2; |
| // Have to calculate register arg count from actual stack size, |
| // in order to properly handle ... functions. |
| int regArgCount = l >> 2; |
| if (regArgCount > 4) { |
| regArgCount = 4; |
| } |
| int stackArgs = argCount - regArgCount; |
| int stackUse = stackArgs + (isIndirect ? 1 : 0) |
| + (mStackAlignmentAdjustment >> 2); |
| if (stackUse) { |
| if (stackUse < 0 || stackUse > 255) { |
| error("L out of range for stack adjustment: 0x%08x", l); |
| } |
| o4(0xE28DDF00 | stackUse); // add sp, sp, #stackUse << 2 |
| mStackUse -= stackUse * 4; |
| LOG_STACK("adjustStackAfterCall: %d\n", mStackUse); |
| } |
| } |
| |
| virtual int jumpOffset() { |
| return 8; |
| } |
| |
| /* output a symbol and patch all calls to it */ |
| virtual void gsym(int t) { |
| int n; |
| int base = getBase(); |
| int pc = getPC(); |
| while (t) { |
| int data = * (int*) t; |
| int decodedOffset = ((BRANCH_REL_ADDRESS_MASK & data) << 2); |
| if (decodedOffset == 0) { |
| n = 0; |
| } else { |
| n = base + decodedOffset; /* next value */ |
| } |
| *(int *) t = (data & ~BRANCH_REL_ADDRESS_MASK) |
| | encodeRelAddress(pc - t - 8); |
| t = n; |
| } |
| } |
| |
| /* output a symbol and patch all calls to it */ |
| virtual void resolveForward(int t) { |
| if (t) { |
| int pc = getPC(); |
| *(int *) t = pc; |
| } |
| } |
| |
| virtual int finishCompile() { |
| #if defined(__arm__) |
| const long base = long(getBase()); |
| const long curr = long(getPC()); |
| int err = cacheflush(base, curr, 0); |
| return err; |
| #else |
| return 0; |
| #endif |
| } |
| |
| /** |
| * alignment (in bytes) for this type of data |
| */ |
| virtual size_t alignmentOf(Type* pType){ |
| switch(pType->tag) { |
| case TY_CHAR: |
| return 1; |
| case TY_SHORT: |
| return 2; |
| case TY_DOUBLE: |
| return 8; |
| case TY_ARRAY: |
| return alignmentOf(pType->pHead); |
| case TY_STRUCT: |
| return pType->pHead->alignment & 0x7fffffff; |
| case TY_FUNC: |
| error("alignment of func not supported"); |
| return 1; |
| default: |
| return 4; |
| } |
| } |
| |
| /** |
| * Array element alignment (in bytes) for this type of data. |
| */ |
| virtual size_t sizeOf(Type* pType){ |
| switch(pType->tag) { |
| case TY_INT: |
| return 4; |
| case TY_SHORT: |
| return 2; |
| case TY_CHAR: |
| return 1; |
| case TY_FLOAT: |
| return 4; |
| case TY_DOUBLE: |
| return 8; |
| case TY_POINTER: |
| return 4; |
| case TY_ARRAY: |
| return pType->length * sizeOf(pType->pHead); |
| case TY_STRUCT: |
| return pType->pHead->length; |
| default: |
| error("Unsupported type %d", pType->tag); |
| return 0; |
| } |
| } |
| |
| private: |
| |
| static const int BRANCH_REL_ADDRESS_MASK = 0x00ffffff; |
| |
| /** Encode a relative address that might also be |
| * a label. |
| */ |
| int encodeAddress(int value) { |
| int base = getBase(); |
| if (value >= base && value <= getPC() ) { |
| // This is a label, encode it relative to the base. |
| value = value - base; |
| } |
| return encodeRelAddress(value); |
| } |
| |
| int encodeRelAddress(int value) { |
| return BRANCH_REL_ADDRESS_MASK & (value >> 2); |
| } |
| |
| int calcRegArgCount(Type* pDecl) { |
| int reg = 0; |
| Type* pArgs = pDecl->pTail; |
