blob: 1469f7c76d4cc7c9c109c5ccd3b38ff25b4dc9d0 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
/*
* Hardware Composer stress test
*
* Performs a pseudo-random (prandom) sequence of operations to the
* Hardware Composer (HWC), for a specified number of passes or for
* a specified period of time. By default the period of time is FLT_MAX,
* so that the number of passes will take precedence.
*
* The passes are grouped together, where (pass / passesPerGroup) specifies
* which group a particular pass is in. This causes every passesPerGroup
* worth of sequential passes to be within the same group. Computationally
* intensive operations are performed just once at the beginning of a group
* of passes and then used by all the passes in that group. This is done
* so as to increase both the average and peak rate of graphic operations,
* by moving computationally intensive operations to the beginning of a group.
* In particular, at the start of each group of passes a set of
* graphic buffers are created, then used by the first and remaining
* passes of that group of passes.
*
* The per-group initialization of the graphic buffers is performed
* by a function called initFrames. This function creates an array
* of smart pointers to the graphic buffers, in the form of a vector
* of vectors. The array is accessed in row major order, so each
* row is a vector of smart pointers. All the pointers of a single
* row point to graphic buffers which use the same pixel format and
* have the same dimension, although it is likely that each one is
* filled with a different color. This is done so that after doing
* the first HWC prepare then set call, subsequent set calls can
* be made with each of the layer handles changed to a different
* graphic buffer within the same row. Since the graphic buffers
* in a particular row have the same pixel format and dimension,
* additional HWC set calls can be made, without having to perform
* an HWC prepare call.
*
* This test supports the following command-line options:
*
* -v Verbose
* -s num Starting pass
* -e num Ending pass
* -p num Execute the single pass specified by num
* -n num Number of set operations to perform after each prepare operation
* -t float Maximum time in seconds to execute the test
* -d float Delay in seconds performed after each set operation
* -D float Delay in seconds performed after the last pass is executed
*
* Typically the test is executed for a large range of passes. By default
* passes 0 through 99999 (100,000 passes) are executed. Although this test
* does not validate the generated image, at times it is useful to reexecute
* a particular pass and leave the displayed image on the screen for an
* extended period of time. This can be done either by setting the -s
* and -e options to the desired pass, along with a large value for -D.
* This can also be done via the -p option, again with a large value for
* the -D options.
*
* So far this test only contains code to create graphic buffers with
* a continuous solid color. Although this test is unable to validate the
* image produced, any image that contains other than rectangles of a solid
* color are incorrect. Note that the rectangles may use a transparent
* color and have a blending operation that causes the color in overlapping
* rectangles to be mixed. In such cases the overlapping portions may have
* a different color from the rest of the rectangle.
*/
#define LOG_TAG "hwcStressTest"
#include <algorithm>
#include <assert.h>
#include <cerrno>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <libgen.h>
#include <sched.h>
#include <sstream>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <vector>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <ui/GraphicBuffer.h>
#include <utils/Log.h>
#include <testUtil.h>
#include <hardware/hwcomposer.h>
#include <glTestLib.h>
#include "hwcTestLib.h"
using namespace std;
using namespace android;
const float maxSizeRatio = 1.3; // Graphic buffers can be upto this munch
// larger than the default screen size
const unsigned int passesPerGroup = 10; // A group of passes all use the same
// graphic buffers
// Ratios at which rare and frequent conditions should be produced
const float rareRatio = 0.1;
const float freqRatio = 0.9;
// Defaults for command-line options
const bool defaultVerbose = false;
const unsigned int defaultStartPass = 0;
const unsigned int defaultEndPass = 99999;
const unsigned int defaultPerPassNumSet = 10;
const float defaultPerSetDelay = 0.0; // Default delay after each set
// operation. Default delay of
// zero used so as to perform the
// the set operations as quickly
// as possible.
const float defaultEndDelay = 2.0; // Default delay between completion of
// final pass and restart of framework
const float defaultDuration = FLT_MAX; // A fairly long time, so that
// range of passes will have
// precedence
// Command-line option settings
static bool verbose = defaultVerbose;
static unsigned int startPass = defaultStartPass;
static unsigned int endPass = defaultEndPass;
static unsigned int numSet = defaultPerPassNumSet;
static float perSetDelay = defaultPerSetDelay;
static float endDelay = defaultEndDelay;
static float duration = defaultDuration;
// Command-line mutual exclusion detection flags.