| while (pArgs && reg < 4) { |
| Type* pArg = pArgs->pHead; |
| if ( pArg->tag == TY_DOUBLE) { |
| int evenReg = (reg + 1) & ~1; |
| if (evenReg >= 4) { |
| break; |
| } |
| reg = evenReg + 2; |
| } else { |
| reg++; |
| } |
| pArgs = pArgs->pTail; |
| } |
| return reg; |
| } |
| |
| void setupIntPtrArgs() { |
| o4(0xE8BD0002); // ldmfd sp!,{r1} |
| mStackUse -= 4; |
| popType(); |
| } |
| |
| /* Pop TOS to R1 (use s14 if VFP) |
| * Make sure both R0 and TOS are floats. (Could be ints) |
| * We know that at least one of R0 and TOS is already a float |
| */ |
| void setupFloatArgs() { |
| Type* pR0Type = getR0Type(); |
| Type* pTOSType = getTOSType(); |
| TypeTag tagR0 = collapseType(pR0Type->tag); |
| TypeTag tagTOS = collapseType(pTOSType->tag); |
| if (tagR0 != TY_FLOAT) { |
| assert(tagR0 == TY_INT); |
| #ifdef ARM_USE_VFP |
| o4(0xEE070A90); // fmsr s15, r0 |
| o4(0xEEF87AE7); // fsitos s15, s15 |
| #else |
| callRuntime((void*) runtime_int_to_float); |
| #endif |
| } |
| if (tagTOS != TY_FLOAT) { |
| assert(tagTOS == TY_INT); |
| assert(tagR0 == TY_FLOAT); |
| #ifdef ARM_USE_VFP |
| o4(0xECBD7A01); // fldmfds sp!, {s14} |
| o4(0xEEB87AC7); // fsitos s14, s14 |
| #else |
| o4(0xE92D0001); // stmfd sp!,{r0} // push R0 |
| o4(0xE59D0004); // ldr r0, [sp, #4] |
| callRuntime((void*) runtime_int_to_float); |
| o4(0xE1A01000); // mov r1, r0 |
| o4(0xE8BD0001); // ldmfd sp!,{r0} // pop R0 |
| o4(0xE28DD004); // add sp, sp, #4 // Pop sp |
| #endif |
| } else { |
| // Pop TOS |
| #ifdef ARM_USE_VFP |
| o4(0xECBD7A01); // fldmfds sp!, {s14} |
| |
| #else |
| o4(0xE8BD0002); // ldmfd sp!,{r1} |
| #endif |
| } |
| mStackUse -= 4; |
| popType(); |
| } |
| |
| /* Pop TOS into R2..R3 (use D6 if VFP) |
| * Make sure both R0 and TOS are doubles. Could be floats or ints. |
| * We know that at least one of R0 and TOS are already a double. |
| */ |
| |
| void setupDoubleArgs() { |
| Type* pR0Type = getR0Type(); |
| Type* pTOSType = getTOSType(); |
| TypeTag tagR0 = collapseType(pR0Type->tag); |
| TypeTag tagTOS = collapseType(pTOSType->tag); |
| if (tagR0 != TY_DOUBLE) { |
| if (tagR0 == TY_INT) { |
| #ifdef ARM_USE_VFP |
| o4(0xEE070A90); // fmsr s15, r0 |
| o4(0xEEB87BE7); // fsitod d7, s15 |
| |
| #else |
| callRuntime((void*) runtime_int_to_double); |
| #endif |
| } else { |
| assert(tagR0 == TY_FLOAT); |
| #ifdef ARM_USE_VFP |
| o4(0xEEB77AE7); // fcvtds d7, s15 |
| #else |
| callRuntime((void*) runtime_float_to_double); |
| #endif |
| } |
| } |
| if (tagTOS != TY_DOUBLE) { |
| #ifdef ARM_USE_VFP |
| if (tagTOS == TY_INT) { |
| o4(0xECFD6A01); // fldmfds sp!,{s13} |
| o4(0xEEB86BE6); // fsitod d6, s13 |
| } else { |
| assert(tagTOS == TY_FLOAT); |
| o4(0xECFD6A01); // fldmfds sp!,{s13} |
| o4(0xEEB76AE6); // fcvtds d6, s13 |
| } |
| #else |
| o4(0xE92D0003); // stmfd sp!,{r0,r1} // push r0,r1 |
| o4(0xE59D0008); // ldr r0, [sp, #8] |
| if (tagTOS == TY_INT) { |
| callRuntime((void*) runtime_int_to_double); |
| } else { |
| assert(tagTOS == TY_FLOAT); |
| callRuntime((void*) runtime_float_to_double); |
| } |
| o4(0xE1A02000); // mov r2, r0 |
| o4(0xE1A03001); // mov r3, r1 |
| o4(0xE8BD0003); // ldmfd sp!,{r0, r1} // Restore R0 |
| o4(0xE28DD004); // add sp, sp, #4 // Pop sp |
| #endif |
| mStackUse -= 4; |
| } else { |
| #ifdef ARM_USE_VFP |
| o4(0xECBD6B02); // fldmfdd sp!, {d6} |
| #else |
| o4(0xE8BD000C); // ldmfd sp!,{r2,r3} |
| #endif |
| mStackUse -= 8; |
| } |
| popType(); |
| } |
| |
| void liReg(int t, int reg) { |
| assert(reg >= 0 && reg < 16); |
| int rN = (reg & 0xf) << 12; |
| size_t encodedImmediate; |
| if (encode12BitImmediate(t, &encodedImmediate)) { |
| o4(0xE3A00000 | encodedImmediate | rN); // mov rN, #0 |
| } else if (encode12BitImmediate(-(t+1), &encodedImmediate)) { |
| // mvn means move constant ^ ~0 |
| o4(0xE3E00000 | encodedImmediate | rN); // mvn rN, #0 |
| } else { |
| o4(0xE51F0000 | rN); // ldr rN, .L3 |
| o4(0xEA000000); // b .L99 |
| o4(t); // .L3: .word 0 |
| // .L99: |
| } |
| } |
| |
| void incompatibleTypes(Type* pR0Type, Type* pType) { |
| error("Incompatible types old: %d new: %d", pR0Type->tag, pType->tag); |
| } |
| |
| void callRuntime(void* fn) { |
| o4(0xE59FC000); // ldr r12, .L1 |
| o4(0xEA000000); // b .L99 |
| o4((int) fn); //.L1: .word fn |
| o4(0xE12FFF3C); //.L99: blx r12 |
| } |
| |
| // Integer math: |
| |
| static int runtime_DIV(int b, int a) { |
| return a / b; |
| } |
| |
| static int runtime_MOD(int b, int a) { |
| return a % b; |
| } |
| |
| static void runtime_structCopy(void* src, size_t size, void* dest) { |
| memcpy(dest, src, size); |
| } |
| |
| #ifndef ARM_USE_VFP |
| |
| // Comparison to zero |
| |
| static int runtime_is_non_zero_f(float a) { |
| return a != 0; |
| } |
| |
| static int runtime_is_non_zero_d(double a) { |
| return a != 0; |
| } |
| |
| // Comparison to zero |
| |
| static int runtime_is_zero_f(float a) { |
| return a == 0; |
| } |
| |
| static int runtime_is_zero_d(double a) { |
| return a == 0; |
| } |
| |
| // Type conversion |
| |
| static int runtime_float_to_int(float a) { |
| return (int) a; |
| } |
| |
| static double runtime_float_to_double(float a) { |
| return (double) a; |
| } |
| |
| static int runtime_double_to_int(double a) { |
| return (int) a; |
| } |
| |
| static float runtime_double_to_float(double a) { |
| return (float) a; |
| } |
| |
| static float runtime_int_to_float(int a) { |
| return (float) a; |
| } |
| |
| static double runtime_int_to_double(int a) { |
| return (double) a; |
| } |
| |
| // Comparisons float |
| |
| static int runtime_cmp_eq_ff(float b, float a) { |
| return a == b; |
| } |
| |
| static int runtime_cmp_ne_ff(float b, float a) { |
| return a != b; |
| } |
| |
| static int runtime_cmp_lt_ff(float b, float a) { |
| return a < b; |
| } |
| |
| static int runtime_cmp_le_ff(float b, float a) { |
| return a <= b; |
| } |
| |
| static int runtime_cmp_ge_ff(float b, float a) { |
| return a >= b; |
| } |
| |
| static int runtime_cmp_gt_ff(float b, float a) { |
| return a > b; |
| } |
| |
| // Comparisons double |
| |
| static int runtime_cmp_eq_dd(double b, double a) { |
| return a == b; |
| } |
| |
| static int runtime_cmp_ne_dd(double b, double a) { |
| return a != b; |
| } |
| |
| static int runtime_cmp_lt_dd(double b, double a) { |
| return a < b; |
| } |
| |