// Corresponding flag set true once an option is used.
bool eFlag, sFlag, pFlag;
#define MAXSTR 100
#define MAXCMD 200
#define BITSPERBYTE 8 // TODO: Obtain from <values.h>, once
// it has been added
#define CMD_STOP_FRAMEWORK "stop 2>&1"
#define CMD_START_FRAMEWORK "start 2>&1"
#define NUMA(a) (sizeof(a) / sizeof((a)[0]))
#define MEMCLR(addr, size) do { \
memset((addr), 0, (size)); \
} while (0)
// File scope constants
const unsigned int blendingOps[] = {
HWC_BLENDING_NONE,
HWC_BLENDING_PREMULT,
HWC_BLENDING_COVERAGE,
};
const unsigned int layerFlags[] = {
HWC_SKIP_LAYER,
};
const vector<unsigned int> vecLayerFlags(layerFlags,
layerFlags + NUMA(layerFlags));
const unsigned int transformFlags[] = {
HWC_TRANSFORM_FLIP_H,
HWC_TRANSFORM_FLIP_V,
HWC_TRANSFORM_ROT_90,
// ROT_180 & ROT_270 intentionally not listed, because they
// they are formed from combinations of the flags already listed.
};
const vector<unsigned int> vecTransformFlags(transformFlags,
transformFlags + NUMA(transformFlags));
// File scope globals
static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE |
GraphicBuffer::USAGE_SW_WRITE_RARELY;
static hwc_composer_device_1_t *hwcDevice;
static EGLDisplay dpy;
static EGLSurface surface;
static EGLint width, height;
static vector <vector <sp<GraphicBuffer> > > frames;
// File scope prototypes
void init(void);
void initFrames(unsigned int seed);
template <class T> vector<T> vectorRandSelect(const vector<T>& vec, size_t num);
template <class T> T vectorOr(const vector<T>& vec);
/*
* Main
*
* Performs the following high-level sequence of operations:
*
* 1. Command-line parsing
*
* 2. Initialization
*
* 3. For each pass:
*
* a. If pass is first pass or in a different group from the
* previous pass, initialize the array of graphic buffers.
*
* b. Create a HWC list with room to specify a prandomly
* selected number of layers.
*
* c. Select a subset of the rows from the graphic buffer array,
* such that there is a unique row to be used for each
* of the layers in the HWC list.
*
* d. Prandomly fill in the HWC list with handles
* selected from any of the columns of the selected row.
*
* e. Pass the populated list to the HWC prepare call.
*
* f. Pass the populated list to the HWC set call.
*
* g. If additional set calls are to be made, then for each
* additional set call, select a new set of handles and
* perform the set call.