| static int runtime_cmp_le_dd(double b, double a) { |
| return a <= b; |
| } |
| |
| static int runtime_cmp_ge_dd(double b, double a) { |
| return a >= b; |
| } |
| |
| static int runtime_cmp_gt_dd(double b, double a) { |
| return a > b; |
| } |
| |
| // Math float |
| |
| static float runtime_op_add_ff(float b, float a) { |
| return a + b; |
| } |
| |
| static float runtime_op_sub_ff(float b, float a) { |
| return a - b; |
| } |
| |
| static float runtime_op_mul_ff(float b, float a) { |
| return a * b; |
| } |
| |
| static float runtime_op_div_ff(float b, float a) { |
| return a / b; |
| } |
| |
| static float runtime_op_neg_f(float a) { |
| return -a; |
| } |
| |
| // Math double |
| |
| static double runtime_op_add_dd(double b, double a) { |
| return a + b; |
| } |
| |
| static double runtime_op_sub_dd(double b, double a) { |
| return a - b; |
| } |
| |
| static double runtime_op_mul_dd(double b, double a) { |
| return a * b; |
| } |
| |
| static double runtime_op_div_dd(double b, double a) { |
| return a / b; |
| } |
| |
| static double runtime_op_neg_d(double a) { |
| return -a; |
| } |
| |
| #endif |
| |
| static const int STACK_ALIGNMENT = 8; |
| int mStackUse; |
| // This variable holds the amount we adjusted the stack in the most |
| // recent endFunctionCallArguments call. It's examined by the |
| // following adjustStackAfterCall call. |
| int mStackAlignmentAdjustment; |
| }; |
| |
| #endif // PROVIDE_ARM_CODEGEN |
| |
| #ifdef PROVIDE_X86_CODEGEN |
| |
| class X86CodeGenerator : public CodeGenerator { |
| public: |
| X86CodeGenerator() {} |
| virtual ~X86CodeGenerator() {} |
| |
| /* returns address to patch with local variable size |
| */ |
| virtual int functionEntry(Type* pDecl) { |
| o(0xe58955); /* push %ebp, mov %esp, %ebp */ |
| return oad(0xec81, 0); /* sub $xxx, %esp */ |
| } |
| |
| virtual void functionExit(Type* pDecl, int localVariableAddress, int localVariableSize) { |
| o(0xc3c9); /* leave, ret */ |
| *(int *) localVariableAddress = localVariableSize; /* save local variables */ |
| } |
| |
| /* load immediate value */ |
| virtual void li(int i) { |
| oad(0xb8, i); /* mov $xx, %eax */ |
| setR0Type(mkpInt); |
| } |
| |
| virtual void loadFloat(int address, Type* pType) { |
| setR0Type(pType); |
| switch (pType->tag) { |
| case TY_FLOAT: |
| oad(0x05D9, address); // flds |
| break; |
| case TY_DOUBLE: |
| oad(0x05DD, address); // fldl |
| break; |
| default: |
| assert(false); |
| break; |
| } |
| } |
| |
| virtual void addStructOffsetR0(int offset, Type* pType) { |
| if (offset) { |
| oad(0x05, offset); // addl offset, %eax |
| } |
| setR0Type(pType, ET_LVALUE); |
| } |
| |
| virtual int gjmp(int t) { |
| return psym(0xe9, t); |
| } |
| |
| /* l = 0: je, l == 1: jne */ |
| virtual int gtst(bool l, int t) { |
| Type* pR0Type = getR0Type(); |
| TypeTag tagR0 = pR0Type->tag; |
| bool isFloatR0 = isFloatTag(tagR0); |
| if (isFloatR0) { |
| o(0xeed9); // fldz |
| o(0xe9da); // fucompp |
| o(0xe0df); // fnstsw %ax |
| o(0x9e); // sahf |
| } else { |
| o(0xc085); // test %eax, %eax |
| } |
| // Use two output statements to generate one instruction. |
| o(0x0f); // je/jne xxx |
| return psym(0x84 + l, t); |
| } |
| |
| virtual void gcmp(int op) { |
| Type* pR0Type = getR0Type(); |
| Type* pTOSType = getTOSType(); |
| TypeTag tagR0 = pR0Type->tag; |
| TypeTag tagTOS = pTOSType->tag; |
| bool isFloatR0 = isFloatTag(tagR0); |
| bool isFloatTOS = isFloatTag(tagTOS); |
| if (!isFloatR0 && !isFloatTOS) { |
| int t = decodeOp(op); |
| o(0x59); /* pop %ecx */ |
| o(0xc139); /* cmp %eax,%ecx */ |
| li(0); |
| o(0x0f); /* setxx %al */ |
| o(t + 0x90); |
| o(0xc0); |
| popType(); |
| } else { |
| setupFloatOperands(); |
| switch (op) { |
| case OP_EQUALS: |
| o(0xe9da); // fucompp |
| o(0xe0df); // fnstsw %ax |
| o(0x9e); // sahf |
| o(0xc0940f); // sete %al |
| o(0xc29b0f); // setnp %dl |
| o(0xd021); // andl %edx, %eax |
| break; |
| case OP_NOT_EQUALS: |
| o(0xe9da); // fucompp |
| o(0xe0df); // fnstsw %ax |
| o(0x9e); // sahf |
| o(0xc0950f); // setne %al |
| o(0xc29a0f); // setp %dl |
| o(0xd009); // orl %edx, %eax |
| break; |
| case OP_GREATER_EQUAL: |
| o(0xe9da); // fucompp |
| o(0xe0df); // fnstsw %ax |
| o(0x05c4f6); // testb $5, %ah |
| o(0xc0940f); // sete %al |
| break; |
| case OP_LESS: |
| o(0xc9d9); // fxch %st(1) |
| o(0xe9da); // fucompp |
| o(0xe0df); // fnstsw %ax |
| o(0x9e); // sahf |
| o(0xc0970f); // seta %al |
| break; |
| case OP_LESS_EQUAL: |
| o(0xc9d9); // fxch %st(1) |
| o(0xe9da); // fucompp |
| o(0xe0df); // fnstsw %ax |
| o(0x9e); // sahf |
| o(0xc0930f); // setea %al |
| break; |
| case OP_GREATER: |
| o(0xe9da); // fucompp |
| o(0xe0df); // fnstsw %ax |
| o(0x45c4f6); // testb $69, %ah |
| o(0xc0940f); // sete %al |
| break; |
| default: |
| error("Unknown comparison op"); |
| } |
| o(0xc0b60f); // movzbl %al, %eax |
| } |
| setR0Type(mkpInt); |
| } |
| |
| virtual void genOp(int op) { |
| Type* pR0Type = getR0Type(); |
| Type* pTOSType = getTOSType(); |
| TypeTag tagR0 = pR0Type->tag; |
| TypeTag tagTOS = pTOSType->tag; |
| bool isFloatR0 = isFloatTag(tagR0); |
| bool isFloatTOS = isFloatTag(tagTOS); |
| if (!isFloatR0 && !isFloatTOS) { |
| bool isPtrR0 = isPointerTag(tagR0); |
| bool isPtrTOS = isPointerTag(tagTOS); |
| if (isPtrR0 || isPtrTOS) { |
| if (isPtrR0 && isPtrTOS) { |
| if (op != OP_MINUS) { |
| error("Unsupported pointer-pointer operation %d.", op); |
| } |
| if (! typeEqual(pR0Type, pTOSType)) { |
| error("Incompatible pointer types for subtraction."); |
| } |
| o(0x59); /* pop %ecx */ |
| o(decodeOp(op)); |
| popType(); |
| setR0Type(mkpInt); |
| int size = sizeOf(pR0Type->pHead); |
| if (size != 1) { |
| pushR0(); |
| li(size); |
| // TODO: Optimize for power-of-two. |
| genOp(OP_DIV); |
| } |
| } else { |
| if (! (op == OP_PLUS || (op == OP_MINUS && isPtrR0))) { |
| error("Unsupported pointer-scalar operation %d", op); |
| } |
| Type* pPtrType = getPointerArithmeticResultType( |
| pR0Type, pTOSType); |
| o(0x59); /* pop %ecx */ |
| int size = sizeOf(pPtrType->pHead); |
| if (size != 1) { |
| // TODO: Optimize for power-of-two. |
| if (isPtrR0) { |
| oad(0xC969, size); // imull $size, %ecx |
| } else { |
| oad(0xC069, size); // mul $size, %eax |
| } |
| } |
| o(decodeOp(op)); |
| popType(); |
| setR0Type(pPtrType); |
| } |
| } else { |
| o(0x59); /* pop %ecx */ |
| o(decodeOp(op)); |