*/
int
main(int argc, char *argv[])
{
int rv, opt;
char *chptr;
unsigned int pass;
char cmd[MAXCMD];
struct timeval startTime, currentTime, delta;
testSetLogCatTag(LOG_TAG);
// Parse command line arguments
while ((opt = getopt(argc, argv, "vp:d:D:n:s:e:t:?h")) != -1) {
switch (opt) {
case 'd': // Delay after each set operation
perSetDelay = strtod(optarg, &chptr);
if ((*chptr != '\0') || (perSetDelay < 0.0)) {
testPrintE("Invalid command-line specified per pass delay of: "
"%s", optarg);
exit(1);
}
break;
case 'D': // End of test delay
// Delay between completion of final pass and restart
// of framework
endDelay = strtod(optarg, &chptr);
if ((*chptr != '\0') || (endDelay < 0.0)) {
testPrintE("Invalid command-line specified end of test delay "
"of: %s", optarg);
exit(2);
}
break;
case 't': // Duration
duration = strtod(optarg, &chptr);
if ((*chptr != '\0') || (duration < 0.0)) {
testPrintE("Invalid command-line specified duration of: %s",
optarg);
exit(3);
}
break;
case 'n': // Num set operations per pass
numSet = strtoul(optarg, &chptr, 10);
if (*chptr != '\0') {
testPrintE("Invalid command-line specified num set per pass "
"of: %s", optarg);
exit(4);
}
break;
case 's': // Starting Pass
sFlag = true;
if (pFlag) {
testPrintE("Invalid combination of command-line options.");
testPrintE(" The -p option is mutually exclusive from the");
testPrintE(" -s and -e options.");
exit(5);
}
startPass = strtoul(optarg, &chptr, 10);
if (*chptr != '\0') {
testPrintE("Invalid command-line specified starting pass "
"of: %s", optarg);
exit(6);
}
break;
case 'e': // Ending Pass
eFlag = true;
if (pFlag) {
testPrintE("Invalid combination of command-line options.");
testPrintE(" The -p option is mutually exclusive from the");
testPrintE(" -s and -e options.");
exit(7);
}
endPass = strtoul(optarg, &chptr, 10);
if (*chptr != '\0') {
testPrintE("Invalid command-line specified ending pass "
"of: %s", optarg);
exit(8);
}
break;
case 'p': // Run a single specified pass
pFlag = true;
if (sFlag || eFlag) {
testPrintE("Invalid combination of command-line options.");
testPrintE(" The -p option is mutually exclusive from the");
testPrintE(" -s and -e options.");
exit(9);
}
startPass = endPass = strtoul(optarg, &chptr, 10);
if (*chptr != '\0') {
testPrintE("Invalid command-line specified pass of: %s",
optarg);
exit(10);
}
break;
case 'v': // Verbose
verbose = true;
break;
case 'h': // Help
case '?':
default:
testPrintE(" %s [options]", basename(argv[0]));
testPrintE(" options:");
testPrintE(" -p Execute specified pass");
testPrintE(" -s Starting pass");
testPrintE(" -e Ending pass");
testPrintE(" -t Duration");
testPrintE(" -d Delay after each set operation");
testPrintE(" -D End of test delay");
testPrintE(" -n Num set operations per pass");
testPrintE(" -v Verbose");
exit(((optopt == 0) || (optopt == '?')) ? 0 : 11);
}
}
if (endPass < startPass) {
testPrintE("Unexpected ending pass before starting pass");
testPrintE(" startPass: %u endPass: %u", startPass, endPass);
exit(12);
}
if (argc != optind) {
testPrintE("Unexpected command-line postional argument");
testPrintE(" %s [-s start_pass] [-e end_pass] [-t duration]",
basename(argv[0]));
exit(13);
}
testPrintI("duration: %g", duration);
testPrintI("startPass: %u", startPass);
testPrintI("endPass: %u", endPass);
testPrintI("numSet: %u", numSet);
// Stop framework
rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK);
if (rv >= (signed) sizeof(cmd) - 1) {
testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK);
exit(14);
}
testExecCmd(cmd);
testDelay(1.0); // TODO - need means to query whether asyncronous stop
// framework operation has completed. For now, just wait
// a long time.
init();
// For each pass
gettimeofday(&startTime, NULL);
for (pass = startPass; pass <= endPass; pass++) {
// Stop if duration of work has already been performed
gettimeofday(&currentTime, NULL);
delta = tvDelta(&startTime, &currentTime);
if (tv2double(&delta) > duration) { break; }
// Regenerate a new set of test frames when this pass is
// either the first pass or is in a different group then
// the previous pass. A group of passes are passes that
// all have the same quotient when their pass number is
// divided by passesPerGroup.
if ((pass == startPass)
|| ((pass / passesPerGroup) != ((pass - 1) / passesPerGroup))) {
initFrames(pass / passesPerGroup);
}
testPrintI("==== Starting pass: %u", pass);
// Cause deterministic sequence of prandom numbers to be
// generated for this pass.
srand48(pass);
hwc_display_contents_1_t *list;
list = hwcTestCreateLayerList(testRandMod(frames.size()) + 1);
if (list == NULL) {
testPrintE("hwcTestCreateLayerList failed");
exit(20);
}
// Prandomly select a subset of frames to be used by this pass.
vector <vector <sp<GraphicBuffer> > > selectedFrames;
selectedFrames = vectorRandSelect(frames, list->numHwLayers);
// Any transform tends to create a layer that the hardware
// composer is unable to support and thus has to leave for
// SurfaceFlinger. Place heavy bias on specifying no transforms.
bool noTransform = testRandFract() > rareRatio;
for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
unsigned int idx = testRandMod(selectedFrames[n1].size());
sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
hwc_layer_1_t *layer = &list->hwLayers[n1];
layer->handle = gBuf->handle;
layer->blending = blendingOps[testRandMod(NUMA(blendingOps))];
layer->flags = (testRandFract() > rareRatio) ? 0
: vectorOr(vectorRandSelect(vecLayerFlags,
testRandMod(vecLayerFlags.size() + 1)));
layer->transform = (noTransform || testRandFract() > rareRatio) ? 0
: vectorOr(vectorRandSelect(vecTransformFlags,
testRandMod(vecTransformFlags.size() + 1)));
layer->sourceCrop.left = testRandMod(gBuf->getWidth());
layer->sourceCrop.top = testRandMod(gBuf->getHeight());
layer->sourceCrop.right = layer->sourceCrop.left
+ testRandMod(gBuf->getWidth() - layer->sourceCrop.left) + 1;
layer->sourceCrop.bottom = layer->sourceCrop.top
+ testRandMod(gBuf->getHeight() - layer->sourceCrop.top) + 1;
layer->displayFrame.left = testRandMod(width);
layer->displayFrame.top = testRandMod(height);
layer->displayFrame.right = layer->displayFrame.left
+ testRandMod(width - layer->displayFrame.left) + 1;
layer->displayFrame.bottom = layer->displayFrame.top
+ testRandMod(height - layer->displayFrame.top) + 1;
// Increase the frequency that a scale factor of 1.0 from
// the sourceCrop to displayFrame occurs. This is the
// most common scale factor used by applications and would
// be rarely produced by this stress test without this
// logic.
if (testRandFract() <= freqRatio) {
// Only change to scale factor to 1.0 if both the
// width and height will fit.
int sourceWidth = layer->sourceCrop.right
- layer->sourceCrop.left;
int sourceHeight = layer->sourceCrop.bottom
- layer->sourceCrop.top;
if (((layer->displayFrame.left + sourceWidth) <= width)
&& ((layer->displayFrame.top + sourceHeight) <= height)) {
layer->displayFrame.right = layer->displayFrame.left
+ sourceWidth;
layer->displayFrame.bottom = layer->displayFrame.top
+ sourceHeight;
}
}
layer->visibleRegionScreen.numRects = 1;
layer->visibleRegionScreen.rects = &layer->displayFrame;
}
// Perform prepare operation
if (verbose) { testPrintI("Prepare:"); hwcTestDisplayList(list); }
hwcDevice->prepare(hwcDevice, 1, &list);
if (verbose) {
testPrintI("Post Prepare:");
hwcTestDisplayListPrepareModifiable(list);
}
// Turn off the geometry changed flag
list->flags &= ~HWC_GEOMETRY_CHANGED;
// Perform the set operation(s)
if (verbose) {testPrintI("Set:"); }
for (unsigned int n1 = 0; n1 < numSet; n1++) {
if (verbose) { hwcTestDisplayListHandles(list); }
list->dpy = dpy;
list->sur = surface;
hwcDevice->set(hwcDevice, 1, &list);
// Prandomly select a new set of handles
for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
unsigned int idx = testRandMod(selectedFrames[n1].size());
sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
hwc_layer_1_t *layer = &list->hwLayers[n1];
layer->handle = (native_handle_t *) gBuf->handle;
}
testDelay(perSetDelay);
}
hwcTestFreeLayerList(list);
testPrintI("==== Completed pass: %u", pass);
}
testDelay(endDelay);
// Start framework
rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK);
if (rv >= (signed) sizeof(cmd) - 1) {
testPrintE("Command too long for: %s", CMD_START_FRAMEWORK);
exit(21);
}
testExecCmd(cmd);
testPrintI("Successfully completed %u passes", pass - startPass);
return 0;
}
void init(void)
{
srand48(0); // Defensively set pseudo random number generator.