| if (op == OP_MOD) |
| o(0x92); /* xchg %edx, %eax */ |
| popType(); |
| } |
| } else { |
| Type* pResultType = tagR0 > tagTOS ? pR0Type : pTOSType; |
| setupFloatOperands(); |
| // Both float. x87 R0 == left hand, x87 R1 == right hand |
| switch (op) { |
| case OP_MUL: |
| o(0xc9de); // fmulp |
| break; |
| case OP_DIV: |
| o(0xf1de); // fdivp |
| break; |
| case OP_PLUS: |
| o(0xc1de); // faddp |
| break; |
| case OP_MINUS: |
| o(0xe1de); // fsubp |
| break; |
| default: |
| error("Unsupported binary floating operation."); |
| break; |
| } |
| setR0Type(pResultType); |
| } |
| } |
| |
| virtual void gUnaryCmp(int op) { |
| if (op != OP_LOGICAL_NOT) { |
| error("Unknown unary cmp %d", op); |
| } else { |
| Type* pR0Type = getR0Type(); |
| TypeTag tag = collapseType(pR0Type->tag); |
| switch(tag) { |
| case TY_INT: { |
| oad(0xb9, 0); /* movl $0, %ecx */ |
| int t = decodeOp(op); |
| o(0xc139); /* cmp %eax,%ecx */ |
| li(0); |
| o(0x0f); /* setxx %al */ |
| o(t + 0x90); |
| o(0xc0); |
| } |
| break; |
| case TY_FLOAT: |
| case TY_DOUBLE: |
| o(0xeed9); // fldz |
| o(0xe9da); // fucompp |
| o(0xe0df); // fnstsw %ax |
| o(0x9e); // sahf |
| o(0xc0950f); // setne %al |
| o(0xc29a0f); // setp %dl |
| o(0xd009); // orl %edx, %eax |
| o(0xc0b60f); // movzbl %al, %eax |
| o(0x01f083); // xorl $1, %eax |
| break; |
| default: |
| error("gUnaryCmp unsupported type"); |
| break; |
| } |
| } |
| setR0Type(mkpInt); |
| } |
| |
| virtual void genUnaryOp(int op) { |
| Type* pR0Type = getR0Type(); |
| TypeTag tag = collapseType(pR0Type->tag); |
| switch(tag) { |
| case TY_INT: |
| oad(0xb9, 0); /* movl $0, %ecx */ |
| o(decodeOp(op)); |
| break; |
| case TY_FLOAT: |
| case TY_DOUBLE: |
| switch (op) { |
| case OP_MINUS: |
| o(0xe0d9); // fchs |
| break; |
| case OP_BIT_NOT: |
| error("Can't apply '~' operator to a float or double."); |
| break; |
| default: |
| error("Unknown unary op %d\n", op); |
| break; |
| } |
| break; |
| default: |
| error("genUnaryOp unsupported type"); |
| break; |
| } |
| } |
| |
| virtual void pushR0() { |
| Type* pR0Type = getR0Type(); |
| TypeTag r0ct = collapseType(pR0Type->tag); |
| switch(r0ct) { |
| case TY_INT: |
| o(0x50); /* push %eax */ |
| break; |
| case TY_FLOAT: |
| o(0x50); /* push %eax */ |
| o(0x241cd9); // fstps 0(%esp) |
| break; |
| case TY_DOUBLE: |
| o(0x50); /* push %eax */ |
| o(0x50); /* push %eax */ |
| o(0x241cdd); // fstpl 0(%esp) |
| break; |
| default: |
| error("pushR0 unsupported type %d", r0ct); |
| break; |
| } |
| pushType(); |
| } |
| |
| virtual void over() { |
| // We know it's only used for int-ptr ops (++/--) |
| |
| Type* pR0Type = getR0Type(); |
| TypeTag r0ct = collapseType(pR0Type->tag); |
| |
| Type* pTOSType = getTOSType(); |
| TypeTag tosct = collapseType(pTOSType->tag); |
| |
| assert (r0ct == TY_INT && tosct == TY_INT); |
| |
| o(0x59); /* pop %ecx */ |
| o(0x50); /* push %eax */ |
| o(0x51); /* push %ecx */ |
| |
| overType(); |
| } |
| |
| virtual void popR0() { |
| Type* pR0Type = getR0Type(); |
| TypeTag r0ct = collapseType(pR0Type->tag); |
| switch(r0ct) { |
| case TY_INT: |
| o(0x58); /* popl %eax */ |
| break; |
| case TY_FLOAT: |