// Should not need to set this, because a stress test
// sets the seed on each pass. Defensively set it here
// so that future code that uses pseudo random numbers
// before the first pass will be deterministic.
hwcTestInitDisplay(verbose, &dpy, &surface, &width, &height);
hwcTestOpenHwc(&hwcDevice);
}
/*
* Initialize Frames
*
* Creates an array of graphic buffers, within the global variable
* named frames. The graphic buffers are contained within a vector of
* vectors. All the graphic buffers in a particular row are of the same
* format and dimension. Each graphic buffer is uniformly filled with a
* prandomly selected color. It is likely that each buffer, even
* in the same row, will be filled with a unique color.
*/
void initFrames(unsigned int seed)
{
int rv;
const size_t maxRows = 5;
const size_t minCols = 2; // Need at least double buffering
const size_t maxCols = 4; // One more than triple buffering
if (verbose) { testPrintI("initFrames seed: %u", seed); }
srand48(seed);
size_t rows = testRandMod(maxRows) + 1;
frames.clear();
frames.resize(rows);
for (unsigned int row = 0; row < rows; row++) {
// All frames within a row have to have the same format and
// dimensions. Width and height need to be >= 1.
unsigned int formatIdx = testRandMod(NUMA(hwcTestGraphicFormat));
const struct hwcTestGraphicFormat *formatPtr
= &hwcTestGraphicFormat[formatIdx];
int format = formatPtr->format;
// Pick width and height, which must be >= 1 and the size
// mod the wMod/hMod value must be equal to 0.
size_t w = (width * maxSizeRatio) * testRandFract();
size_t h = (height * maxSizeRatio) * testRandFract();
w = max(size_t(1u), w);
h = max(size_t(1u), h);
if ((w % formatPtr->wMod) != 0) {
w += formatPtr->wMod - (w % formatPtr->wMod);
}
if ((h % formatPtr->hMod) != 0) {
h += formatPtr->hMod - (h % formatPtr->hMod);
}
if (verbose) {
testPrintI(" frame %u width: %u height: %u format: %u %s",
row, w, h, format, hwcTestGraphicFormat2str(format));
}
size_t cols = testRandMod((maxCols + 1) - minCols) + minCols;
frames[row].resize(cols);
for (unsigned int col = 0; col < cols; col++) {
ColorFract color(testRandFract(), testRandFract(), testRandFract());
float alpha = testRandFract();
frames[row][col] = new GraphicBuffer(w, h, format, texUsage);
if ((rv = frames[row][col]->initCheck()) != NO_ERROR) {
testPrintE("GraphicBuffer initCheck failed, rv: %i", rv);
testPrintE(" frame %u width: %u height: %u format: %u %s",
row, w, h, format, hwcTestGraphicFormat2str(format));
exit(80);
}
hwcTestFillColor(frames[row][col].get(), color, alpha);
if (verbose) {
testPrintI(" buf: %p handle: %p color: %s alpha: %f",
frames[row][col].get(), frames[row][col]->handle,
string(color).c_str(), alpha);
}
}
}
}
/*
* Vector Random Select
*
* Prandomly selects and returns num elements from vec.
*/
template <class T>
vector<T> vectorRandSelect(const vector<T>& vec, size_t num)
{
vector<T> rv = vec;
while (rv.size() > num) {
rv.erase(rv.begin() + testRandMod(rv.size()));
}
return rv;
}
/*
* Vector Or
*
* Or's togethen the values of each element of vec and returns the result.
*/
template <class T>
T vectorOr(const vector<T>& vec)
{
T rv = 0;
for (size_t n1 = 0; n1 < vec.size(); n1++) {
rv |= vec[n1];
}
return rv;
}