| o(0x2404d9); // flds (%esp) |
| o(0x58); /* popl %eax */ |
| break; |
| case TY_DOUBLE: |
| o(0x2404dd); // fldl (%esp) |
| o(0x58); /* popl %eax */ |
| o(0x58); /* popl %eax */ |
| break; |
| default: |
| error("popR0 unsupported type %d", r0ct); |
| break; |
| } |
| popType(); |
| } |
| |
| virtual void storeR0ToTOS() { |
| Type* pPointerType = getTOSType(); |
| assert(pPointerType->tag == TY_POINTER); |
| Type* pTargetType = pPointerType->pHead; |
| convertR0(pTargetType); |
| o(0x59); /* pop %ecx */ |
| popType(); |
| switch (pTargetType->tag) { |
| case TY_POINTER: |
| case TY_INT: |
| o(0x0189); /* movl %eax/%al, (%ecx) */ |
| break; |
| case TY_SHORT: |
| o(0x018966); /* movw %ax, (%ecx) */ |
| break; |
| case TY_CHAR: |
| o(0x0188); /* movl %eax/%al, (%ecx) */ |
| break; |
| case TY_FLOAT: |
| o(0x19d9); /* fstps (%ecx) */ |
| break; |
| case TY_DOUBLE: |
| o(0x19dd); /* fstpl (%ecx) */ |
| break; |
| case TY_STRUCT: |
| { |
| // TODO: use alignment information to use movsw/movsl instead of movsb |
| int size = sizeOf(pTargetType); |
| if (size > 0) { |
| o(0x9c); // pushf |
| o(0x57); // pushl %edi |
| o(0x56); // pushl %esi |
| o(0xcf89); // movl %ecx, %edi |
| o(0xc689); // movl %eax, %esi |
| oad(0xb9, size); // mov #size, %ecx |
| o(0xfc); // cld |
| o(0xf3); // rep |
| o(0xa4); // movsb |
| o(0x5e); // popl %esi |
| o(0x5f); // popl %edi |
| o(0x9d); // popf |
| } |
| } |
| break; |
| default: |
| error("storeR0ToTOS: unsupported type %d", |
| pTargetType->tag); |
| break; |
| } |
| setR0Type(pTargetType); |
| } |
| |
| virtual void loadR0FromR0() { |
| Type* pPointerType = getR0Type(); |
| assert(pPointerType->tag == TY_POINTER); |
| Type* pNewType = pPointerType->pHead; |
| TypeTag tag = pNewType->tag; |
| switch (tag) { |
| case TY_POINTER: |
| case TY_INT: |
| o2(0x008b); /* mov (%eax), %eax */ |
| break; |
| case TY_SHORT: |
| o(0xbf0f); /* movswl (%eax), %eax */ |
| ob(0); |
| break; |
| case TY_CHAR: |
| o(0xbe0f); /* movsbl (%eax), %eax */ |
| ob(0); /* add zero in code */ |
| break; |
| case TY_FLOAT: |
| o2(0x00d9); // flds (%eax) |
| break; |
| case TY_DOUBLE: |
| o2(0x00dd); // fldl (%eax) |
| break; |
| case TY_ARRAY: |
| pNewType = pNewType->pTail; |
| break; |
| case TY_STRUCT: |
| break; |
| default: |
| error("loadR0FromR0: unsupported type %d", tag); |
| break; |
| } |
| setR0Type(pNewType); |
| } |
| |
| virtual void leaR0(int ea, Type* pPointerType, ExpressionType et) { |
| gmov(10, ea); /* leal EA, %eax */ |
| setR0Type(pPointerType, et); |
| } |
| |
| virtual int leaForward(int ea, Type* pPointerType) { |
| oad(0xb8, ea); /* mov $xx, %eax */ |
| setR0Type(pPointerType); |
| return getPC() - 4; |
| } |
| |
| virtual void convertR0Imp(Type* pType, bool isCast){ |
| Type* pR0Type = getR0Type(); |
| if (pR0Type == NULL) { |
| assert(false); |
| setR0Type(pType); |
| return; |
| } |
| if (isPointerType(pType) && isPointerType(pR0Type)) { |
| Type* pA = pR0Type; |
| Type* pB = pType; |
| // Array decays to pointer |
| if (pA->tag == TY_ARRAY && pB->tag == TY_POINTER) { |
| pA = pA->pTail; |
| } |
| if (! (typeEqual(pA, pB) |
| || pB->pHead->tag == TY_VOID |
| || (pA->tag == TY_POINTER && pB->tag == TY_POINTER && isCast) |
| )) { |
| error("Incompatible pointer or array types"); |
| } |
| } else if (bitsSame(pType, pR0Type)) { |
| // do nothing special |
| } else if (isFloatType(pType) && isFloatType(pR0Type)) { |
| // do nothing special, both held in same register on x87. |
| } else { |
| TypeTag r0Tag = collapseType(pR0Type->tag); |
| TypeTag destTag = collapseType(pType->tag); |
| if (r0Tag == TY_INT && isFloatTag(destTag)) { |
| // Convert R0 from int to float |
| o(0x50); // push %eax |
| o(0x2404DB); // fildl 0(%esp) |
| o(0x58); // pop %eax |
| } else if (isFloatTag(r0Tag) && destTag == TY_INT) { |
| // Convert R0 from float to int. Complicated because |
| // need to save and restore the rounding mode. |
| o(0x50); // push %eax |
| o(0x50); // push %eax |
| o(0x02247cD9); // fnstcw 2(%esp) |
| o(0x2444b70f); // movzwl 2(%esp), %eax |
| o(0x02); |
| o(0x0cb4); // movb $12, %ah |
| o(0x24048966); // movw %ax, 0(%esp) |
| o(0x242cd9); // fldcw 0(%esp) |
| o(0x04245cdb); // fistpl 4(%esp) |
| o(0x02246cd9); // fldcw 2(%esp) |
| o(0x58); // pop %eax |
| o(0x58); // pop %eax |
| } else { |
| error("Incompatible types old: %d new: %d", |
| pR0Type->tag, pType->tag); |
| } |
| } |
| setR0Type(pType); |
| } |
| |
| virtual int beginFunctionCallArguments() { |
| return oad(0xec81, 0); /* sub $xxx, %esp */ |
| } |
| |
| virtual size_t storeR0ToArg(int l, Type* pArgType) { |
| convertR0(pArgType); |
| Type* pR0Type = getR0Type(); |
| TypeTag r0ct = collapseType(pR0Type->tag); |
| switch(r0ct) { |
| case TY_INT: |
| oad(0x248489, l); /* movl %eax, xxx(%esp) */ |
| return 4; |
| case TY_FLOAT: |
| oad(0x249CD9, l); /* fstps xxx(%esp) */ |
| return 4; |
| case TY_DOUBLE: |
| oad(0x249CDD, l); /* fstpl xxx(%esp) */ |
| return 8; |
| default: |
| assert(false); |
| return 0; |
| } |
| } |
| |
| virtual void endFunctionCallArguments(Type* pDecl, int a, int l) { |
| * (int*) a = l; |
| } |
| |
| virtual int callForward(int symbol, Type* pFunc) { |
| assert(pFunc->tag == TY_FUNC); |
| setR0Type(pFunc->pHead); |
| return psym(0xe8, symbol); /* call xxx */ |
| } |
| |
| virtual void callIndirect(int l, Type* pFunc) { |
| assert(pFunc->tag == TY_FUNC); |
| popType(); // Get rid of indirect fn pointer type |
| setR0Type(pFunc->pHead); |
| oad(0x2494ff, l); /* call *xxx(%esp) */ |
| } |
| |
| virtual void adjustStackAfterCall(Type* pDecl, int l, bool isIndirect) { |
| assert(pDecl->tag == TY_FUNC); |
| if (isIndirect) { |
| l += 4; |
| } |
| if (l > 0) { |
| oad(0xc481, l); /* add $xxx, %esp */ |
| } |
| } |
| |
| virtual int jumpOffset() { |
| return 5; |
| } |
| |
| /* output a symbol and patch all calls to it */ |
| virtual void gsym(int t) { |
| int n; |
| int pc = getPC(); |
| while (t) { |
| n = *(int *) t; /* next value */ |
| *(int *) t = pc - t - 4; |
| t = n; |
| } |
| } |
| |
| /* output a symbol and patch all calls to it, using absolute address */ |
| virtual void resolveForward(int t) { |
| int n; |
| int pc = getPC(); |
| while (t) { |
| n = *(int *) t; /* next value */ |
| *(int *) t = pc; |
| t = n; |
| } |
| } |
| |
| virtual int finishCompile() { |
| size_t pagesize = 4096; |
|